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I. Catalytic Hydrogenation – A Brief Historical Perspective

The first metal catalyzed additions of elemental hydrogen to π-unsaturated reactants were 

reported by James F. Boyce of the Nathaniel Kellogg Fairbank Soap Company in connection 

with the processing of vegetable oils.1 Subsequently, Paul Sabatier of the University of 

Toulouse developed general protocols for the hydrogenation of alkenes employing 

heterogeneous nickel catalysts.2 Foreshadowing the merger hydrogenation and carbonyl 

addition described in the present account, Paul Sabatier and Victor Grignard jointly received 

the Nobel Prize in Chemistry in 1912.3 Following Sabatier’s pioneering work, numerous 

noble metal catalysts for heterogeneous hydrogenation emerged. Among these, the platinum 

oxide catalyst developed by Roger Adams in 1922 is still one of the most active and readily 

prepared catalysts for heterogeneous hydrogenation.4

The first examples of homogeneous hydrogenation were reported by Melvin Calvin at the 

University of California at Berkeley in 1938.5 Calvin showed that under one atmosphere of 

hydrogen, copper acetate catalyzed the reduction of 1,4-benzoquinone to 1,4-hydroquinone 

in quinoline solution at 100 °C. It was not until 1961 that Halpern’s group at the University 

of British Columbia performed the first homogeneous hydrogenation of an olefin.6 In 

Halpern’s system, ruthenium catalysts were used to reduce activated alkenes such as maleic 

acid. In 1962, Vaska subsequently found that IrCl(CO)(PPh3)2 reacts reversibly with 

elemental hydrogen to form isolable dihydrides.7 This result solidified the conceptual 

foundation of catalytic hydrogenation by establishing hydrogen “oxidative addition” as a key 

mechanistic feature.

Finally, in 1965, Wilkinson’s group at Imperial College reported the homogeneous 

hydrogenation of unactivated alkenes and alkynes catalyzed by RhCl(PPh3)3.8,9 This finding 

ultimately led William S. Knowles of Monsanto Company in St. Louis to discover the first 

enantioselective hydrogenation in 1968.10 Knowles’ discovery was made possible by Horner 

and Mislow’s disclosure of methods for the preparation of nonracemic P-stereogenic 

phosphines.11,12 In Knowles’ initially reported asymmetric hydrogenation, a maximum 

enantiomeric excess of 15% was obtained. Subsequent work by Kagan in 1971 using chiral 
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bis(phosphines) derived from tartaric acid (i.e. “DIOP”) gave up to 72% enantiomeric 

excess.13 Using a P-stereogenic bis(phosphine) known as DiPAMP, chemists at Monsanto 

performed the first industrial catalytic asymmetric synthesis for the production of L-DOPA, 

a treatment for Parkinson’s disease. Lastly, in 1980 Ryoji Noyori reported the synthesis of 

BINAP and demonstrated the broad utility of this ligand in asymmetric hydrogenation.14,15

The purpose of this review is to provide a comprehensive summary of ruthenium catalyzed 

C-C couplings induced via alcohol-mediated transfer hydrogenation.16–20 These studies 

build on several important milestones in the area of ruthenium catalyzed hydrogenation and 

transfer hydrogenation (Scheme 1). In 1971, one decade beyond the seminal work of 

Halpern on ruthenium catalyzed hydrogenation,6 transfer hydrogenations employing 

ruthenium catalysts were described.21 The ruthenium catalyzed acceptorless 

dehydrogenation of alcohols was reported by Robinson in 1977,22 and ruthenium catalyzed 

oxidative esterifications were reported by Shvo in 1981.23,24 These studies were followed by 

the first highly enantioselective ruthenium catalyzed hydrogenations and transfer 

hydrogenations, reported by Noyori in 1986 and 1995, respectively.25,26 As documented in 

this account, ruthenium catalyzed transfer hydrogenation now serves as the basis for C-C 

bond constructions that directly convert lower alcohols to higher alcohols.16–20 This body of 

work was preceded by studies on metal catalyzed carbonyl reductive couplings mediated by 

elemental hydrogen, as initially described in 2002 by the present author,27 and as 

documented in the review literature.28,29

II. Conversion of Primary Alcohols to Secondary Alcohols

In 2007, our laboratory reported the first transfer hydrogenative couplings of alcohols with 

π-unsaturated reactants using iridium-based catalysts.30 In 2008, the first ruthenium 

catalyzed reactions of this type were developed (Scheme 2). Specifically, it was found that 

exposure of alcohols to 1,3-dienes in the presence of catalysts derived from HClRu(CO)

(PPh3)3 and various phosphine ligands resulting in hydrogen transfer to furnish aldehyde-

allylruthenium pairs that combine to form homoallylic alcohols as single regioisomers.31 

The coupling of isoprene to d2-benzyl alcohol results in transfer of a benzylic deuteride to 

the allylic methyl (19% 2H) and allylic methine (32% 2H). These data are consistent with 

reversible hydrometalation of the less substituted olefin to form a secondary σ-allyl. 

