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Abstract

Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark fea-

ture of asthma. Several observations suggested that acid-sensing ion channels (ASICs),

neuronal cation channels activated by protons, might contribute to AHR. For example,

ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways

can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes

neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not

airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin

and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory

response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance

P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR.

These findings suggest that ASIC1a is an important mediator of AHR and raise the possibil-

ity that inhibiting ASIC channels might be beneficial in asthma.

Introduction

Studies over the last few decades indicate that the nervous system is a critical mediator of hall-
mark features of asthma, including cough, mucus secretion and airway hyperreactivity (AHR)
[1–6]. Several lines of evidence support this conclusion. First, greater sensory nerve innervation
[7] and increased levels of sensory neuropeptides have been observed in asthmatic airways [8,
9]. Second, persistent AHR in the absence of inflammation is associated with a doubling of air-
way smooth muscle innervation [10]. Third, ablation of airway sensory neurons that express
the transient receptor potential vanilloid 1 (TRPV1) gene reduces AHR in inflamed airways
[11]. Fourth, inactivation of sensory neurons expressing Nav1.8 or blockade of Nav1.8 reduces
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AHR and asthmatic symptoms [12, 13]. Fifth, elimination of the transient receptor potential
cation channel, subfamily A, member 1 (TRPA1), a sensory neuron receptor, decreases AHR
[14, 15]. Sixth, acute vagotomy just prior to methacholine challenge prevents AHR in mice
[16]. Seventh, anticholinergics and sympathomimetics are neurotransmitter antagonists and
agonists that mitigate bronchoconstriction [17, 18] and AHR [19, 20].

Both nociceptors and non-nociceptors innervating the airway express Nav1.8 [21], and
approximately 50% of Nav1.8-positive neurons express TRPV1 [12]. Many TRPV1-positive
neurons innervating the airway also express TRPA1 [22]. Eliminating neurons that expressed
TRPV1 prevented AHR in a murine model of asthma [11], without decreasing inflammation.
In contrast, silencing neurons that express Nav1.8 [12] or elimination of TRPA1 prevented
AHR [14] and decreased inflammation. These findings suggest that a unique subset of vagal
ganglia neurons modifies airway inflammation and AHR, whereas another subset, character-
ized by the expression of TRPV1, modifies only the manifestation of AHR. Since loss of the
TRPV1 gene itself did not protect against AHR [14], then it is unlikely that TRPV1 is the key
sensor that mediates AHR. It also seems unlikely that TRPA1 is key receptor in TRPV1-expres-
sing neurons since eliminating TRPA1 decreases inflammation [14], yet inflammation
remained unchanged in mice with selective ablation of TRPV1-expressing neurons [11]. Thus,
the sensor mediating AHR in TRPV1-expressing neurons remains uncertain.

In addition to expressing TRPA1[22], vagal airway sensory neurons that express TRPV1
also express acid-sensing ion channels (ASICs) [23–28]. ASICs are voltage-insensitive cation
channels in the epithelial Na+ channel/degenerin superfamily that are activated by extracellular
protons [29, 30]. Several studies indicate that the airway becomes acidic in asthma [31–34].
The proposedmechanisms inducing acidification are immune cell infiltration, inflammation
and oxidative stress [34]. Of note, aspiration can also acidify the airways and elicit asthmatic
symptoms [35, 36]. In addition, acid inhalation and airway acidification induce airway con-
striction [37–40]. The airway acidification elicits airway constriction through activation of
TRPV1 and ASICs, and the subsequent release of sensory neuropeptides such as tachykinins
[24, 27, 37–41]. Therefore, ASICs might play a key role in mediating AHR.

