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Comparative physiological and anatomical studies have greatly advanced our understanding of sensory systems. Many lines of evidence
show that the murine lateral geniculate nucleus (LGN) has unique attributes, compared with other species such as cat and monkey. For
example, in rodent, thalamic receptive field structure is markedly diverse, and many cells are sensitive to stimulus orientation and
direction. To explore shared and different strategies of synaptic integration across species, we made whole-cell recordings in vivo from
the murine LGN during the presentation of visual stimuli, analyzed the results with different computational approaches, and compared
our findings with those from cat. As for carnivores, murine cells with classical center-surround receptive fields had a “push-pull”
structure of excitation and inhibition within a given On or Off subregion. These cells compose the largest single population in the murine
LGN (�40%), indicating that push-pull is key in the form vision pathway across species. For two cell types with overlapping On and Off
responses, which recalled either W3 or suppressed-by-contrast ganglion cells in murine retina, inhibition took a different form and was
most pronounced for spatially extensive stimuli. Other On-Off cells were selective for stimulus orientation and direction. In these cases,
retinal inputs were tuned and, for oriented cells, the second-order subunit of the receptive field predicted the preferred angle. By contrast,
suppression was not tuned and appeared to sharpen stimulus selectivity. Together, our results provide new perspectives on the role of
excitation and inhibition in retinothalamic processing.
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Introduction
Comparative physiological and anatomical studies highlight both
shared and different neural strategies for processing information

about the environment. Here, we evaluate response properties in
the murine lateral geniculate nucleus (LGN) from this perspec-
tive. In carnivores and primates, orientation and direction selec-
tivity, by and large, first emerge in cortex (Hubel and Wiesel,
1962, 1968; Chapman et al., 1991; Cheong et al., 2013) but are
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Significance Statement

We explored the murine lateral geniculate nucleus from a comparative physiological perspective. In cat, most retinal cells have
center-surround receptive fields and push-pull excitation and inhibition, including neurons with the smallest (highest acuity)
receptive fields. The same is true for thalamic relay cells. In mouse retina, the most numerous cell type has the smallest receptive
fields but lacks push-pull. The most common receptive field in rodent thalamus, however, is center-surround with push-pull.
Thus, receptive field structure supersedes size per se for form vision. Further, for many orientation-selective cells, the second-
order component of the receptive field aligned with stimulus preference, whereas suppression was untuned. Thus, inhibition may
improve spatial resolution and sharpen other forms of selectivity in rodent lateral geniculate nucleus.
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encoded as early as retina in rodent (Weng et al., 2005; Girman
and Lund, 2010; Zhao et al., 2013). There are also pronounced
differences in receptive field structure across taxa. For example,
in carnivore retina (Kuffler, 1953; Enroth-Cugell and Robson,
1984), LGN (Hubel and Wiesel, 1961; Wang et al., 2007), and
cortical layer 4 (Hubel and Wiesel, 1962; Martinez et al., 2005),
most receptive fields are constructed from segregated On and Off
subregions with a push-pull arrangement of synaptic excitation
and inhibition, characteristics important for detecting contrast
borders among other functions. In mouse, this type of receptive
field does not predominate in retina (Berson, 2008) and is absent
at the level of cortex (Liu et al., 2009; Lien and Scanziani, 2013).
The synaptic structure of receptive fields in the rodent LGN is
unknown.

How does the rodent LGN compare with that of higher spe-
cies, such as cat? The murine LGN retains many anatomical (Lam
et al., 2005; Krahe et al., 2011) and physiological hallmarks (Mon-
tero et al., 1968; Williams et al., 1996; Grubb and Thompson,
2003; Lam et al., 2005) of carnivoran thalamus (Friedlander et al.,
1981; Sherman, 2004; Usrey and Alitto, 2015). Morphologically,
there are murine correlates of X, Y, and W type cells (Lam et al.,
2005; Krahe et al., 2011); physiologically, some relay cells have
classical center-surround receptive fields (Grubb and Thomp-
son, 2003; Piscopo et al., 2013; Zhao et al., 2013). However, there
are substantial species differences. The smallest receptive fields
are not concentrated centrally, as in carnivore and primate, and
receptive field structure is diverse (Piscopo et al., 2013). Addi-
tionally, many cells are sensitive to stimulus orientation or direc-
tion (Marshel et al., 2012; Piscopo et al., 2013; Scholl et al., 2013;
Zhao et al., 2013; Roth et al., 2016; Tang et al., 2016). Further-
more, while the arbors of local interneurons in carnivore (Sutton
and Brunso-Bechtold, 1991; Sherman, 2004) are spatially com-
pact, those in rodent traverse large areas of retinotopic space
(Zhu et al., 1999; Seabrook et al., 2013). It is therefore unclear
whether they can generate a localized form of inhibition that
push-pull requires.

To explore synaptic integration in the rodent thalamus, we
made patch recordings with dye-filled electrodes during vision
and analyzed our results with computational approaches adapted
for intracellular signals (Wang et al., 2007). These included spike-
triggered averaging (STA) and spike-triggered covariance analy-
sis (STC) (Schwartz et al., 2006) and linear-nonlinear (LN)
cascade models (Simoncelli et al., 2004). Like cat, murine relay
cells with center-surround receptive fields had stereotyped, albeit
weaker, push-pull responses and processed their inputs in an
approximately linear fashion. For other cells, including On-Off
cells of various sorts (Piscopo et al., 2013), the pattern of excita-
tion and inhibition varied with class. Different from cat, the pop-
ulation of cells with the smallest receptive fields were On-Off
rather than center-surround, suggesting species differences in
achieving high visual acuity.

We also explored the synaptic basis of orientation and
direction sensitivity and found that retinogeniculate inputs
themselves were tuned. Conversely, suppression was not ori-
entation-selective and seemed to sharpen tuning of the suprath-
reshold response, as described for rodent cortex (Li et al., 2012).
Unlike cortex, however, where the geometry of the first-order
component of the receptive field (STA) predicts neural prefer-
ence for stimulus angle, the STAs of orientation-tuned cells in the
LGN were circular; only higher-order components of the recep-
tive fields (STCs) predicted the optimal orientation. All told, our
work provides insights into the emergence of feature selectivity in

the murine visual pathway and highlights evolutionarily con-
served as well as divergent elements of thalamic circuitry.

