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A Decline in Response Variability Improves Neural Signal
Detection during Auditory Task Performance
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The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron’s response is rarely identical
to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system’s ability to reliably
detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate
remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can mod-
ulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both
while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal
detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely
associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural
thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed
by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading
to better perceptual sensitivity.
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Introduction
The ability of a neuron to detect a sensory signal is generally
thought to arise from a significant change in mean response mag-
nitude with response variability as the principal limitation. While
prior studies demonstrate that response magnitude changes
when animals engage in a broad range of perceptual tasks (Hubel

et al., 1959; Spitzer et al., 1988; Burton et al., 1997; Treue and
Maunsell, 1999; Reynolds et al., 2000; Steinmetz et al., 2000; Fritz
et al., 2003, 2005; Chapman and Meftah, 2005; Elhilali et al., 2007;
Schneider et al., 2014; McGinley et al., 2015a), response variabil-
ity has received less attention because it is thought to scale reliably
with firing rate. However, knowledge of response variance is es-
sential to determining the sensitivity of neural signal detection.
Therefore, we recorded from the auditory cortex of animals, as
they performed a detection task, and tested the hypothesis that
neural response variability can decrease during task performance,
thereby increasing neural sensitivity and, potentially, perceptual
sensitivity.

The most fundamental observation regarding the relation be-
tween variability and firing rate is that it scales with response
magnitude in a Poisson-like manner (Tolhurst et al., 1983; Goris
et al., 2014). This relation can be modulated by many factors,
including anesthesia (Ter-Mikaelian et al., 2007; Ecker et al.,
2014). Variability can even be affected by the onset of stimuli, a
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Significance Statement

The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the
neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a
given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural
mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of
freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller
during task performance, thereby improving neural detection thresholds.
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finding shown in many sensory areas and
at different levels of sensory hierarchies
(Churchland et al., 2010). More relevant
to the present study, task engagement and
attentional state are associated with a re-
duction in correlations between neuron
pairs (McAdams and Maunsell, 1999;
Reynolds et al., 2000; Cohen and Maun-
sell, 2009; Yoshida and Katz, 2011). Taken
together, these studies establish that re-
sponse variability is a dynamic property
that may constrain or improve sensory
encoding, thereby influencing perception.

To address whether response variabil-
ity influences sensory encoding, we ad-
opted a signal detection theory (SDT)
framework, a model proven useful for es-
tablishing the relation between sensory
encoding and perceptual abilities (Foley
and Legge, 1981; Britten et al., 1992, 1996;
Parker and Newsome, 1998; Gold and
Shadlen, 2001; Luna et al., 2005). SDT
posits that the central representation of a
stimulus is described by a normally dis-
tributed neural signal (e.g., a range of fir-
ing rates). It follows that the ability
to detect a stimulus is proportional to
the difference between the variance-
normalized means of a “signal present”
and “signal absent” distribution. The SDT
model would then lead to the prediction
that stimulus detection sensitivity, or neu-
ral sensitivity, can improve as the variabil-
ity of each distribution decreases.

To investigate whether response vari-
ability can influence neural sensitivity
during listening, we recorded telemetrically from the core audi-
tory cortex of gerbils both while they engaged in an amplitude
modulation (AM) detection task and while they were disengaged
from the task. AM is a favorable acoustic feature to examine
because it is a component of natural sounds (Rosen, 1992; Singh
and Theunissen, 2003; Elliott and Theunissen, 2009) and its en-
coding has been well characterized (Joris et al., 2004; Carney et al.,
2013). Our findings support an encoding framework in which
neural variability diminishes during task performance, leverag-
ing greater neural sensitivity and potentially greater perceptual
sensitivity.

Materials and Methods
Subjects
Four adult gerbils (Meriones unguiculatus, three males) were weaned
from commercial breeding pairs (Charles River). All procedures related
to the maintenance and uses of animals were approved by New York
University’s Institutional Animal Care and Use Committee.