Rat vagal airway sensory neurons express ASIC1a, -1b, -2 and -3 mRNA [24]. Approxi-
mately 45% of rat vagal airway sensory neurons display H+-gated currents with the features of
both TRPV1 and ASIC channels [23]. The transient component of those H+-gated currents has
properties characteristic of ASIC currents and is blocked by the ASIC blocker amiloride [23].
The sustained component has properties of TRPV1 currents and is blocked by the TRPV1
antagonist capsazepine. The onset of acid-evoked action potentials in airway vagal sensory
neurons coincides with ASIC-mediated depolarization, but not TRPV1-mediated depolariza-
tion [23]. From those studies, the authors concluded that ASIC1, -2, and -3 are responsible for
the ASIC currents in rat airway vagal sensory neurons. A separate study supported that conclu-
sion and found that ASIC currents in rat airway vagal sensory neurons were likely due to het-
eromers consisting of some combination of ASIC1, -2 and -3 [26]. Application of acid to
guinea pig vagal nerve fibers innervating the airway also elicited currents with characteristic
properties of ASIC channels [28]. Of note, some airway vagal sensory neurons in the guinea
pig demonstrated H+-gated currents consistent with expression of only ASICs, and not both
ASICs and TRPV1 [28]. A similar finding has been found in vagal neurons innervating the
esophagus, where mRNA expression of ASIC1, 2, and 3 is found in TRPV1-negative neurons
[42]. Collectively, the location and function of ASICs suggests that they might be important
mediators of AHR.

To study whether ASICs channels modifiedAHR, we studied ASIC1a-/- mice. Previous
work showed that disrupting the ASIC1a gene modifies the physiological properties of H+-
gated currents in neurons and behavioral responses to acid [43, 44]. We did not study ASIC2-/-
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mice because they exhibit an impaired baroreceptor reflex [45], which could affect tracheal
dilation [46]. We also did not study ASIC3-/- mice because they have diminished sympathetic
tone [47], which could confound airway resistance measurements.We did not use a pharmaco-
logical approach because the mixed pharmacology and state-dependent activity of many ASIC
channel blockers, such as amiloride [48], PcTx1[49, 50], APETx2 [51, 52], and Diclofenac [53]
would make interpretation of results less clear.

Materials and Methods

Animals

Adult (8–9 weeks old) ASIC1a-/- [54] and wild-typemale mice were maintained on a congenic
C57BL/6J background. These studies were approved by the University of Iowa Animal Care
and Use Committee.

OVA sensitization

Mice were sensitized as previously described [55, 56]. Briefly, 8–9 week-oldmice were sensi-
tized by intraperitoneal injection of 10 μg of OVA (Sigma) mixed with 1 mg of alum in 0.9%
saline on days 0 and 7. Control mice received saline with 1 mg of alum on days 0 and 7. On
days 14–16, mice received 1% OVA or 0.9% saline for 40 min by nebulization.

Bronchoalveolar lavage and analyses

All mice that completed FlexiVent procedures were subjected to a bronchoalveolar lavage.
Lungs received three sequential 1 ml lavages of 0.9% sterile saline delivered into the airways
through a cannula secured in the euthanizedmouse trachea. All collectedmaterial from one
mouse was pooled, spun at 500 X g, and the supernatant was removed and frozen at -80°C.

Cell count analysis and percent granulocyteswas calculated once as previously described
[57]. IL4, IL5, and IL13 were assayed by DuoSet ELISA kits (R&D Systems). Each ELISA was
run once; duplicates of the lavage fluid per each animal were run. Substance P was assayed by
ELISA (Enzo Life Sciences) and performed after cytokines were assessed. Because of variations
in the amount of retrieved bronchoalveolar lavage fluid, adequate amounts of bronchoalveolar
lavage fluid were only available from 6 wild-type non-sensitizedmice, 6 wild-typeOVA-sensi-
tizedmice, 6 ASIC1a-/- non-sensitizedmice, and 7 ASIC1a-/- OVA-sensitized mice. Duplicates
of the lavage fluid per each animal were run. All ELISAs were performed according to the man-
ufacturer’s instructions.

Vagal ganglia isolation

Mice were euthanized by overdose of isofluorane inhalation. The vagal ganglia were exposed
by gently pulling on the vagus nerve and then delicately cutting. They were immediately placed
in RIPA buffer and stored at -80°C until protein isolation.