Materials and Methods
Preparation
The experimental subjects were adult (of either sex), pigmented mice
(C57BL/6) and rats (Long–Evans). For rats, anesthesia was induced with
a mixture of ketamine and dexmedetomidine (4.5 mg/kg � 0.18 mg/kg,
i.m.) and maintained by injections of the mixture (0.05 ml) every 45 min
or as necessary. Mice were sedated with chlorprothixene (5 mg/kg); then
anesthesia was initiated and maintained with urethane (0.5–1 g/kg 10%
w/v in saline, i.p.) (Niell and Stryker, 2008). Body temperature was mea-
sured using a rectal probe and maintained at 37°C. After retracting the
scalp, a headpost was affixed to the skull and a small craniotomy centered
over the LGN was made. Durotomies were necessary in rats but not mice,
and the brain and eyes were kept moist with saline. All procedures were in
accord with the guidelines of the National Institutes of Health and the
Institutional Animal Care and Use Committees of the University of
Southern California.

Recordings
Whole-cell recordings with biocytin-filled pipettes were made using pre-
viously described techniques (Hirsch et al., 2003; Hirsch and Martinez,
2006; Wang et al., 2007) and, unless otherwise noted, the membrane was
held just below the threshold for firing (determined in the absence of a
visual stimulus) to help reveal inward and outward currents. Pipette
resistance varied between 5 and 20 Mohms. Neural signals were recorded
using an Axopatch 200A amplifier (Axon Instruments), digitized at 10
kHz (Power 1401 data acquisition system, Cambridge Electronic Design)
and stored for further analysis (Wang et al., 2007, 2011).

Visual stimuli
Our stimulus set included discs (3–20 degrees) and annuli (inner diam-
eter: 5–25 degrees and outer diameter: 80 –100 degrees); sparse noise
(dark and bright squares (2–20 degrees, contrast 50%) displayed 16 times
each on a 16 � 16 pixel grid in pseudo random order (Jones et al., 1987);
drifting sinusoid gratings (temporal frequency: 3– 4 Hz, spatial frequen-
cy: 0.01– 0.1 cycles/degree, 8 directions, full contrast); and 2D Gaussian
white noise stimulus (33% RMS contrast, pixel size 1, 3, 5, or 7 degrees).
The frame rate for noise was 35 Hz. Images were generated with a stim-
ulus generator (ViSaGe, Cambridge Research Systems) and displayed
on a gamma-corrected LCD monitor (Dell U2211H) with a refresh
rate of 70 Hz.

Event sorting and detection
To detect potential neural events, we applied an adaptive threshold to the
first derivative of the intracellular signal such that the smallest potential
events included both EPSCs and noise. These events were then sorted
using an algorithm based on a support vector machine (SVM) (Chang
and Chih-Jen, 2011) trained with randomly selected events that were
manually labeled as EPSCs or noise. The first derivative and the value of
the derivative following three consecutive steps of downsampling were
computed for the labeled dataset and supplied as features to the SVM.
The SVM yielded two clusters: noise and neural events. Because events
near the decision boundary were prone to misclassification, we labeled
these manually for additional training and then reclassified the dataset.
Finally, spikes were sorted from the EPSCs by repeating the algorithm
exclusively on SVM-classified neural events.

Measuring the spatial distribution of excitation versus inhibition
in the receptive field
Excitation/inhibition (E � I) symmetry index. To help separate push-pull
responses from other types, we measured the net inward or outward
extent of membrane currents evoked by sparse noise after removing
action currents (MATLAB: medfilt2 function, The MathWorks) (Wang
et al., 2007). Responses to bright and dark spots for locations within the
center of the receptive field were averaged and then normalized (Marti-
nez et al., 2005). We made a metric called the E�I symmetry index, �, to
describe cells based on their synaptic response to On and Off stimuli as
follows:
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f(�) � argmin� �
t�1

N

�P(t) � � � N(t)�2 (1)

Here, P and N are the synaptic responses to bright and dark spots, respec-
tively. Values of � � 0 represent cells that are excited by stimuli of one
polarity and inhibited by stimuli of the opposite polarity, whereas values
of � � 0 represent cells for which both bright and dark spots evoke
responses of the same sign.

Bright-dark response polarity score. To score the sign of the response to
bright and dark spots presented within the receptive field of single cells,
we made a simple bright-dark response polarity index, or (�) as follows:

�Bright �
Rmax(Bright)

�Rmax
2 (Bright) � Rmax

2 (Dark)2
(2)

�Dark �
Rmax(Dark)

�Rmax
2 (Bright)2 � Rmax

2 (Dark)2
(3)

where Rmax is the peak or trough of the normalized response to bright or
dark spots.

�Bright and �Dark values lie on a unit circle. When bright and dark
spots evoke responses of the same sign, whether excitatory or suppres-
sive, �Bright and �Dark have the same polarity, the index values occupy
the first or third quadrants of the unit circle. On the contrary, if bright
and dark spots evoke responses of the opposite sign, �Bright and �Dark

have opposite polarities and the index values occupy the second or fourth
quadrants of the unit circle.

Receptive field size. To measure receptive field size, we used standard
techniques (Wang et al., 2007). We fit the sparse noise maps with 2D
Gaussians to obtain the radius of the subregions. We report values
(mean � SD) for the center subregion for cells with a center-surround
organization and for a single subregion for On-Off cells.

Measuring orientation and direction selectivity
The strength of orientation and direction tuning in response to drifting
gratings was quantified using the orientation selectivity index (OSI) and
direction selectivity index (DSI), respectively (Piscopo et al., 2013; Zhao
et al., 2013), as follows:

OSI �

���i�0

7
�i � Sin� i � 	

4 ��2

� ��i�0

7
�i � Cos� i � 	

4 ��2

�i�0

7
�i

(4)

DSI �

���i�0

7
�i � Sin� i � 	

4 ��2

� ��i�0

7
�i � Cos� i � 	

4 ��2

�i�0

7
�i

(5)

�i �

Ri�	

4

Rmax
0 � i � 7 (6)

Here Ri�	/4 is the average response to gratings drifting in the direction
given by i �	/4, and Rmax is the response to the direction that evoked the
maximum event rate.