Behavior
Stimuli
Gerbils were placed in a plastic cage in a sound-isolation booth (Gretch-
Ken Industries) and observed via a closed-circuit monitor. A personal
computer, connected to a digital input/output interface (TDT RZ6,
Tucker-Davis Technologies) controlled the timing of the acoustic stim-
uli, reward delivery, and acquisition of behavioral and electrophysiolog-
ical data. AM stimuli were generated by a Tucker-Davis Technologies
system (RZ6) and delivered via a calibrated tweeter (DX25TG05-04,

Vifa) positioned 1 m above the center of the test cage. The gerbil’s dis-
tance from the speaker could only vary maximally by �0.6 cm (or �10
cm in the vertical or horizontal plane) with respect to the center of the
cage. Sound level was measured with a spectrum analyzer (3550, Bruel &
Kjaer) via a one-quarter inch free-field condenser microphone posi-
tioned at the head location when aligned with the nose port. Sound level
remained constant (50 dB equivalent SPL) throughout the trial to ex-
clude the use of energy as a cue. The carrier was broadband noise, with a
25 dB roll-off at 3.5 kHz and a 25 dB roll-off at 20 kHz. All stimuli had a
200 ms ramp, followed by an unmodulated period of 200 ms, and then
transitioned to an amplitude modulated or unmodulated signal. The
delay period prevented animals from making a decision at stimulus on-
set, and yielded a similar onset response from auditory cortex neurons
for both Go and Nogo stimuli.

Training
Animals were placed on controlled water access, and trained to discrim-
inate between an unmodulated and 5 Hz sinusoidally AM frozen broad-
band noise using a positive-reinforcement procedure (Buran et al.,
2014b; Sarro et al., 2015). Each animal was initially trained to begin a trial
by poking its nose into a cylindrical port, and to approach a water spout
upon presentation of an AM stimulus (i.e., the Go signal). Water reward
(20 �l) was delivered via a syringe pump (NE-1000, New Era). After
animals learned to initiate Go trials, they were trained to repoke upon
presentation of an unmodulated noise (i.e., the Nogo signal).

Testing
Perceptual ability was assessed by presenting Go trials at five different
AM depths that bracketed the animal’s psychometric threshold. Un-
modulated Nogo trials were interleaved with Go trials, and randomly
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Figure 1. Behavioral performance on an AM detection task. A, Exemplar fit psychometric function obtained for one gerbil
during one session. Black dashed line indicates detection threshold (d� � 1). B–D, Individual (small black circles) and average
(large open circles) psychometric thresholds, psychometric function slopes, and false alarm (FA) rates are plotted. Values measured
from exemplar function are indicated by black triangles. Error bars represent SEM.
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presented with equal probability. In the engaged condition, animals were
required to withhold from responding for a �1 s. In trials scored as a hit
(correctly approaching the water spout on a Go trial) animals were re-
warded. For false-alarm (FA) responses (incorrectly approaching the
water spout on a Nogo trial) a 2– 8 s timeout period was initiated during
which the room light was switched off and animals were unable to initiate
a trial.

In an experiment separate from measuring psychometric functions,
we shifted the decision criterion within a session. For this experiment, we
used two of the four animals and a method previously applied in human
studies (Green and Swets, 1966). First, full psychometric functions were
collected and the average threshold across the three sessions was calcu-
lated. Criterion was subsequently shifted by first presenting Go stimuli
with a 45% probability, and then changing to 80% probability halfway
through the testing session. During these experiments, Go stimuli were
presented at the predetermined detection threshold value, along with a
suprathreshold value (i.e., 100% depth).

Psychometric analysis
Psychometric sensitivity was determined by fitting the percentage of Go
responses, plotted as a function of AM depth, using a maximum likeli-
hood procedure from the open-source package Psignifit for Matlab. Sig-

nificant fits for all behavior sessions were
obtained using a linear transform of stimulus
intensity values (i.e., the mw0.1 core available
in the bootstrap inference algorithm) fitted by
a normal cumulative distribution function.
The function is parameterized as follows:

�� x; m, w, y, �� � � � �1 � � � ��;

F� x; m, w�

where F�x; m, w� � ��z�	�

w
�x � m��;

z(	) � �	1(1 	 	) 	 �	1(	) and where 
 is
the inverse of the cumulative Gaussian, x rep-
resents stimulus difficulty (AM depth), m is the
midpoint, w is the width of the interval over
which F(x;m;w) rises from 	 to 1 	 	, � is the
lapse rate, and � is the FA rate. Both m and w
were unconstrained and 	 was fixed at 0.1 (the
default value set by Psignifit). Prior distribu-
tions for FA rate and lapse rate are identical to
previous studies in the laboratory (Buran et al.,
2014a; Caras and Sanes, 2015) and were deter-
mined according to guidelines described previ-
ously (Frund et al., 2011).

From the fitted percentage Go response
functions, a d� function was calculated with d�
defined as z(hit fraction) 	 z(FA fraction). For
the purposes of this study, we define psycho-
metric threshold as the AM depth at which the
fitted d� function � 1. To validate the fits of the
actual data, 2000 datasets were generated using
a bootstrapping procedure, and fits were calcu-
lated. For each fit, a deviance, a measure de-
scribing the goodness of fit, was calculated. Fits
generated from actual data were not consid-
ered valid if their measured deviance was not
within the 95th percentile of the deviance mea-
sured from the simulated datasets. Lapse rate
and FA rate were determined by finding the
minimum and maximum value of the fit per-
centage Go response function, respectively.
Slope was determined by finding the slope of
the fit psychometric function at d� � 1.