Western blot

Total protein frommouse brain, vagal ganglia, trachea, and lung were isolated using RIPA
buffer (Sigma). Samples (40 μg) were denatured and run on a 4–15% polyacrylamide gel.
Whole brain lysate from a wild-typemouse served as a control (10 μg loaded). A rabbit poly-
clonal antisera directed against mouse ASIC1a was provided as a kind gift fromDr. JohnWem-
mie for western blot analysis. The western blotting of vagal ganglia was performed on two
separate occasions using pooled tissues from the same three wild-typemice; similar results
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were observed.The airway was assessed by western blot on three separate occasions using
pooled tissues from three wild-typemice; similar results were obtained.

Immunocytochemistry

Whole vagal ganglia were dissected from wild-type and ASIC1a-/- mice and fixed in 2% PFA
for 15 min. Samples were then washed and permeabilizedas previously described [58]. Samples
were incubated in anti-ASIC1a polyclonal goat antibody (Sigma) at a ratio of 1:250 overnight
at room temperature with gentle shaking. An alexa 488 secondary antibody (Life Technologies)
at 1:500 was used for detection. Sectionswere mounted with vectashield and viewedwith an
Olympus Fluoview confocal microscope. Images were taken with identical settings. Post-collec-
tion adjustments were made identically. Two vagal ganglia from one wild-type and one
ASIC1a-/- mouse were assessed by immunocytochemistry;similar results were achieved. The
airway was assessed by immunocytochemistry on four separate occasions using independent
wild-type and ASIC1a-/- mice; similar results were achieved.

Quantitative RT-PCR

RNA from total mouse airways and vagal ganglia was isolated using Qiagen Lipid Kit and
treated with DNAse. RNA integrity was assessed by an Agilent Bioanalyzer. RNA was then
reverse transcribed using VILOmastermix. Primers were designed for murine muc5AC as pre-
viously described [55]. Transcript abundance was assessed once. RNA was isolated from the
airways of 8 wild-type non-sensitizedmice, 7 wild-typeOVA-sensitized mice, 7 ASIC1a-/- non-
sensitizedmice, and 7 ASIC1a-/- OVA-sensitized mice.

Mouse cultures

Mouse tracheal epithelial cells were cultured as previously described [59].

FlexiVent

Flexivent experiments were carried out on two separate cohorts of mice. Ketamine and xylazine
sedation were used to preserve vagal reflexes [60, 61]. For each cohort, one mouse from each
genotype and treatment was run on a single day. Data were collected over a period of 4 days for
each cohort. FlexiVent procedures were performed as previously described [55]. Increasing
doses of methacholine were aerosolized using an ultrasonic nebulizer. The aerosols were deliv-
ered for 10 sec into the inspiratory line of the ventilator. Measurements for each methacholine
dose were taken at 10 sec intervals over the course of 5 mins. Two wild-typeOVA-sensitized
mice died during FlexiVent procedures (one from each cohort) and their FlexiVent data were
not used. One wild-type non-sensitizedmouse died during tracheostomy and was not included
in the study.

Chemicals

Acetyl-beta-methacholine-chloride (Sigma) was dissolved in 0.9% saline for flexiVent studies.

Histopathology

Following euthanasia, the left lung was removed and placed in 10% normal buffered formalin.
Lungs were removed from all animals that underwentOVA-sensitizati on and their respective
non-sensitized controls. A single wild-typeOVA-sensitized mouse lung was not collected due
to user error. Samples were sectioned and stained as previously described [62]. A pathologist
masked to groups performed scoring on H&E stainedmouse lung sections [63]. The following
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scores were assigned for bronchovascular inflammation severity: 1, within normal limits; 2,
focal solitary cells with uncommon aggregates; 3, multifocal nominal to moderate sized aggre-
gates; 4, moderate to high cellularity, multifocal large cellular aggregates that may be expansive
into adjacent tissues. The following scores were assigned for bronchovascular inflammation
distribution: 1, within normal limits; 2, minor to localized aggregates,<33% of lung; 3, multifo-
cal aggregates, 33–66% of lung; 4, coalescing to widespread,>66% of lung. Scoring occurred
once.