We also assessed the contribution of suppression to orientation selec-
tivity from responses to drifting gratings by measuring the area defined
by the net outward current above baseline during a fixed time window
(results computed with a variable time window were similar). The OSI
for suppression was calculated using Equation 6 by replacing �i with the
following:

�s,i �

�
t1

t2

Ri�	

4
(t) dt

RS,max
0 � i � 7 (7)

Estimating subunits of the receptive field
First- and second-order subunits of the receptive fields were recovered
using standard methods of STA and STC analysis (Schwartz et al., 2006;
Vaingankar et al., 2012) modified to ensure that the STAs and STCs are

independent (Schwartz et al., 2006; Vaingankar et al., 2012). The signif-
icance of the STC subunits was assessed with a nested bootstrap method
(Schwartz et al., 2006; Vaingankar et al., 2012). To estimate receptive
field subunits from the retinal input, the analysis was repeated with
EPSCs. The first- and second-order filters in this case were called the
EPSC-triggered average (ETA) and the EPSC-triggered covariance
(ETC) filters, respectively.

Subunits of the receptive field that were circular were fit with a Gauss-
ian function as follows:

F(x, y) �
A

2	ab
exp�


x�2

2a2 

y�2

2b2� (8)

where A is the maximum amplitude, a and b are the semi-major and -minor
axes respectively, and x� and y� are the transformations of the stimulus co-
ordinates x and y, taking into account the angle � and the offset of the ellipse
(Martinez et al., 2005).

Subunits with adjacent, elongated, subfields were fit using a Gabor
function as follows:

G(x, y) � F(x, y) � H(x, y) (9)

H(x, y) � Cos[
2	(U � x � V � y) 
 P] (10)

where U and V are the spatial frequencies in the x and y directions and P
is the phase.

Determining the circularity of the STA and STC subunits
We devised a metric called the circularity index (�) to quantify the
difference between the shape of the STA and STC subunits of the
receptive field. The index (�) captures the extent to which the shape of
receptive field subunit deviates from circular symmetry as follows:

� �
2

	 �
0

2	

1 

F�

F�,max
d� (11)

F� � 
T � R	
, � 
 (12)

Here, F� was calculated for � � 0, 	/2, 	, and 2	, with the maximum
value, F�, max, whereas 
 is the fit of the receptive field subunit and R is the
rotation operator. � � 0 indicates perfect circular symmetry.

LN models of the subthreshold neural response
We built simple LN models of the subthreshold neural response using
methods we developed earlier (Wang et al., 2007, 2011). The linear com-
ponent of each model (the spatiotemporal receptive field) was estimated
using linear regression: k � (STS)�1STr. Here r is the continuous re-
sponse, S is the stimulus, and k is a matrix of size m � n where m is the
number of time bins and n is the number of pixels in the receptive
field. The nonlinearity was obtained by fitting a least square regression
line to the relationship between the filter output and the intracellular
response. The model was trained using 15 of 16 (15,360 frames) of the
Gaussian noise sequence and tested with the remaining frames (Wang et
al., 2011). Model performance was quantified by explained variance
(Pearson’s correlation coefficient, r).

Histology and anatomical analysis
After the animal was killed and perfused with 3% PFA, the brain was
removed. Coronal sections, 100 �m thick, were processed using standard
techniques (Hirsch et al., 1998). When possible, cells were classified as X,
Y, or W types based on their location, soma size, and dendritic morphol-
ogy (Krahe et al., 2011) and reconstructed in three dimensions using
commercial software Neurolucida (MBF Bioscience). The location of
each labeled cell within its home LGN was matched to an equivalent site
in a template LGN, allowing us to compare reconstructions across
animals.

Results
Our longstanding interest is to understand how thalamic cir-
cuits integrate excitatory and inhibitory input to serve vision.
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Different species provide different advantages in exploring
sensory function, with rodents offering increased ease and
speed of experimentation, and the potential for genetic ma-
nipulation. By making whole-cell recordings with dye-filled
electrodes in vivo, we explored the degree to which visually
evoked patterns of excitation and inhibition in rodent resem-
bled those in cat (the best studied animal model) and how they
differed. Our sample included 109 cells in mouse and 22 cells
in rat. For comparison, we also included data from 6 relay cells
from cat, recorded in the course of earlier studies (Wang et al.,
2007, 2011).

Push-pull responses in cat versus rodent
Most, if not all, relay cells in the cat have receptive fields built
from concentric subregions that have the opposite preference
for luminance contrast, On or Off (Wang et al., 2007). Fur-
thermore, within each subregion, there is a push-pull arrange-
ment of excitation and inhibition (Wang et al., 2007), as
illustrated for a conventional Off-center relay cell (Fig. 1a). A
dark disc confined to the center of the receptive field evoked
an excitatory response (push) comprising EPSCs and spikes,
as seen for two individual responses to the stimulus and the
average (bolded) of all trials; stimulus duration is indicated by
the dark gray bar (Fig. 1a, top left). Removal of the disc (a
luminance increment, in effect) induced a hyperpolarizing
current (pull). Accordingly, a bright disc flashed in same lo-
cation elicited the opposite pattern of response, pull at stim-
ulus onset and push at stimulus withdrawal (Fig. 1a, bottom
left). Commensurate responses were recorded from the sur-
round (Fig. 1a, right).

We repeated the same experiment in the rat (Fig. 1b) and
mouse (Fig. 1c). On the whole, the push-pull responses of cat and
rodent relay cells were comparable. The push was dominated by
trains of EPSCs that continued during the stimulus period, and
the pull by hyperpolarization. There were, however, subtle differ-
ences. First, the pull signal seemed weaker in rodent than cat.
Stimuli that evoked the maximum pull routinely silenced retinal
input in cat but failed to do so in rodent; compare the bottom
panel of traces in Figure 1a with those in Figure 1b, c. To quantify
this difference across species, we detected retinogeniculate EPSCs
(see Materials and Methods) from the intracellular signals of re-
lay cells in cat and mouse while a suppressive stimulus was flashed
in the receptive field center. Histograms of event rates (drawn in
a unique color for each cell) show that retinogeniculate input
during the pull is negligible in cat but persists at a slowed pace in
rodent (Fig. 2b).

We sampled only the central region of the rat LGN and so
cannot comment on whether or not there are reliable species
differences between rodents. All remaining analyses of data from
rodent were obtained from mouse as are all data reported in
Table 1.