The analyses were performed on all behav-
ior sessions in which the FA rate was �30%,
and the animal performed �200 trials. The
average number of behavioral trials was

305 
 54 trials per session (mean 
 SEM; �150 Nogo trials, and 150
Go trials with 20 trials at each AM depth). Of the 40 sessions where
physiology data were collected, five failed to meet acceptance crite-
rion and were thus not included in the analysis.

Electrophysiology
Electrode implantation
After an initial set of psychometric functions was obtained (Fig. 1), a
16-channel silicone probe with recording contacts evenly spaced across a
600 � 600 �m grid was implanted in the left core auditory cortex (Elec-
trode model A4x4-4mm-200-200-1250-H16_21 mm, Neuronexus). The
electrode array was inserted at a 25° angle such that the contacts were
generally located within the same cortical layer (Fig. 2D, electrode track),
and response latencies and tonotopic gradients were consistent with core
auditory cortex characteristics observed previously (Ter-Mikaelian et al.,
2007; Rosen et al., 2010; Buran et al., 2014b). At the termination of each
experiment, animals were perfused with a fixative, and the brains were
extracted and sectioned. In selected sections, the recorded area was visu-
alized using an immunohistochemical procedure that selectively labels
layers IV and VI in the core auditory cortex (Brückner et al., 1994).
Alternate sections were visualized with a Nissl stain. The histological data
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Figure 2. Selection of candidate waveforms for neurometric analyses. A, Raw waveform of a neural response to AM noise (blue
envelope) during task engagement. Candidate waveforms were 
4 SDs above noise floor (red line). B, PCA plot in which two
waveform clusters are separated (red and green), both while an animal is engaged (left) or disengaged (right). Insets show raw
waveforms (gray lines) and averages (red line) for red cluster. C, Example raster for unit shown in B. Gray shaded area indicates
period when stimulus was present. D, Coronal section shows an electrode track (arrow), with staining for wisteria floribunda
agglutinin to reveal the primary auditory cortex.
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confirmed that the electrodes passed through the auditory cortex, and
the electrode contacts were largely constrained to layers III or IV for each
gerbil used in this study (Fig. 2D).

Data acquisition
Physiology and psychometric data were acquired concurrently while an-
imals were engaged in the AM detection task using a telemetric headstage
and receiver (W16, Triangle Biosystems). Engaged behavioral sessions
lasted between 40 and 60 min and disengaged 30 – 40 min. The neuro-
physiological data were recorded via a preamplifier and analog-to-digital
converter (TB32, Tucker-Davis Technologies).

Neurophysiological data were also acquired 5–10 min after task per-
formance when animals were disengaged. Following implantation, ger-
bils were trained to assume a fixed position and remain still but alert in
the testing cage. Trials were not presented unless gerbils were stationary.
Gerbils’ posture and eyes were monitored via closed circuit television to
assure wakefulness and stillness. To indicate the start of the disengaged
condition, the water spout and nose port were removed from the cage,
and the direction of the room lighting was changed from a light source
positioned on the floor (engaged condition) to an overhead light (disen-
gaged condition). Stimuli were identical to the engaged condition, and
were presented with an interstimulus interval (ISI) that varied randomly
between 1 and 1.75 s. The disengaged ISI was chosen to approximate the
range of response times of animals observed during behavior sessions. By
using this procedure, we sought to minimize the changes in animal po-
sition with respect to stimulus while retaining the naturalistic advantages
of a freely moving preparation. Furthermore, the overhead speaker min-
imized interaural cues as well as differences in distance from the speaker.
Finally AM stimuli are robust to changes in carrier level up to �15 dB
(Malone et al., 2007), far greater than variations occurring in the present
experiment.

Each recording channel was referenced to an across-channel average
(Ludwig et al., 2009) and high-pass filtered at 300 Hz. For individual
channels, the noise floor was calculated (Quiroga et al., 2004) and can-
didate waveforms that exceeded 4 SDs from the noise floor were selected.
Candidate waveforms were then sorted using a principal components
analysis (PCA)-based clustering algorithm (KlustaKwik) and isolation
was assessed using quality metrics (Fee et al., 1996; Hill et al., 2011).
Extracted action potentials were further sorted using PCA clustering, as
described in Materials and Methods (Fig. 2B). Sorting was done sepa-
rately for engaged and disengaged conditions. To confirm that record-
ings were stable across behavioral conditions, PCA plots and waveforms
were compared between the engaged and disengaged conditions. Units
that had significantly nonoverlapping PCA or waveforms were rejected
from the analysis.