Conversion to the more stable primary σ-allyl haptomer occurs in advance of carbonyl 

addition, which proceeds through the indicated closed six-centered transition state with 

allylic inversion to deliver the product of carbonyl allylation.

Remarkably, while the primary alcohol reactants readily dehydrogenate, the secondary 

homoallylic alcohol products resist further oxidation due to chelation of homoallylic olefin 

to ruthenium to generate a coordinatively saturated complex. Indeed, in the coupling of 

isoprene to d2-benzyl alcohol, deuterium is completely retained at the carbinol position, 

suggesting the product is completely unreactive toward alcohol dehydrogenation. However, 

the ruthenium catalyst (F3CCO2)(H)Ru(CO)(PPh3)2, which is generated in situ through the 

acid base reaction of H2Ru(CO)(PPh3)3 and F3CCO2H, possesses a higher degree of 

coordinative unsaturation, enabling β-hydride elimination at the stage of the homoallylic 

ruthenium alkoxide to form the β,γ-unsaturated enones (Scheme 2).32 Notably, both 
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transformations, diene hydrohydroxyalkylation or hydroacylation, may be conducted from 

the alcohol or aldehyde (not shown) oxidation level of the reactant.31,32

Initial studies aimed at directing relative and absolute stereochemistry in alcohol mediated 

diene hydrohydroxyalkylation relied on the use of 2-trialkylsilyl-butadienes.33 

Hydrometalation of 2-trialkylsilyl-substituted dienes gives rise to crotylmetal species that 

exist as single geometrical isomers due to allylic strain.34–36 In the event, using the chiral 

ruthenium catalyst generated in situ from HClRu(CO)(PPh3)3 and (R)-DM-SEGPHOS, the 

indicated 2-trialkylsilyl-butadiene couples with reactant alcohols to furnish the branched 

products of hydrohydroxyalkylation with complete syn-diastereoselectivity and uniformly 

high levels of enantioselectivity (Scheme 3).

Direct diastereo- and enantioselective hydrohydroxyalkylations of butadiene, an abundant 

petrochemical feedstock, required use of a ruthenium catalyst modified by a chiral 

phosphate counterion derived from H8-BINOL. The anion is attached to the metal center 

through the acid-base reaction of H2Ru(CO)(PPh3)3 with the indicated chiral phosphoric 

acid. With the chiral counterion as the sole chiral inducing element, primary benzylic 

alcohols hydrohydroxyalkylate butadiene with good levels of anti-diastereo- and 

enantioselectivity (Scheme 3).37

The corresponding syn-diastereomers are formed upon use of the ruthenium catalyst 

generated in situ from RuH2(CO)(PPh3)3, (S)-SEGPHOS and the indicated TADDOL-

derived phosphoric acid (Scheme 3).38 It is postulated that the s-cis-conformer of butadiene 

hydrometalates to form a (Z)-σ-crotylruthenium intermediate. The relatively Lewis basic 

TADDOL-derived phosphate counterion preserves the kinetic selectivity of diene 

hydrometalation by attenuating the degree of coordinative unsaturation, decelerating 

isomerization to the (E)-σ-crotylruthenium haptomer with respect to carbonyl addition. 

Additionally, computational studies suggest a formyl hydrogen bond between the transient 

aldehyde and the phosphate oxo-moiety assists in stabilizing the (Z)-σ-crotylruthenium 

intermediate.36

A divergence in regioselectivity is observed upon use of neutral vs cationic ruthenium 

complexes in alcohol-mediated hydrohydroxyalkylations of 2-substituted dienes. For 

example, in 2-propanol mediated reductive couplings of 2-substituted dienes with 

paraformaldehyde (Scheme 4),39–41 neutral ruthenium complexes favor coupling at the C3 

position,40 whereas ruthenium catalysts with greater cationic character favor coupling at the 

C2 position, resulting in formation of an all-carbon quaternary center.39 An erosion in C2-

regioselectivity is observed when cationic ruthenium catalysts are applied in reactions of 

higher carbonyl partners with 2-substituted dienes, as illustrated in couplings with ethanol 

(Scheme 4).42

The collective data, including deuterium labeling experiments,39,40 are consistent with the 

following mechanistic interpretation (Scheme 5). Hydroruthenation to form allylruthenium 

complex A is kinetically preferred. For neutral ruthenium catalysts, hydrometalation is less 

reversible and strongly favors formation of allylruthenium complex A. Hence, formation of 

C3-coupling products is preferred. For cationic ruthenium complexes, hydrometalation 
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becomes highly reversible, enabling access to both allylruthenium complex A and 

allylruthenium complex B. It now appears that a Curtin-Hammett scenario is operative. For 

small aldehyde partners (R1 = H), the transition state leading to C2-adducts is lower in 

energy. However, as the aldehyde increases in size (R1 = Me), the formation of a more 

congested C-C bond raises the energy of the transition state for formation of C3-adducts, 

eroding regioselectivity.