Many lines of evidence suggest that the push response is gen-
erated by retinogeniculate input (for a fuller explanation, see
Wang et al., 2007). To determine whether the pull in rodent
resulted from the withdrawal of excitation vs synaptic inhibition,

a

b

50 µm

c

50 µm

50 µm

100 ms
200 pA
100 pA

100 ms
200 pA
100 pA

100 ms
200 pA
100 pA

Figure 1. Push-pull organization of excitation and inhibition in the receptive fields of relay
cells in carnivore and rodent. a, Anatomical reconstruction of a feline Off-center shown above
membrane currents evoked by dark and bright discs flashed in the center (left) and annuli
flashed in the surround of the receptive field (right). Each panel represents two individual

4

responses to the stimulus, with averaged responses to multiple stimulus trials (bold traces)
shown below at 2� gain. Icons at left represent stimuli. Black represents responses to dark
stimuli. Gray represents responses to bright stimuli. Pale gray lines indicate baseline. Dark gray
bars represent stimulus duration. b, c, Equivalent format as in a but for an Off-center cell in rat
(b) and an On-center relay in mouse (c).
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we recorded responses to a suppressive
disc when the membrane was held at dif-
ferent levels of polarization (Fig. 2c; n � 4
cells). The pull grew smaller with progres-
sive hyperpolarization, suggesting that it
was generated by inhibition, as in cat
(Wang et al., 2007) (an increase in re-
sponse amplitude would have indicated
withdrawal of excitatory drive). It is also
possible that closure of NMDA channels
contributed to the initial phase of the pull
(Chen et al., 2002).

Predictive power of the spatiotemporal
receptive field
For relay cells in cat and monkey, simple
LN models based on the spatiotemporal
receptive field predict neural response to
novel visual stimuli reasonably well
(Carandini et al., 2005). Thus, we asked
whether this were true of murine relay
cells whose receptive fields had a center-
surround structure with push-pull. Tradi-
tional LN models are based on spike rate
but can be adapted for intracellular signals

(Wang et al., 2011). We recorded responses to full-field Gaussian
noise (a sequence of checkerboards in which the luminance of
each pixel is drawn from a Gaussian distribution; see Materials
and Methods) and used reverse correlation (of the average mem-
brane current to the stimulus) to generate the spatiotemporal
receptive field. An example of the analysis for an On-center relay
cell in cat (top) and mouse (bottom) is shown in Figure 3, the
color code for On subregions is red and for Off subregions blue.
The linear components of the model (the spatial and temporal
receptive fields), the nonlinear function (used to map the output
of the linear filter to response strength), and comparison of nor-
malized neural and predicted responses are plotted from left to
right (Fig. 3a– d). Model performance was similar between the
mouse and cat (Fig. 3e).
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Figure 2. EPSC rates during the pull are higher in mouse than in cat. a, Sample responses to discs of the nonpreferred contrast for relay
cells in cat (top) and mouse (bottom); one sample trace is black and remaining traces are gray. Inset, EPSCs at expanded gain and timescale.
a– c, Thin dark bar represents stimulus duration. b, Histograms of EPSC rate before during and after the suppressive stimulus for 5 different
relaycells incat(top)andmouse(middle);resultsfromthecellsatleftareshowninblackandfromtheeachremainingcell inadifferentcolor
(bottom). Averaged histograms for all cells within each species are shown at 2�gain (event rates for mouse are always higher than those
for cat). c, Anatomical reconstruction of an On-center relay cell in mouse (top) whose responses (bottom) to discs of the nonpreferred
contrast recorded at progressively hyperpolarized levels are shown as averages of many stimulus trials.
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Figure 3. LN models for relay cells in cat and mouse. a, b, Spatial (left) and temporal (right) receptive fields of On-center relay cells in cat (top) and mouse (bottom) computed from intracellular
responses to Gaussian noise. c, Scatter plots of the normalized membrane current against values obtained by convolving the stimulus with the spatiotemporal receptive field show how the nonlinear
component of the model (red line) was fit. d, Comparison of the normalized membrane and predicted responses. Gray line indicates the least squared fit. e, Performance of the model quantified by
explained variance. Error bars indicate SD.

Table 1. Different types of relay cells and their relative percentages in the mouse LGNa

Cell type
No. of cells recorded
intracellularly Percentages

On-center (push-pull) 27 24.77
Off-center (push-pull) 20 18.35
On-Off (non– orientation-selective/

non– direction-selective)
19 17.43

Orientation-selective 9 8.26
Direction-selective 6 5.50
Local edge detector/W3-like 5 4.59
Suppressed by contrast 8 7.34
Unclassified 15 13.76
Total 109 100
aRelay cells were classified as On-center, Off-center, On-Off, W3-like, or suppressed-by-contrast-like based on re-
sponses to sparse noise, discs, and gratings. A subset of On-Off relay cells, whose responses to drifting gratings had
OSI or DSI values �0.33 (Zhao et al., 2013), were further classified as orientation- or direction-selective.
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Scoring the spatial arrangement of push and pull in the
receptive field
Although receptive fields with a center-surround structure are
the vast majority in monkey and cat LGN (Hubel and Wiesel,
1961; Hubel and Wiesel, 1966) and retina, this is not the case for
rodent. In mouse, the LGN receives substantial input from many
types of ganglion cells (Huberman et al., 2008, 2009; Kim et al.,
2008, 2010; Kay et al., 2011; Rivlin-Etzion et al., 2012), and ex-
tracellular recordings from murine relay cells have revealed com-
mensurately sizeable populations of different types of receptive
fields, such as On-Off (Piscopo et al., 2013; Zhao et al., 2013), and
diverse response properties (Marshel et al., 2012; Piscopo et al.,
2013; Scholl et al., 2013; Zhao et al., 2013).

To help compare the spatial arrangement of excitatory and sup-
pressive input in conventional On and Off-center cells, such as those
we have described in Figures 1–3, with that in other cell types in
mouse, we mapped the synaptic structure of the receptive field with
sparse noise, individually flashed bright and dark squares flashed in
pseudorandom order along a 16 � 16 pixel stimulus grid (Jones et
al., 1987). The resulting maps are displayed in two ways, as illustrated
using the same mouse relay cell represented in Figures 1–3. First, the
receptive field is shown as a contour plot made by subtracting re-
sponses to dark stimuli from those to bright stimuli (Fig. 4a, left).
Second, the receptive field is displayed as an array of trace pairs (Fig.
4a, right). Here, averaged intracellular responses to bright (gray
traces) and dark (black traces) squares are organized point by point
along the stimulus grid; the center and surround are approximated
by dashed contours. Robust push-pull currents dominate the center.
Responses in the surround were weak because small squares are
relatively ineffective compared with spatially coherent stimuli, such
as annuli.