Our recordings included well isolated single units that demonstrated
clear separation in PCA space, with �10% of spikes violating the default
refractory period of 2.5 ms (Fee et al., 1996; Hill et al., 2011). However,

the majority of recording sites contained spikes from several unresolved
units and thus did not meet this criterion. Separate analyses of these two
populations revealed no systematic differences; we therefore combined
the populations for all analyses reported here. We also found no
between-animal differences in basic response properties (firing rate,
etc.). The quality of data was similar across animals (e.g., signal-to-noise
ratio, and ratio of multiple units to single units per animal). However, the
number of units obtained from one animal (nine units) was far fewer
than that obtained from the remaining animals (�100 units per animal).
Given that we had no reason to reject these units, they were included in
the study.

Neurometric analysis
Each unit’s firing rate was calculated from a 1 s period of the spike train
corresponding to the initial modulation of the stimulus. Since there is
evidence that AM is represented by both temporal and rate codes (Liang
et al., 2002; Joris et al., 2004; Bartlett and Wang, 2007; Malone et al., 2007;
Wang et al., 2007, 2008; Rosen et al., 2010, 2012; Yin et al., 2011; Johnson
et al., 2012; Carney et al., 2013), we performed analyses that addressed
changes in both rate and temporal codes. Here we only show data exam-
ining the rate code because we did not observe a behaviorally gated
improvement in neural sensitivity for a temporal code. This observation
is consistent with a recent awake-behaving primate study employing an
AM depth detection task (Niwa et al., 2012).

The 1 s duration used for calculating firing rate was chosen based on
the average behavioral response time of animals to Go trials (1.6 

0.6 s; with minimum response time being 1 s; see Testing). A neuro-
metric firing rate-based d� was calculated at each Go value (AM
depth) by normalizing the firing rate by an SD pooled across all
stimuli (Z score), and subtracting the Nogo value (unmodulated
signal) from each subsequent Go stimulus; thus: d�FIRING RATE � z(AM
depthGo) 	 z(unmodulatedNogo).

To compensate for differences in discharge magnitude for individual
units across AM depths, we also calculated a baseline-corrected firing
rate. For each unit, an average firing rate for the unmodulated stimulus
was calculated, and then subtracted from firing rates on all trials. The
result was an adjusted firing rate that reflects increases in discharge rate
beginning at zero value for all units.

To calculate neurometric thresholds, firing rate-based d� versus AM
depth functions were fit to a sigmoid using nonlinear regression. A best
fit was produced by iteratively calculating the residual sum of squares of
estimated fits until the error term was minimized (Matlab function
nlinfit; Mathworks). Fitting was performed individually for each unit.
Goodness of fit was then assessed by calculating the significance of the
Pearson’s correlation coefficient. Threshold was defined as the AM depth
at which the fitted neurometric d� function � 1. A sigmoid was chosen as
a close approximation for the normal cumulative distribution used to fit
psychometric functions.
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Pattern classifier
To identify and classify units using a performance metric based on neural
responses from trial to trial, we adopted a pattern classifier analysis (Ma-
chens et al., 2003; Narayan et al., 2006; Wang et al., 2007; Billimoria et al.,
2008; Schneider and Woolley, 2010). The pattern classifier produces a
performance metric that is highly dependent on the reliability of a unit’s
response from trial to trial, thus allowing for the identification, compar-
ison, and quantification of units with highly consistent trial-by-trial re-
sponses. While the purpose of the classifier was solely to parse units into
groups, we optimized the classifier parameters to obtain a best perfor-
mance from each unit.

Template matching. First, for an individual unit, two templates were
selected: a single spike train from a Go trial, and one from a Nogo trial.
Using firing rate as the metric, subsequent spike trains for this particular
set of Go and Nogo values were then selected without replacement, and
assigned to the Go or Nogo template based on the smallest difference in
firing rate between template and trial. Since template trials were selected

randomly, spike train classification was re-
peated 1000 times with a different Go/Nogo
template each time to remove template selec-
tion bias.

Scoring classifier performance. From this
comparison, a percentage correct assignment
score of a trial to a template was generated.
Classification of a trial was scored as follows: if
a Go trial was assigned to a Go template, then it
was scored as a hit; if a Go trial was assigned to
the Nogo template, then it was scored as an FA.
The percentage hit and FA scores were aver-
aged across repetitions and then normalized (Z
score) and converted to a classifier-based d�, as
described above. This analysis was repeated for
the same units that were recorded during the
period when animals were disengaged from
the task.