Hydrogen transfer from primary alcohols to allenes represents an alternate means of 

accessing allylruthenium-carbonyl pairs that deliver products of hydrohydroxyalkylation 

(Scheme 6).43–47 Interestingly, whereas 2-propanol-mediated reductive couplings of 1,1-

disubstituted allenes display poor levels of diastereoselectivity,43 related redox-neutral 

couplings with primary alcohols delivers branched homoallylic allylic alcohols bearing all-

carbon quaternary centers with good to complete control of relative stereochemistry.45 In 

reactions conducted from the alcohol oxidation level, diastereoselectivities are highly 

concentration dependent. At lower concentrations higher diastereoselectivities are observed. 

These data suggest a Curtin-Hammett scenario wherein turn-over limiting carbonyl addition 

preferentially consumes the (E)-σ-allylruthenium haptomer via stereospecific carbonyl 

addition from an equilibrating mixture of transient (Z)- and (E)-σ-allylruthenium isomers. 

At lower concentration, the (E)-isomer can be replenished via isomerization of the (Z)-σ-

allylruthenium isomer. These conditions have been applied to the coupling of allenes with 

fluorinated alcohols (not shown).47

In the case of mono-substituted allenes, the steric demand of an appropriately defined 

substituent can direct exclusive formation of (E)-σ-allylruthenium intermediates that 

participate in stereospecific carbonyl addition to deliver single diastereomers. For example, 

hydrogen transfer from primary alcohols to allenamides provides geometrically defined 

(amino)allylruthenium-aldehyde pairs that combine to form vicinal anti-aminoalcohols as 

single diastereomers (Scheme 6).45 Identical products are accessible as single diastereomers 

via 2-propanol-mediated reductive coupling allenamides and aldehydes (not shown).44

Isomerization of alkynes to allenes under the conditions of ruthenium catalyzed 

hydrohydroxyalkylation enables transformations that are otherwise inaccessible, including 

the conversion of primary alcohols to (Z)-homoallylic secondary alcohols (Scheme 7).48 

Isomerization is promoted through the use of cationic ruthenium catalysts generated through 

the acid-base reaction of H2Ru(CO)(PPh3)3 and 2,4,6-(2-Pr)3PhSO3H. As corroborated by 

deuterium labelling studies, the cationic ruthenium complex appears to exist in equilibrium 

with zero-valent species that promote isomerization via propargyl C-H oxidative addition. 

Allene-aldehyde oxidative coupling mediated by ruthenium(0) then forms an 

oxaruthenacycle, which upon transfer hydrogenolysis delivers the (Z)-homoallylic alcohols 

with good to complete levels of stereocontrol. Oxidative coupling pathways are suppressed 

upon introduction of iodide ion and a chelating phosphine ligand, the Josiphos ligands SL-

J009-1 or SL-J002-1, yet alkyne-to-allene isomerization pathways persist. Under these 

conditions, the transient allenes accept hydrogen from primary alcohols to form chiral 

allylruthenium-aldehyde pairs that deliver enantiomerically enriched branched homoallylic 

alcohols as single diastereomers.49 In this way, alkynes serve as chiral allylmetal 

equivalents.50–57
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A third mechanism for the coupling of primary alcohols with alkynes becomes operative 

when these conditions are applied to the propargyl ether, MeC≡CCH2OTIPS (TIPS = 

triisopropylsilyl) (Scheme 8).58 Unlike closely related ruthenium catalyzed alkyne-alcohol 

C-C couplings, deuterium labeling studies corroborate a novel 1,2-hydride shift mechanism 

that converts metal-bound alkynes to vinyl carbenes that protonate to form siloxy-π-

allylruthenium nucleophiles in the absence of intervening allenes. Due to the negative 

inductive effect of the siloxy moiety, carbonyl addition occurs through a closed transition 

structure from the σ-allylruthenium haptomer where ruthenium resides at the oxygen-

bearing carbon. Using a Josiphos (SL-J009-1) modified ruthenium(II) catalyst, the resulting 

products of siloxy-crotylation form as single regioisomers with complete levels of anti-
diastereoselectivity and high levels of enantioselectivity. Although mixtures of enol 

geometrical isomers are produced, the (Z)- and (E)-selectivity is inconsequential as fluoride 

assisted cleavage of the enol in the presence of NaBH4 converts both isomers to the same 

1,4-diol.