Lung fixation and micro-CT scanning

Mice were euthanized with an intraperitoneal injection (Euthasol; Vibrac, Fort Worth, TX),
and their lungs were surgically excised. The lungs were fixed via airway instillation at a pressure
of 25 cmH2O as previously described [64]. The fixative was composed (by volume) of 55% dis-
tilled water, 25% polyethylene glycol, 10% ethyl alcohol (190 proof), and 10% formaldehyde.
The lungs were removed from the fixative after 24 hr and placed in an oven at 60°C for 24 hr.
While in the oven, an airway pressure of 25 cmH2O was maintained.

Lungs were imaged by micro computed tomography (micro-CT) on a Siemen’s Inveon
PET/CT/SPECT scanner. Scanner settings were: 50 kVp voltage, 500 μA current, 2150 ms
exposure time, 360 degrees of rotation, and 720 projections. The resulting voxels were cuboidal
with 40 μm sides. Airwaymeasurements were obtained from the micro-CT scans with Pulmo-
naryWorkstation 2.0 (VIDA Diagnostics Inc., Coralville, IA) as previously described [64].
Measurements were made perpendicular to the airway centerline and were obtained for the 35
airways highlighted by Thiesse et al. [65]. Airwaymeasurements occurred over a period of sev-
eral days, with the operator blinded to genotype.

Statistical analysis

We designed our study based upon an anticipated effect size of 1.6–1.8. These values were
obtained from previous data generated from published literature [55]. Using a g-power analysis
for a two-tailed “Difference between two independent means (two groups)”, the calculated
number of animals required for an alpha value of 0.05 and a beta value of 0.2 was 6–8 animals
per group. A two-way ANOVA was performed for studies with two or more groups and two or
more conditions. When two or more groups were present, but only one condition was being
tested, a one-way ANOVA was performed. Post-hoc comparisons were performed using a LSD
test. For micro-CT studies, a test of normality was performed indicating data was not normally
distributed. Therefore, a Mann Whitney test was used to assess differences on the combined
total airway lumen area (35 segmented branches combined for each genotype). For histopatho-
logical scoring, a non-parametric ANOVA was used; when significancewas found, non-
parametric a MannWhitney test between two individual groups was performed. Significance
for all tests was assessed as p<0.05. Exact p values are shown in figure legends.

Results

Immunofluorescence and western blotting revealed ASIC1a expression in the vagal ganglia,
consistent with earlier work [24] (Fig 1A and 1B). We found negligible protein expression in
the lung (Fig 1B). Compared to ASIC1a-/- tissue, tissue from wild-typemice showed no specific
immunostaining in airway smoothmuscle (Fig 1C) or airway epithelia (Fig 1C and 1D), even
though immunostaining procedures occurred at the same time and under the same conditions
as the vagal ganglia immunostaining.We made numerous attempts to identify ASIC1a immu-
nostaining in nerve endings innervating the airway, but no specific staining was observed.
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We induced AHR by using a common sensitization protocol that elicits an allergic reaction
to ovalbumin (OVA) [55, 56]. Briefly, adult mice receivedOVA intraperitoneally on days 0
and 7 (Fig 2A). On days 14–16, mice inhaled a 1% OVA/saline solution to elicit an airway-spe-
cific reaction. On day 17, we assessed AHR by measuring airway resistance in response to neb-
ulizedmethacholine; in mice that exhibit AHR, the degree of airway narrowing in response to
methacholine is exaggerated and reflected as a higher airway resistance. As the concentration
of methacholine increases, the degree of airway narrowing increases and thus airway resistance
increases. Both non-sensitizedwild-type and ASIC1a-/- mice showed similar airway resistance
in response to increasing concentrations of methacholine (Fig 2B). As expected,OVA-sensiti-
zation induced AHR in wild-typemice (Fig 2B and 2C). The degree of AHR was consistent
with previous reports in C57Bl/6 mice [55, 66]. In contrast, OVA-sensitization failed to elicit
AHR in ASIC1a-/- mice.