Parsing units. Units were ranked by maxi-
mum classifier-based d� measured during task
performance and separated into groups based
on their change in classifier-based d� across the
engaged and disengaged conditions. Maxi-
mum classifier-based d� is the maximum clas-
sifier d� value a unit could produce for any
stimulus or decay constant (�) value (see de-
tails below for � values). Units that displayed a
�0.2 increase in classifier d� from the engaged
to the disengaged condition were considered to
have increased in classifier performance from
one condition to the other. Units that dis-
played a decrease in classifier d� were consid-
ered to have decreased in performance, and
units displayed a change �0.2 were considered
to have no change in performance. The crite-
rion of 0.2 change in classifier d� performance
represents a change that falls beyond the 95%
confidence interval of the distribution of
changes in classifier performance. We also
verified that the set of increased and de-
creased values is significantly different from
a zero mean distribution representing
no change in classifier performance (one-
sample t test, p � 0.001).

Relevance of chosen classifier metrics. Given
that there are several potential ways in which
AM may be encoded, the classifier analysis was
performed using three different methods. In
addition to firing rate, we used the van Rossum
(VR) metric. The VR metric uses the Euclidean
distance between two spike trains to quantify a
measure of dissimilarity (van Rossum, 2001).
The spike trains were then classified using a

“nearest-neighbor” classifier based on the spike distance. The final
method also used the VR metric, but instead of the nearest-neighbor
classifier, it used a K-means classifier, which optimized spike train dis-
crimination by using an iterative clustering algorithm (Duda et al., 2001;
Schneider and Woolley, 2010). For the K-means classifier, the initial
clusters were based on the selected Go and Nogo template. All metrics
used 1 s of the spike train, and were sampled at a frequency of 1000 Hz
beginning at the time when the AM depth was modulated. For VR and
K-means, each spike train was convolved with an exponential function
with a given decay constant. The nine different decay constants used were
as follows: 2, 4, 8, 16, 32, 64, 128, 256, and 512 ms.

Results
Psychometric performance: sensitivity to AM depth
To record responses from neurons in an animal engaged in a
perceptually demanding auditory-guided behavior, animals were
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trained to perform a Go–Nogo AM detec-
tion task. Before implantation, animals
were trained until they reached asymp-
totic performance. After implantation,
psychometric and physiology data were
collected concurrently from three ani-
mals. AM detection thresholds (d� � 1)
were similar across animals (Fig. 1A). Av-
erage AM threshold across all sessions was
26 
 1% AM depth (or 	13.1 
 0.4 dB
relative to 100% depth; Fig. 1B), which is
consistent with detection thresholds re-
ported for other species (O’Connor et al.,
2011; Carney et al., 2013). No between-
animal differences were observed for AM
threshold, FA rate (22 
 1%; Fig. 1C),
psychometric slope determined at d� � 1
(12.2 
 2.0 d�/percentage AM depth; Fig.
1D), or lapse rate (4.6 
 0.42%; data not
shown). Presurgery psychometric per-
formance was compared with postsur-
gery performance. Before implantation,
animals displayed psychometric thresh-
olds of 26 
 2% AM depth, FA rates of
20 
 1%, slopes of 12.9 
 2.0 (d�/AM
depth percentage), and lapse rates of
3.4 
 0.3% (data not shown). Statistical
comparisons of psychometric perfor-
mance before and after implantation
did not reach significance.

Neural sensitivity and classifier-based
performance improves during
task engagement
A primary objective of this study was to
compare sensitivity of neural responses to
identical AM depth stimuli during two be-
havioral states: engaged in a perceptually
demanding auditory task or disengaged (assuming a fixed posi-
tion in the test cage; see Materials and Methods). Raw physiology
(Fig. 2A) data were preprocessed before extraction of candidate
waveforms. Extracted action potentials were further sorted using
PCA clustering, as described in Materials and Methods (Fig. 2B).
To confirm that recordings were stable across behavioral condi-
tions, PCA plots and waveforms were compared between the
engaged and disengaged conditions. Abnormal waveforms were
rejected and clusters were classified as “single” or “multiple”
units based on quality metrics (ISI and autocorrelation plots).
Rasters (Fig. 2C) were also examined, and electrode tracks were
localized to layer III or IV of the primary auditory cortex (Fig.
2D). Of the total 311 recordings, 16% were considered single
units. Data from single and multiple units were analyzed sepa-
rately; results were consistent across single and multiple unit
populations, and were therefore combined.