In past work on cortex, we quantified the presence of push-
pull in receptive fields mapped with sparse noise by using a metric
(Martinez et al., 2005) that we modified for this study and re-
named the “E�I symmetry index.” Positive values for this index
indicate the presence of push-pull during the response, whereas
negative scores indicate alternate arrangements of excitation and
inhibition within the receptive field (Fig. 4b). Most cells (23 of 63)
that were classified by eye as having push-pull responses to discs
(horizontal hatch marks) had positive scores on the index, the
exceptions being the few cells in which sparse noise evoked only
weak pull (note, discs evoke stronger responses than sparse
noise). Two On-Off cells also had positive scores in the index. In
rat, 21 of 21 cells had a push-pull profile with positive scores (data
not shown). The relay cells with negative scores (n � 34 of 63
cells) had different receptive field structures and response pro-
files, as we describe in the section below. We also measured the
size of receptive fields. As a population, the average radius of the
center subregion for push-pull cells was 11.4 � 6.81 degrees.

Diverse receptive field structures and response properties
in rodent
On-Off receptive fields
On-Off cells are driven by stimuli of either polarity presented to the
same regions of visual space (Huberman et al., 2008, 2009; Kim et al.,
2010; Rivlin-Etzion et al., 2012; Piscopo et al., 2013) rather than
having spatially opponent On and Off subregions. For the cell illus-
trated in Figure 5a, introduction and withdrawal of bright and dark
disks evoked modest but reliable depolarizations (trains of EPSCs
and spikes), with the Off response the strongest in this case. Maps
obtained with sparse noise show that the On and Off subregions had
similar shapes (Fig. 5b); in this instance, the receptive field was elon-
gated, but for other cells the fields were circular. Such On-Off re-

sponses were common, representing �31.19% of our sample (Table
1). As we will discuss in later sections, a number of cells in this sample
were selective for orientation or direction. The average receptive field
radius of these cells was 8.18 � 3.8 degrees, excluding neurons iden-
tified as belonging to the two distinct classes described in the follow-
ing paragraphs.

W3-like cells
Historically, there is a special sort of On-Off retinal ganglion cell
that is placed in its own category. These are called local edge
detectors in rabbit (Levick, 1967; Zeck et al., 2005; van Wyk et al.,
2006; Russell and Werblin, 2010) and their presumed analogs in
mouse are named W3 cells (Zhang et al., 2012). W3 ganglion cells
respond briefly and briskly to small stimuli but are silenced by
large ones (Zhang et al., 2012). We have recorded from a class of
relay cell in the LGN (4.59%) with similar properties. W3-like
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Figure 4. Pattern of excitation and inhibition in cells with push-pull and other types of
responses. a, Receptive field of an On-center relay cell mapped using sparse noise shown as a
contour plot (left; yellow box represents stimulus size) and as an array of trace pairs (right) in
which the averaged responses to bright (gray traces) and dark (black traces) to each stimulus are
placed at corresponding positions in the stimulus grid. Vertical dashes indicate stimulus onset.
Red dashed contour indicates the On subregion. Blue dashed contour represents the Off subre-
gion. b, Histogram of the distribution of E�I symmetry indices for relay cells mapped with sparse
noise along with a graphical key at bottom. Hatched bins represent cells with push-pull re-
sponses. Filled bins represent those with other intracellular profiles. The unfilled bin labeled NR
includes cells for which sparse noise did not drive responses.
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dashes indicate stimulus onset. Red dashed contour indicates the On subregion. Blue dashed contour indicates the Off subregion. c, d, Responses of a W3-like cell. c, Intracellular responses to flashed
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relay cells fired a transient, high-frequency volley of spikes in
response the presentation or withdrawal of optimally sized discs
of either polarity (Fig. 5c). Firing rates were so fast that it was
often impossible to visualize the underlying EPSCs. Large stimuli
evoked strong suppression, as shown from responses to a large
disc centered on the receptive field. For all but one of the W3-like
cells in our sample, we were able calculate the extent that full-field
versus focal stimuli suppressed spiking; the range was 72.5%–
94.3% (n � 4). Furthermore, like their putative counterparts in
retina, W3-like relay cells were neither orientation- nor
direction-selective (data not shown). Synaptic currents evoked
by very small spots (2°) (Fig. 5d) were inward and monophasic.
However, the responses to somewhat larger spots (5°) had a more
complicated shape (Fig. 5d, top right, inset). Bright spots elicited
a “double bumped” response, whereas the response to dark spots
was monophasic, recalling patterns observed in retina (Russell
and Werblin, 2010). As a population, the receptive field size of
these cells was the smallest, radius 5.5 � 1.38 degrees. Our obser-
vations should be noted in light of the following caveat. W3 gan-
glion cells are selective for objection motion (Zhang et al., 2012),
a property we did not evaluate.

Suppressed-by-contrast-like cells
Our sample includes a small (7.34%) population of cells that
resemble the murine analog (Tien et al., 2015) of those variously
termed “suppressed-by-contrast” (Tailby et al., 2007; Piscopo et
al., 2013; Tien et al., 2015) or uniformity detectors (Levick, 1967).
For these cells, discs evoked a slow outward current that appeared
to delay firing (Fig. 5e,f). In other words, EPSCs arrived early in
the response but could not reach threshold until the suppression
decayed (Fig. 5e). For this particular cell, the suppressive effect
was more pronounced for luminance increments, but in other
cases the reverse was true. It was necessary to use large stimuli to
map the receptive fields, which were commensurately extensive
(Fig. 5f); radius 14.13 � 3.99 degrees. At the peak of the receptive
field, suppressive epochs elicited at stimulus onset and at with-
drawal seemed to blend but were easy to distinguish elsewhere.
To give a sense of how these cells differed from others, we plotted
values of a “bright-dark response polarity index,” which scores
the sign of the response to bright or dark stimuli at the peak of the
receptive field (Fig. 6). Suppressed-by-contrast-like cells occupy
the lower left quadrant of the plot, other On-Off cells fill the
upper right, and cells with push-pull populate the upper left (Off-
center cells) and lower right (On-center cells) sectors.