One possible explanation for the lack of AHR in ASIC1a-/- mice might be that ASIC1a-/-

mice contained larger airways. However, baseline airway resistance was not reduced in the
ASIC1a-/- mice (Fig 2D). In addition, micro-CT studies and airway segmentation analysis

Fig 1. ASIC1a is present in vagal ganglia and expression in the airway is non-specific or negligible. A) Images of wild-type (WT) and

ASIC1a-/- mouse vagal ganglia. ASIC1a immunostaining is in green, and DIC indicates differential interference contrast images. Scale bar in left

and middle panels is 60 μm; scale bar in the right panel is 40 μm. B) Western blot of ASIC1a in the vagal ganglia. Brain is a positive control. For

vagal ganglia, trachea, and lung, 40 μg of protein from tissues of 3 WT mice were pooled. For brain, 10 μg of protein was loaded. C) Images of

wild-type (WT) and ASIC1a-/- mouse lung cross-sections. ASIC1a immunostaining is shown in green, and DIC indicates differential interference

contrast images. Scale bar in left and middle panels is 50 μm; scale bar in the right panel is 30 μm. Asterisks indicate airways; arrowheads show

epithelia; arrows identify smooth muscle. D) Images of wild-type (WT) and ASIC1a-/- mouse cultured airway epithelia. DAPI staining is blue

(nuclei), ASIC1a immunostaining is in green, ulex europaeus agglutinin (UEA) staining is red (mucin-producing cells), and DIC indicates

differential interference contrast images. Scale bar is 30 μm. Abbreviations: WT, wild-type; ASIC, acid-sensing ion channel; DIC, differential

interference contrast. UEA, ulex europaeus agglutinin; DAPI, 4’,6-diamidino-2-phenylindole. Staining of airways and cultures occurred using

same procedures and same conditions as the vagal ganglia.

doi:10.1371/journal.pone.0166089.g001
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Fig 2. Loss of ASIC1a prevents airway hyperreactivity. A) Male mice (8–9 weeks-old) were sensitized by intraperitoneal injection of 10 μg of

OVA (Sigma) mixed with 1 mg of alum in 0.9% saline on days 0 and 7. Control mice received saline with 1 mg of alum at day 0 and 7. On days 14–

16, mice were nebulized with either 1% OVA or 0.9% saline for 40 min in a chamber. B) Airway resistance (R) was measured by flexiVent in OVA-
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revealed no differences in the airway lumen diameters between genotypes (Fig 2E). Thus, a
larger airway diameter did not explain the lack of AHR in ASIC1a-/- mice.

Airway inflammation is a key component of asthma and of the OVA-sensitization model
[67, 68] and is characterized by the presence of granulocytes and increased levels of Th2 cyto-
kines such as IL13, IL4 and IL5 [69–71]. Accordingly, we asked whetherASIC1a gene disrup-
tion reduced the inflammatory response to OVA. As previously reported [55], OVA-
sensitization induced inflammatory cells in the bronchoalveolar lavage fluid of wild-typemice.
OVA-sensitization ASIC1a-/- mice also showed increased inflammatory cells in the bronchoal-
veolar lavage fluid (Fig 2F and 2G). Both genotypes of mice showed a similar induction of key
inflammatory cytokines in response to OVA-sensitization (Fig 2H–2J), although IL13 levels
were unexpectedly statistically greater in OVA-sensitized ASIC1a-/- mice than in controls.
Inflammation increases mucus production, and as such, increasedmucus is a manifestation of
asthma and inflammation [72]. We found that OVA-sensitization increased transcripts for
muc5AC, the major murine airway mucin glycoprotein in mucus, in both wild-type and
ASIC1a-/- mice (Fig 2K). This result was consistent with the presence of robust inflammation
in both genotypes.We also assessed inflammation using quantitative histopathology. As
expected and consistent with our other findings, OVA-sensitization increased bronchovascular
inflammation in both wild-type and ASIC1a-/- mice (Fig 3A). The severity and distribution of
bronchovascular inflammation did not differ between genotypes (Fig 3B). Collectively, these
findings suggest that loss of ASIC1a decreases AHR without reducing the inflammatory
response.