To assess changes in average neural sensitivity from an en-
gaged to a disengaged state, a firing rate-based neural d� (d�FR) was
calculated for each unit. Neurometric functions were obtained
for each unit by plotting d�FR at each tested AM depth (see Mate-
rials and Methods). Neurometric sensitivity was measured dur-
ing the engaged condition (when gerbils performed the auditory
task) and disengaged condition (assuming a fixed position in the
test cage). In Figure 3A, the average engaged and disengaged
neurometric sensitivity is plotted together with the average psy-

chometric performance. Units were more sensitive to AM depth
when animals were engaged in a task than when they were disen-
gaged. Neurometric sensitivity was greater for AM depths near or
above animals psychometric threshold [e.g., 
12.8%; paired t
test with Bonferroni’s adjusted 
 levels of p � 0.0014 (0.01/7),
p � 0.0014].

Given the average increase in neural sensitivity, we sought to
rank and parse out individual units based on similarity of re-
sponses across trials. Therefore we chose a pattern classifier
scheme that calculates a performance metric for each unit that is
highly dependent on the similarity of neural responses from trial
to trial. From each unit’s classifier results, we constructed a clas-
sifier performance function: classifier d� as a function of AM
depth. We then extracted each unit’s best performance (maxi-
mum classifier d�) for each of the 311 units. In addition to firing
rate, a K-means and spike-timing (van Rossum, 2001) metric
were also used to quantify neural responses and determine differ-
ences between the two behavior conditions.

To compare each unit’s classifier performance in the engaged
and disengaged states, best classifier d� was derived from the clas-
sifier neurometric functions. We ranked and plotted each unit’s
classifier performance during task engagement from highest to
lowest along with unit’s corresponding classifier performance in
the disengaged condition (Fig. 3B). During task engagement,
32% of units improved in performance (red circles with blue
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points below). Of the remaining units, 15% declined in perfor-
mance and 27% displayed no change (gray points), while 26%
did not reach a performance of d� 
 0 at any depth. We also
compared the average classifier performance for the engaged
(0.68 
 0.03) and disengaged (0.58 
 0.03) condition, and found
significantly better classifier performance from units during task
performance (paired t test, p � 0.002; data not shown). Thus,
while changes in classifier performance were heterogeneous, task
engagement led to a net improvement in classifier performance
despite reducing the performance of a subpopulation. Classifier
results were consistent regardless of which neurometric (i.e., VR
or K-means) was used by the classifier.

Increased neural sensitivity is driven by a decrease
in variability
The classifier analysis revealed unit subpopulations for which classi-
fier performance increased or decreased during task engagement.
Therefore, we asked whether firing rate properties could account for
the difference between these two subpopulations. For units in which
classifier performance improved during task engagement (Fig. 3B,
blue circles connected to red circles), the SD of response firing rate
was significantly lower during task engagement (Fig. 4A). Figure 4A1

shows a scatter plot comparing the response variability during the
engaged versus disengaged conditions at 26% AM depth (i.e., near
the average psychometric threshold). Most points lie above the unity

line, indicating a smaller SD of trial-by-trial
firing rate during task engagement. This re-
duction was observed at all stimulus values
averaged across all units in this subset (Fig.
4A). Comparison of AM depth values was
conducted using a paired t test with Bonfer-
roni’s adjusted 
 levels of p � 0.0014 (0.01/
7), all points of comparison p � 0.0014.
Since average firing rate did not change sig-
nificantly during task engagement (Fig. 4B;
none of the AM depth comparisons using a
paired t test approached Bonferroni’s ad-
justed 
 levels), the improvement in classi-
fier performance (Fig. 3B) and neurometric
sensitivity (Fig. 3A) could be attributed
largely to a decrease in response variability.
We also calculated a baseline-corrected fir-
ing rate (see Materials and Methods), and
still observed no significant changes in firing
rate. These observations were further vali-
dated by calculating the coefficient of
variation, which captures a firing-rate-
normalized response variability (Fig.
4C,C1). Coefficient of variation was signifi-
cantly lower during task engagement at all
stimulus values. All AM depth comparisons
using a paired t test reached Bonferroni’s
adjusted 
 levels of p � 0.0014 (0.01/7).

The subpopulation of units for which
classifier performance decreased or did not
change during task engagement did not dis-
play a significant change in SD during task
engagement, again using a paired t test with
Bonferroni’s adjusted 
 levels (data not
shown). This result suggests that the units
with the greatest changes in response vari-
ability are driving the changes in classifier
performance and neural sensitivity.