Tuning for stimulus orientation and direction sharpens
in LGN
So far, we have focused on the spatial distribution of excitation
and inhibition in the receptive field. Here we explore how inter-
actions between these two types of synaptic input help refine
stimulus selectivity in the LGN. Specifically, we investigated reti-
nothalamic transformations of orientation and direction selec-
tivity by comparing tuning of retinogeniculate inputs and
thalamic spikes for cells whose receptive fields we had previously
mapped. Below we describe responses for oriented and for direc-
tional cells.

Orientation selectivity
The first step we took in analyzing orientation selectivity was to
compare the tuning of retinogeniculate inputs with that of spikes.
Rasters constructed from EPSCs and spikes are shown in Figure
7a, b for a sample relay cell depicted in Figure 7f. Stimuli were
sinusoidal gratings shown at various orientations at the preferred

spatial and temporal frequency. Tuning, measured using the OSI
(Piscopo et al., 2013) or the global OSI (Zhao et al., 2013) (see
Materials and Methods), was lesser for EPSCs than spikes. Cer-
tainly, spike threshold must play a role in refining sensitivity.
However, our intracellular recordings also implicate a role for
inhibition, as seen in Figure 7c. At the preferred orientation and
grating phase, EPSCs and spikes dominated the response, regard-
less of stimulus direction (Fig. 7c, top panels). By contrast, strong
outward currents took precedence at suboptimal phases and sup-
pressed residual EPSCs. At intermediate orientations, excitation
diminished (Fig. 7c, middle panels). Orthogonally oriented grat-
ings evoked hyperpolarizing currents across phases, although re-
sponse strength adapted over time (Fig. 7c, bottom panels).
Finally, we measured the total outward current evoked during the
presentation of each orientated grating patch and found that it
was untuned.

The motif of tuned excitation and untuned suppression held
true for all cells tested, as depicted by polar plots in Figure 7d for
which the preferred orientation for all cells was rotated to align
with the horizontal axis and as bar graphs in Figure 7e. Spikes
were more sharply oriented than retinal inputs, whereas suppres-
sion was blind to stimulus angle (OSIspikes � 0.55 � 0.13,
OSIEPSCs � 0.27 � 0.03, OSIsuppression � 0.18 � 0.04, n � 4 cells;
Fig. 7d). Thus, untuned suppression appears to sharpen selectiv-
ity in the LGN. The plots for spikes include data for which it was
not possible to detect each EPSC with certainty (OSIspikes �
0.39 � 0.10, n � 5). Last, for all the oriented cells whose receptive
fields we mapped with discs or sparse noise (6 of 9), the receptive
fields were On-Off.

Direction selectivity
A similar analysis is shown for a direction-selective cell (Fig. 8;
conventions as in Fig. 7). Stimulus onset evoked a transient volley
of spikes in all cases, but the remainder of the response varied as
a function of stimulus direction. EPSC rates increased for grat-
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Figure 6. Suppressed-by-contrast-like cells are inhibited by bright and dark stimuli, unlike
other On-Off cells and push-pull cells. Distribution of values for a an index that reflects whether
cells have excitatory, inhibitory, or the opposite responses to stimuli of both contrasts shows a
separation of push-pull cells from On-Off cells and of suppressed-by-contrast-like-cells from
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ings moving in the superior, nasal, and
temporal directions (Fig. 8a), whereas su-
prathreshold responses were more selec-
tive, largely restricted to motion toward
the superior and temporal visual field
(Fig. 8b). Just as for orientation-selective
cells, null stimuli evoked strong hyperpo-
larizing currents, as seen in the intracellu-
lar responses to drifting gratings (Fig. 8c).
We did not construct tuning curves for
suppression for these cells, however, be-
cause high firing rates maintained
throughout some responses made it diffi-
cult to measure hyperpolarizing compo-
nents of recordings (although our strong
impression was that inhibition was
broadly tuned). For four cells, DSIspikes �
0.47 � 0.12 and DSIEPSCs � 0.14 � 0.04;
for two additions cells for which EPSC de-
tection was not possible, DSIspikes � 0.45
and 0.68. The reconstruction of the cell is
shown in Figure 8d and tuning for the
population is plotted in Figure 8e.

Contributions of the receptive field to
stimulus selectivity
Although our results suggest that suppres-
sion sharpens tuning, it is also clear that
the retinal inputs themselves are tuned.
Thus, we designed several experiments to
understand how different components of
the receptive field might contribute to
stimulus selectivity. First, we asked
whether input from the center of the re-
ceptive field alone was sufficient to gener-
ate oriented responses. We found that
cells whose responses to full-field gratings
were selective for stimulus orientation lost
their tuning when the stimulus was con-
fined to the central region of the receptive
field, as seen in the polar plots for EPSCs
and spikes (Fig. 9a). This was true even
though both the localized and the full-
field stimuli evoked robust responses.
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Figure 7. Visually evoked membrane currents recorded from an orientation-selective On-Off relay cell. a, Raster plots of EPSCs
evoked by full-field sinusoidal gratings of different orientations drifting at 4 Hz surround a polar plot of EPSC rate at each
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orientation; axes of the polar plots are labeled S (superior), I
(inferior), T (temporal), and N (nasal). Each raster plot illus-
trates 10 repeats of the stimulus and is placed near the corre-
sponding axis of the polar plot. b, Equivalent plots for spikes. c,
Sample intracellular responses to gratings drifting in the pre-
ferred, oblique, and orthogonal orientations, as depicted by
the stimulus icons. Responses to two individual trials of the
stimulus are shown above the averaged responses to repeated
presentations, bolded and displayed at 2� gain. Pale gray
lines indicate baseline. Dark gray bars represent stimulus du-
ration. d, Polar plots of spikes, EPSCs, and suppression for
orientation-selective cells. Data from each cell are shown in a
different color, with the cell used for a– c in black. The tuning
curve for each cell was rotated to align along the same (hori-
zontal) axis. e, Bar graph comparing the tuning of spikes,
EPSCs, and suppression. Error bars indicate SD. Significance
was assessed with a two-sample t test. f, Anatomical recon-
struction of the cell whose responses are illustrated in a– c.
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Similar results for a direction-selective cell
are shown in Figure 9b. The results de-
picted in this figure were obtained from
the same two cells shown in Figures 7 and
8; similar profiles were seen for almost all
oriented and direction-selective cells
tested with small and large stimuli (Fig.
9c). This observation suggests that the
stimulus must cover a larger region of vi-
sual space to evoke tuned responses.