Substance P is a tachykinin mediator of airway smooth muscle contraction in many species,
including mice [73, 74] and contributes to AHR [15, 75–77]. Substance P is enriched in c-fibers
and its release is thought to reflect c-fiber activity [78, 79]. Consistent with this, disrupting sen-
sory nerve function by eliminating the TRPA1 chemosensory receptor decreases substance P
and other sensory neuropeptides in the bronchoalveolar lavage fluid of mice [14]. Therefore,
we used substance P as an indicator of sensory nerve function.We measured the concentration
of substance P in the bronchoalveolar lavage fluid and found that loss of ASIC1a prevented the
OVA-induced increase in substance P (Fig 3C). This result suggests that part of the protection
against AHRmight involve reduced sensory nerve function and/or decreased release of pro-
contractile neuropeptides, such as substance P.

sensitized wild-type and ASIC1a-/- mice before and following administration of increasing doses of methacholine. Data are mean±SEM. WT + Sal,

n = 7 mice; WT + OVA, n = 6 mice; ASIC1a-/- + Sal, n = 8 mice; ASIC1a-/- + OVA, n = 8 mice. * indicates p = 0.043. C) Ratio of airway resistance

after administration of 50 mg/ml methacholine in OVA-sensitized mice compared to non-sensitized mice. A ratio of 1 indicates that airway

resistance of OVA-sensitized and non-sensitized mice was the same. * indicates p = 0.012. Ratios for ASIC1a-/- mice were not statistically

different from one (p = 0.18). D) Baseline airway resistance (R) prior to administering methacholine. p = 0.89. E) Airway measurements obtained

from micro-CT scans. Data are mean±SEM area for 35 different airways. Airways are shown according to size. References to abbreviations and

methods are in the Methods section. WT, n = 4 mice; ASIC1a-/-, n = 5 mice. p = 0.35. F) Number of cells in bronchoalveolar lavage fluid from non-

sensitized and sensitized mice. For WT + Sal vs. WT + OVA, * indicates p = 0.004; for ASIC1a-/- + Sal vs. ASIC1a-/- + OVA, * indicates p = 0.006.

G) The percentage of granulocytes in bronchoalveolar lavage fluid. For WT + Sal vs. WT + OVA, * indicates p<0.0001; for ASIC1a-/- + Sal vs.

ASIC1a-/- + OVA, * indicates p<0.0001. H) Levels of IL4 in bronchoalveolar lavage fluid. For WT + Sal vs. WT + OVA, * indicates p = 0.03; for

ASIC1a-/- + Sal vs. ASIC1a-/- + OVA, * indicates p = 0.018. I) Levels of IL5 in bronchoalveolar lavage fluid. For WT + Sal vs. WT + OVA, *
indicates p = 0.049; for ASIC1a-/- + Sal vs. ASIC1a-/- + OVA, * indicates p = 0.005. A Pearson’s normality test showed that IL5 values in the

ASIC1a-/- OVA-sensitized mice do not differ from a normal distribution. (J) Levels of IL13 in bronchoalveolar lavage fluid. For WT + Sal vs. WT

+ OVA, p = 0.054; for ASIC1a-/- + Sal vs. ASIC1a-/- + OVA, * indicates p = 0.013; for WT + OVA vs. ASIC1a-/- + OVA, # indicates p = 0.036. A