To examine the relationship between variability, firing rate,
and neurometric sensitivity (d�FR) for all units, we plotted each of
the mentioned basic response properties against d�FR. We found
that changes in variability from the engaged to disengaged con-
dition had a significant negative correlation with changes in d�FR;
as variability decreased, neural sensitivity increased (Fig. 5A; lin-
ear regression, R 2 � 0.24, p � 0.001). However changes in firing
rate had a near-zero correlation with d�FR (Fig. 5B; linear regres-
sion, R 2 � 0.01, p � 0.001). We next sought to demonstrate how
changes in variability (Fig. 5C) could have influenced the popu-
lation neurometric d�FR functions (Fig. 3A). To explore the rela-
tive contributions of mean firing rate and response variability, we
computed neurometric d�FR functions based on simulated firing
rate properties. Firing rate properties were quantified by fitting a
normal distribution, truncated at zero, to each unit’s firing rate at
each stimulus value, and goodness of fit was assessed using a � 2

test. From this fitted distribution, an average firing rate and vari-
ance was determined for all units. To illustrate how neural d�FR

may have been altered by changes in the variance of the firing
rate, we generated hypothetical neurometric d�FR functions using
the possible permutations of engaged or disengaged firing rate
and engaged or disengaged SD (see Materials and Methods).

Using an engaged SD and firing rate yielded a simulated d�FR

that closely approximated the measured d�FR (Fig. 5C), thereby
confirming that the identical simulated parameters matched the
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measured data. We then tested how a dis-
engaged firing rate and engaged response
SD would affect d�FR. We found that the
simulated d�FR using a disengaged firing
rate did not affect the shape of the neuro-
metric function. This suggests that vari-
ability is the main driving factor in
modulating the d�FR neurometric func-
tions. We also found that a simulated d�FR

that used the disengaged SD produced
neurometric functions with low sensitiv-
ity regardless of which firing rate parame-
ter was used (Fig. 5D). These simulated
d�FR neurometric functions demonstrate
that variability is the main factor driving a
change in the neurometric sensitivity.

Decline in variability yields lower neural
AM detection thresholds
We next investigated how a decrease in
response variability would affect subpop-
ulation and individual unit d�FR neu-
rometric sensitivity, and its relation to
psychometric thresholds (Fig. 1). A firing
rate-based neural d� was recalculated for
the two subpopulations of units parsed
above (Fig. 3B). A neurometric function
was obtained for each unit by plotting a
firing rate-based d�FR at each tested AM
depth (see Materials and Methods). This
was done separately for unit subpopula-
tions in which classifier performance im-
proved (Fig. 3B, blue circles) or declined
(Fig. 3B, the subset of gray circles above
the red circles) in the engaged condition
relative to performance in the disengaged condition.

Average psychometric sensitivity was plotted alongside aver-
age neurometric sensitivity for units that displayed a decrease in
variability (Fig. 6A) as well as for units that displayed no signifi-
cant change in variability (Fig. 6B). The average neurometric
function for units that decrease in variability more closely ap-
proximated the psychometric function. Furthermore, the average
neurometric function for units that did not show significant
change in variability more closely approximated the neurometric
function obtained when animals were disengaged.

To investigate neural sensitivity, each unit’s response function
was fit with a sigmoidal function (see Materials and Methods),
and neural AM detection threshold was obtained, where the fit
d�FR � 1. Figure 6C insets show example fit neurometric func-
tions. The cumulative distribution of neurometric thresholds for
the two subpopulations is plotted in Figure 6C (units that de-
crease variability, shown in Fig. 4A; units that displayed no change
in variability), along with the range of psychometric performance
(blue bar). A larger number of units that displayed decreased re-
sponse variability had AM depth thresholds that more closely
matched the perceptual thresholds than units that had no change in
their response variability during task engagement. We then deter-
mined the percentage of units that displayed neurometric sensitivi-
ties greater than or equal to psychometric sensitivity. We found that
26% of all units had neural thresholds equal to or less than psycho-
metric thresholds. Of these units 85% were units that displayed de-
creased response variability during task performance, and 15% were
units that showed no change in variability. This suggests that units

that decrease their response variability likely contribute to an ani-
mal’s perceptual sensitivity to AM depth.

AM encoding remained stable when response bias was shifted
Task engagement can have a significant effect on a unit’s response
to AM depth. Therefore, we asked whether neural encoding was
robust to a change in response bias (i.e., a consistent willingness
to report the presence or absence of a signal). According to SDT,
an increase in response bias should not change psychometric
sensitivity. Accordingly, we would not expect to observe a change
in neural sensitivity. We measured responses to AM depth during
task performance while inducing a change to an animal’s re-
sponse bias, in this case an increase in the willingness to report the
presence of an AM modulation.