We further investigated contributions
of different elements of the receptive
field using reverse-correlation methods
to analyze responses to Gaussian noise.
Namely, we used event-triggered averages
of the stimulus ensemble to recover first-
order subunits of the receptive field for
EPSCs (ETAs) and spikes (STAs) and
event-triggered covariance analysis to
compute the second-order subunits
(ETCs and STCs) of the receptive field
(Schwartz et al., 2006; Vaingankar et al.,
2012). The first-order component of the
receptive field is the average of the stimu-
lus frames that preceded EPSCs or spikes,
whereas the second-order component re-
flects the covarying structure in the stim-
ulus frames that preceded EPSCs or spikes
(On and Off subregions that would cancel
each other in the STA or ETA) (Schwartz
et al., 2006).

We illustrate results for two On-Off re-
lay cells: one tuned to the vertical (Fig.
10a) and the other to the horizontal ori-
entation (Fig. 10b). The STAs and ETAs
for both On-Off cells had approximately
circular shapes and thus did not reflect
stimulus orientation (Fig. 10a,b, leftmost
contour plots). By contrast, the subunits
recovered with event-triggered covari-
ance analysis were oriented, as can be seen
in the contour plots constructed from the
data as well as Gabor fits (Fig. 10a,b,
right); we used a new color code here be-
cause covariance analysis yields only the
relative, but not the specific, contrast po-
larity of a given subregion. For compari-
son, we recovered the subunits of the
receptive field of a direction-selective
cell; neither the first- nor second-order
subunits were oriented (Fig. 10c).

To quantify the difference in elonga-
tion between the STAs and STCs for ori-
ented cells, we compared each subunit to a
perfect circle using a circularity index (see
Materials and Methods; Fig. 10d). Even
though the STAs were somewhat asym-
metric, they were always more circular
than their corresponding STCs. If the
structure of the receptive field contributes
to orientation selectivity, then the axis of
the oriented subunit should align with the
neuron’s preferred stimulus angle. Thus,
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we plotted neural orientation preference against the axis of the
fitted Gabor. The correlation coefficient was high (r � 0.88;
Fig. 10e), demonstrating a close relationship between orientation
selectivity and the structure of the receptive field. The oriented
subunits resembled simple receptive fields in cortex in that they
comprised adjacent, elongated subregions of alternating sign
(Hubel and Wiesel, 1962; Martinez et al., 2005; Niell and Stryker,
2008; Smith and Häusser, 2010; Bonin et al., 2011).

Distribution of relay cell types in the LGN
The dorsal division of the rodent LGN is divided into two main
regions: a core and shell (Reese, 1988). Because we labeled many
of the cells we recorded, it was possible to establish locations of
diverse cell types in the nucleus (Fig. 11). Direction-selective cells
were concentrated in the shell, as others have reported (Kim et al.,
2008, 2010; Huberman et al., 2009; Kay et al., 2011; Rivlin-Etzion
et al., 2012). Push-pull and oriented cells were distributed
throughout the nucleus. On-Off (except for direction-selective
cells) and suppressed-by-contrast-like cells were only found in
the core, but our sample is too small to determine if these are
exclusive to the region.

Discussion
Species differences emerge at each station of the visual pathway.
Here we focused on the murine LGN and asked two main questions.
First, are basic principles of synaptic integration used by higher spe-
cies, such as cat, conserved in rodent LGN? Second, are there pat-
terns of excitation and inhibition unique to rodent that contribute to
stimulus selectivity? In cat, most relay cells have receptive fields with
a center-surround shape and a push-pull organization of excitation
and inhibition. Cells with this type of receptive field formed the
largest single population in mouse LGN, indicating an important

role in form vision. Still, the majority of cells had other types of
receptive fields, including On-Off, W3-like, and suppressed-by-
contrast-like. Subsets of On-Off cells were selective for stimulus di-
rection or orientation; orientation preference could be predicted
from the second-order, but not first-order subunits of the receptive
field. Further, spikes were more narrowly tuned than retinal inputs,
whereas suppression was untuned. Thus, thalamic inhibition seems
to refine stimulus sensitivity in mouse. Also, there are �30 types of
ganglion cells in mouse retina (Baden et al., 2016) and, potentially,
substantial retinogeniculate convergence (Morgan et al., 2016; com-
pare Chen et al., 2016). Thus, one might expect greater functional
diversity in the murine LGN than we and others (Piscopo et al.,
2013) report. Perhaps not all ganglion cells project to the LGN or,
maybe, various types of retinal afferents play dominant versus aux-
iliary roles. Alternatively, there might be great variety in feature
spaces (e.g., temporal) (Sincich et al., 2009; Wang et al., 2010) that
have not yet been fully explored.

Center-surround receptive fields and push-pull responses
In cat, push-pull responses are found in the first three stations of
the visual pathway: retina (Kuffler, 1953; Enroth-Cugell and
Robson, 1984), LGN (Wang et al., 2007, 2011), and V1 (Hirsch et
al., 1998). In mouse, push-pull responses are observed in retina
(Pang et al., 2003; Werblin, 2010; Marco et al., 2013) but not
cortex (Liu et al., 2009; Lien and Scanziani, 2013). To ask where
this species difference might emerge, we determined the percent-
age of relay cells with push-pull and found that these form the
largest population in the LGN. As in cat, these cells had receptive
fields with a center-surround structure. Further, simple LN mod-
els predicted intracellular responses reasonably well and the pull
relied on synaptic inhibition.
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There were subtle species differences, however. The pull in
murine relay cells was relatively weak, and some retinogeniculate
EPSCs arrived during even the strongest inhibitory responses.
The presence of EPSCs during the pull might reflect weak sup-
pression in retina and/or convergent input from afferents with
spatially offset or On-Off receptive fields.

Are circuits that generate push-pull responses in cat and ro-
dent LGN similar? For the putative circuit in the cat (Wang et al.,
2007, 2011), the push is generated by ganglion cells that have the
same sign (On or Off) as the postsynaptic thalamic neuron,
whereas the pull is routed through thalamic interneurons whose
receptive fields overlap that of their targets but have the opposite

sign. This scheme assumes that the presynaptic interneurons
have spatially localized receptive fields with a center-surround
structure. Indeed, this is the case in cat, although interneurons
have receptive fields larger than those of neighboring relay cells
(Martinez et al., 2014).