Pearson’s normality test showed that IL13 values in the ASIC1a-/- OVA-sensitized mice do not differ from a normal distribution. K) muc5AC mRNA

in mouse airways. For WT + Sal vs. WT + OVA, * indicates p<0.0001; for ASIC1a-/- + Sal vs. ASIC1a-/- + OVA, * indicates p = 0.018. For all

panels, individual points represent data collected from a single mouse. Bars and whiskers indicate mean±SEM. Abbreviations: OVA, ovalbumin;

Sal, saline; WT, wild-type; ASIC, acid-sensing ion channel; MCh, methacholine.

doi:10.1371/journal.pone.0166089.g002
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Discussion

Our data show that disrupting the ASIC1a gene prevented AHR in an OVA-sensitization
model. They also emphasize the importance of the nervous system in the manifestation of
AHR.

Fig 3. OVA-sensitization induces similar bronchovascular inflammation in wild-type and ASIC1a-/- mice. A) Representative hematoxylin

and eosin staining of mouse lung sections. Asterisks indicate airways; arrows indicate examples of bronchovascular inflammation. Scale bar for

top panels indicates 700 μm; for lower panels bar indicates 140 μm. B) Bronchovascular inflammation score. Bronchovascular inflammation

severity was scored as follows: 1, within normal limits; 2, focal solitary cells with uncommon aggregates; 3, multifocal nominal to moderate sized

aggregates; 4, moderate to high cellularity, multifocal large cellular aggregates that may be expansive into adjacent tissues. The following scores

were assigned for bronchovascular inflammation distribution: 1, within normal limits; 2, minor to localized aggregates, <33% of lung; 3, multifocal

aggregates, 33–66% of lung; 4, aggregates coalescing to widespread, >66% of lung. For severity score: WT + Sal vs. WT + OVA, * indicates

p = 0.0002; for ASIC1a-/- + Sal vs. ASIC1a-/- + OVA, * indicates p = 0.007. For distribution score: WT + Sal vs. WT + OVA, * indicates p = 0.005;

for ASIC1a-/- + Sal vs. ASIC1a-/- + OVA, * indicates p = 0.001. C) Substance P measured by ELISA in the bronchoalveolar lavage fluid as a test

of sensory nerve activity. For WT + Sal vs. WT + OVA, * indicates p = 0.05; for WT + OVA vs. ASIC1a-/- + OVA, # indicates p = 0.03. For panels B

and C, each symbol indicates data from an individual mouse. Bars and whiskers indicate mean±SEM. Abbreviations: OVA, ovalbumin; Sal,

saline; WT, wild-type; ASIC, acid-sensing ion channel.

doi:10.1371/journal.pone.0166089.g003
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Although inflammation is a prerequisite for the development of AHR in allergic asthma
[68], we found that loss of ASIC1a decreasedAHR without reducing inflammation. That disso-
ciation has also been reported by others. For example, Trankner and colleagues ablated a popu-
lation of vagal sensory neurons in mice and found that it prevented AHR following OVA-
sensitization, but did not reduce inflammation [11]. Crimi and colleagues found no correlation
between numbers of inflammatory cells and the degree of AHR in humans [80]. Similarly, Wil-
der reported a dissociation of AHR from immune responses in mice [81]. OVA-sensitization
in neonatal mice doubled airway smooth muscle innervation and induced persistent AHR even
after inflammation had subsided [10]. Ablated TRPV1-expressing vagal sensory neurons in
mice prevented AHR following OVA-sensitization without reducing airway inflammation
[11]. However, another study found that ablating sensory neurons both prevented AHR and
reduced inflammation [12]. In that study, ~80% of airway nociceptors were silenced, and the
authors concluded that inactivating a large population of nocieptor sensory neurons might be
required to dampen inflammation. Similarly, mice lacking TRPA1 also had reduced AHR and
decreased inflammation [14]. These studies collectively suggest that the degree of AHR does
not necessarily correlate with the degree of inflammation, and that many factors, including the
initiating event and/or responsible ligands, the type of sensory receptor, and the specific neu-
rons and other cell types expressing the receptor, ultimately determine the relationship
betweenAHR and inflammation.