A within-session change in response bias was induced by in-
creasing the probability of a Go trial being presented (Green and
Swets, 1966). When the probability of a Go trial was increased, we
observed an increase in hit rate and FA rate (Fig. 7A,B, top row).
However, psychophysical d� did not change significantly (Fig. 7B,
bottom left). Following an increase in Go trial probability, we
observed an increase in response bias in 16 of 21 sessions. We
used sessions in which a shift in response bias was observed to
examine whether changes occurred to average trial-by-trial firing
rate and SD. We found no differences in any of these response
properties (Fig. 7C,D) when animals became more liberal in their
bias. We also examined sessions where no shift was observed and
did not find a significant difference between the first and last half
of the session. We also observed no differences between shift and
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nonshift sessions. Therefore signal representation can remain
stable when an animal changes its behavioral response.

Discussion
In an SDT framework, neural sensitivity depends on the variability of
neural responses. In this study, we tested the hypothesis that neural
response variability can decrease during task performance, thereby
increasing neural sensitivity. We recorded telemetrically from the
auditory cortex of freely moving gerbils as they performed a psycho-
metric task. Our results suggest that task performance is associated
with a net decrease in response variability: decreased variability in
firing rate from trial to trial was the largest contributing factor to
the observed increase of neural sensitivity. Moreover, units
that displayed the greatest improvements in sensitivity had
neural AM detection thresholds that were most closely aligned
with simultaneously measured perceptual thresholds.

By comparing neural responses recorded when animals were
performing a perceptual task with those recorded while animals
were disengaged, we observed a decrease in variability that con-
tributed significantly to the enhancement of neural sensitivity to
AM depth (Fig. 3A). This increased neural sensitivity was driven
by a subset of units (Fig. 6A) that showed a behaviorally gated
decrease in response variability (Fig. 4A,C). Moreover, the psy-
chometric thresholds for AM detection could best be explained
by the subset of neural responses that displayed the greatest
reduction in variability during task performance (Fig. 6C).
Therefore, our results build on previous studies that show state-
dependent changes in variability, and provide evidence that a
reduction in response variability is a plausible mechanism to im-
prove perceptual ability on an AM detection task.

Since reducing response variability during task performance
improves neural sensitivity and, plausibly, perceptual sensitivity,
it is worth considering the underlying neural mechanisms. For
example, researchers have shown that attention can modulate
response properties via circuits involving the basal forebrain as
well as prefrontal areas (Everitt and Robbins, 1997; Sarter et al.,
2005). These pathways have also been found to have a causal role
in modulating and enhancing sensory encoding (Goard and Dan,
2009; Fritz et al., 2010). Alternatively, circuits engaged during
locomotion or arousal can also modulate auditory response
properties (Otazu et al., 2009; McGinley et al., 2015a,b). In fact,
any movement, including maintaining body posture, can modu-
late the auditory cortex (Schneider et al., 2014). Since firing rates
were not found to be significantly different across conditions,
motor activity is likely not influencing the observed changes in
response properties.

According to SDT, an increase in response bias does not change
psychometric sensitivity. Therefore, we assumed that neural sensi-
tivity would also not be affected by response bias. Our observations
were consistent with this model: neural sensitivity was stable as re-
sponse bias changed (Fig. 6), suggesting that even though various
aspects of task performance modulate neural response properties,
once engaged in a task, sensory encoding can actually be quite stable.
This finding also suggests that signals unrelated to sensory encoding
(i.e., decision variables) do not influence neural sensitivity at the level
of the primary auditory cortex.

This study emphasizes changes in variability, yet neural sensi-
tivity also depends on response magnitude, which is also affected
by behavioral state. Almost every aspect of a behavior, from lo-
comotion to attention, can affect response magnitude and neural
encoding. Task-related or state-related changes in response mag-
nitude have been reported in the visual, olfactory, gustatory, and
auditory systems. In the auditory system, both increases (Fritz et

al., 2003, 2005; Lee and Middlebrooks, 2011; Niwa et al., 2012;
Buran et al., 2014b) and decreases in response magnitude have
been reported (Otazu et al., 2009; Schneider et al., 2014; Zhou et
al., 2014; McGinley et al., 2015a). Therefore, behaviorally gated
changes in response variability (present results) or magnitude
(above) can each contribute to or detract from a subject’s signal
detection sensitivity. Reporting a metric that takes both response
variability and magnitude into account could permit a better
assessment of the relation between neural and perceptual sensi-
tivity. It would be interesting to return to these studies to find
how response variance and magnitude may act in concert to
change neural sensitivity.
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