Anatomical studies suggest that murine interneurons may
have extensive receptive fields. Dendritic arbors of most inhibi-
tory cells cross territories far wider than the extent of a single
retinal axon (Dhande et al., 2011; Hong et al., 2014) to collect
inputs from remote regions of visual space (Seabrook et al.,
2013). Correspondingly, interneurons appear to pool more reti-
nal afferents than relay cells do (Seabrook et al., 2013). Further,
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dendritic conductances propagate distal input throughout the
somatodendritic membrane (Acuna-Goycolea et al., 2008; Casale
and McCormick, 2011).

Still, it remains possible that some interneurons have recep-
tive fields of the scale appropriate to provide the pull. For
example, some might have small dendritic arbors and/or re-
ceive dominant input from ganglion cells with overlapping
receptive fields. Alternatively, dendrites of interneurons
might function as independent compartments that communi-
cate via dendrodendritic synapses (Sherman, 2004) to operate
at local spatial scales.

On-Off suppression
So far we have discussed cells with center-surround receptive
fields and push-pull responses. Suppression also played an
important role in neurons with overlapping On and Off sub-
regions, such as W3-like and suppressed-by-contrast-like
cells. Recalling putative counterparts in retina (Zhang et al.,
2012), W3-like relay cells had small receptive fields and were
excited by small spots but inhibited by large ones. Conversely,
suppressed-by-contrast-like neurons had large receptive
fields. For these cells, bright or dark spots evoked composite
responses in which strong, lasting, inhibitory currents pre-
vented retinal inputs from reaching threshold for long times.

Both W3-like and suppressed-by-contrast-like cells were in-
hibited by large uniform stimuli, bright or dark. What is the
source of this suppression? Relay cells receive convergent input
from multiple interneurons (Ziburkus et al., 2003). Perhaps the
strength of the connections between interneurons and these relay
cells is so weak that only expansive stimuli can recruit strong
inhibitory drive.

Receptive field structure in the form vision pathway
Small receptive fields are usually associated with high spatial acu-
ity and form vision. The � cells in cat (or the parvo cells in mon-
key) have the smallest receptive fields (especially near central
retina) and target the LGN (Berson, 2008). By contrast, the most
numerous cell type in mouse retina, W3 cells (Zhang et al., 2012)
(homologs of the rabbit’s local edge detectors) (Levick, 1967; van
Wyk et al., 2006; Russell and Werblin, 2010) have the smallest
receptive fields. We found few W3-like responses in the LGN,
suggesting a limited role in the classical form vision pathway.

Relay cells whose receptive fields have a center-surround
structure with push-pull are the largest group in the LGN. Such
receptive fields are similar to those of �-sustained ganglion cells

(Marco et al., 2013; Bleckert et al., 2014), which target the LGN
(Cruz-Martín et al., 2014). Alpha-sustained cells are most densely
distributed in the retinal region that encodes the central visual
field (Bleckert et al., 2014), similar to the situation for � cells in
carnivore and primate (for rabbit, see van Wyk et al., 2006).
Viewing this information in the context of other species suggests
that evolution favors receptive fields with a center-surround
structure and a push-pull arrangement of excitation and inhibi-
tion for form vision in rodent, carnivore, and primate.

Thalamic contributions to orientation- and
direction-selective responses
To ask whether thalamic mechanisms (in addition to thresh-
olding) might refine stimulus selectivity in mouse, we com-
pared the tuning of spikes, retinogeniculate EPSCs, and
suppression. The tuning for spikes was sharper than that for
EPSCs, whereas suppression was untuned, much as in mouse
cortex (Niell and Stryker, 2008; Liu et al., 2009; Kerlin et al.,
2010; Li et al., 2012). Thus, broadly tuned inhibition seems to
enhance feature selectivity at both the thalamic and cortical
stages of the murine geniculostriate pathway.

The relationship between receptive field structure and
orientation selectivity
In cat, orientation selectivity emerges at the thalamocortical
stage, where the geometry of the receptive field (or STA) predicts
the preferred stimulus angle (Hubel and Wiesel, 1962; Martinez
et al., 2002). This relationship between receptive field structure
and orientation is also seen in rodent (Niell and Stryker, 2008; Liu
et al., 2009; Smith and Häusser, 2010; Bonin et al., 2011; Lien and
Scanziani, 2013) and primate (Hubel and Wiesel, 1968) cortex.
By contrast, most oriented cells in the murine LGN have approx-
imately circular receptive fields (STAs) (Zhao et al., 2013). To
explore the basis of orientation tuning in mouse thalamus, we
obtained the first-order (ETA, STA) and second-order (ETC,
STC) subunits of the receptive field for oriented cells and found
that the latter were oriented along the axis of the preferred stim-
ulus angle.

These oriented subunits almost certainly derive from retina,
perhaps with a contribution from orientation-selective On-
ganglion cells (Nath and Schwartz, 2016) rather than cortex. The
EPSCs we detected had the shape and fast rates characteristic
of retinal inputs (Wang et al., 2007; Koepsell et al., 2009). By
contrast, cortical neurons fire at slow rates and unitary cortico-
geniculate inputs are usually too small to detect without pharma-
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Figure 11. Anatomical distribution of different types of relay cells in mouse LGN. We labeled a subset of the cells whose physiological responses we characterized. The position of each
of these cells is indicated within a series of coronal slices through a standardized LGN, using the following symbols for different physiological classes: filled red circle represents On-Center;
filled blue circle represents Off-Center; filled purple circle represents On-Off; single arrow indicates direction-selective; double arrow indicates orientation-selective; green star represents
suppressed-by-contrast-like.
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cological aid (Granseth and Lindström, 2003). Some tectal inputs
are oriented, but these only target the LGN shell (Bickford et al.,
2015). Thus, convergent feedforward retinal input can, in prin-
ciple, determine orientation preference.

It is also possible that orientation selectivity in the LGN results
from the convergence of oppositely tuned, direction-selective
ganglion cells (Marshel et al., 2012). Directional ganglion cells
target the shell (Kim et al., 2008; Kay et al., 2011; Cruz-Martín et
al., 2014), where many oriented cells reside (Marshel et al., 2012).
We did not observe differences in the profiles of oriented cells in
the core versus shell regions, however.

In conclusion, our intracellular analysis of the murine LGN
has highlighted evolutionarily conserved principles of visual pro-
cessing in thalamus and, at the same time, revealed synaptic
mechanisms that may be unique to rodents and similar animals.
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