Previous studies have shown that tachykinin antagonists decrease airway inflammation [76,
77, 82]. Therefore, it is interesting to note the paradoxical increase in IL-13 in the bronchoal-
veolar lavage fluid of OVA-sensitized ASIC1a-/- mice despite decreased levels of substance P. A
somewhat similar paradox occurs with ASIC3-/- mice in a murine model of arthritis;ASIC3-/-

mice display a lack of pain despite having greater IL-6 levels [83]. While the mechanisms
underlying the elevated IL-13 in the OVA-sensitized ASIC1a-/- mice are uncertain, it is possible
that loss of ASIC1a prevents proton-mediated repression of IL-13 release and/or transcription.
It is also possible that ASIC1a expression in dendritic cells [84] or T cells [85] contributes.
However, T-cell-mediated cytokine production is not affected by loss of ASIC1a [85]. There-
fore, the cell type and mechanisms underlying increased IL-13 levels in OVA-sensitized
ASIC1a-/- mice remain unknown.

These findings suggest that ASICs play a key role in the bronchoconstriction associated
with the OVA sensitizationmodel and perhaps with asthma. When combined with previous
studies, our results suggest that the acidosis associated with asthma [31–34] may activate
ASICs on vagal sensory neurons. Consistent with that suggestion, acid depolarizes vagal noci-
ceptive and mechanosensory airway afferents [28]. The pH reductions induce activity in these
afferents, and the currents exhibit kinetics of ASIC channels independent of TRPV1. The acti-
vation of vagal neurons may initiate reflex efferent nerve activity and/or may release sensory
neuropeptides, including substance P [39] and CGRP [14]. Congruent with that prediction,
loss of ASIC1a reduced the substance P concentration in bronchoalveolar lavage liquid; this
findingmirrors the finding that loss of the TRPA1 chemosensory receptor decreases bronch-
oalveolar lavage fluid levels of substance P, CGRP, and neurokinin A [14]. Multiple studies
indicate that substance P mediates airway smoothmuscle contraction and contributes to AHR
[73, 74, 76, 77, 86], although some studies suggest that substance P can relax pre-contracted
smoothmuscle [87, 88]. Thus, the reduced substance P might, in part, contribute to the
reduced AHR in ASIC1a-/- mice.

Even though loss of ASIC1a reduces acid-induced transient currents, we are not aware of
any study suggesting that loss of ASIC1a causes a universal elimination of neural activity or
universal loss of function. For example, ASIC1a-/- mice develop secondary paw hyperalgesia in
response to carrageenan-inducedmuscle inflammation [89], and in ASIC1a-/- mice, paw
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withdrawal responses to heat are not affected [90]. Thus, it is predicted that the loss of ASIC1a
prevents airway hyperreactivity only when the initiating stimulus involves an acidic pH or a
ligand that activates ASIC1a.

Our study also has limitations. Although ASICs are present in neurons innervating airways
[24, 91], we do not know the identity of the specific neuronal afferents. In addition, we cannot
determine the contributions to AHR of ASIC1a in peripheral vs. central neurons. It is also pos-
sible that ASIC1a might contribute to AHR by modifyingmechanosensation [92], and
although we could not detect ASIC expression in airway smoothmuscle, loss of ASIC1a in
non-neuronal cells might also be important [93–95]. Finally, given species differences in inner-
vation of the airway, we are uncertain about whether our observations in ASIC1a-/- mice will
apply to other species.

In summary, our data identify ASIC1a as an important mediator for AHR in OVA-sensi-
tizedmice, and suggest that ASICs may play a novel role in the coupling/decoupling of airway
inflammation and AHR. In addition, we report for the first time a role for ASIC1a in diminish-
ing the release and/or induction of substance P in inflamed airways.Whether loss of ASIC1a
affects concentrations of other sensory neuropeptides remains to be determined. Finally, we
speculate that ASIC channel inhibitors might be beneficial in asthma and other airway
diseases.
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