Remarkably, a fourth mechanism for the coupling of primary alcohols with alkynes is 

evident in couplings that form allylic alcohols59 or conjugated enones (Scheme 9).60 These 

processes are catalyzed by (TFA)2Ru(CO)(PPh3)2 in the absence of added phosphine ligand. 

It is postulated that coordinative unsaturation, the presence of a π-acidic carbonyl ligand and 

the reducing environment provided by 2-propanol promote equilibration between 

ruthenium(II) and ruthenium(0) complexes. Thus, while the experimental data cannot 

exclude hydrometalative pathways involving vinylruthenium-aldehyde pairs, another 

possible mechanism involves ruthenium(0)-mediated alkyne-carbonyl oxidative coupling to 

form a ruthenacyclopentene that suffers alcohol-mediated transfer hydrogenolysis to release 

the allylic alcohol and regenerate the zero valent catalyst. Under more forcing conditions 

(higher temperatures, longer reaction times) and in the absence of 2-propanol, the initially 

formed allylic alcohols undergo further dehydrogenation to form the conjugated enones. 

Resubjection of the allylic alcohols to the reaction conditions results in formation of the 

enone, suggesting β-hydride elimination may not occur at the stage of the intermediate 

ruthenacycle.

Hydrogen transfer from primary alcohols to 1,3-enynes delivers allenylruthenium-aldehyde 

pairs that combine to form products of carbonyl propargylation (Scheme 10).61–63 Initially 

developed conditions provided products of α-methyl-propargylation as diastereomeric 

mixtures.61 Identical products of propargylation are generated upon 2-propanol mediated 

1,3-enyne-aldehyde reductive coupling.62 In subsequent work, it was found that anti-
diastereoselectivity improves upon use of sterically demanding reactants.63 More recently, 

the chiral ruthenium complex formed in situ from (TFA)2Ru(CO)(PPh3)2 and (R)-BINAP 

was found to catalyze the C-C coupling of primary alcohols with the 1,3-enyne, 

TMSC≡CC(Me)=CH2, to form secondary homopropargyl alcohols bearing gem-dimethyl 

groups. These conditions deliver products of C-C coupling with uniformly high levels of 

enantioselectivity and are applicable to aliphatic, allylic and benzylic alcohols. One may 

view these protocols as an alternative to the use of stoichiometric allenylmetal reagents in 

carbonyl propargylation.64,65
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III. Conversion of Secondary Alcohols to Tertiary Alcohols

In 2012, it was found that ruthenium(0) complexes catalyze the C-C coupling of activated 

secondary alcohols with feedstock dienes such isoprene and myrcene to furnish products of 

carbinol C-H prenylation and geranylation, respectively (Scheme 11).66–68 Mechanistic 

studies corroborate a catalytic mechanism involving diene-carbonyl oxidative coupling to 

form an oxaruthenacycle. The transfer of hydrogen from the secondary alcohol reactant 

mediates transfer hydrogenolysis to release the products of C-C coupling and regenerate the 

activated ketone to close the catalytic cycle. The regioselectivity of C-C bond formation for 

the diene C4-position is unique among diene-carbonyl reductive couplings.41,69 Beyond α-

hydroxy esters,66 these conditions are applicable to 3-hydroxy-2-oxindoles67 and secondary 

alcohols substituted by certain heteroaromatic moieties.68 In the latter case, the putative 

oxaruthenacycle intermediate was isolated, characterized and reversible metalacycle 

formation was demonstrated through experiments involving diene exchange.

The transient 1,2-dicarbonyl motifs required for oxidative coupling are also accessible from 

vicinal diols. For example, in the presence of the ruthenium(0) catalyst derived from 

Ru3(CO)12 and PCy3, vicinal diols and alkynes react to form α-hydroxy β,γ-unsaturated 

ketones as single geometrical isomers (Scheme 12).70 Here, it was found that carboxylic 

acid cocatalysts dramatically increase rate and conversion. A catalytic mechanism that 

accounts for the effect of the carboxylic acid cocatalysts is as follows. A mononuclear 

ruthenium(0) complex71 promotes alkyne-dione oxidative coupling to form the indicated 

oxaruthenacycle.72,73 Direct protonation of the oxaruthenacycle by the diol or ketol is 

postulated to be slow compared to protonolytic cleavage of the oxaruthenacycle by the 

carboxylic acid. The resulting ruthenium carboxylate exchanges with the diol or ketol to 

form a ruthenium alkoxide, which upon β-hydride elimination releases the ketol or dione, 

respectively, and a vinylruthenium hydride. C-H Reductive elimination furnishes the product 

of C-C coupling and returns ruthenium to its zero-valent form. Conventional diol-alkyne 

transfer hydrogenation provides the initial quantities of dione required for entry into the 

catalytic cycle.23,24,74

Intermolecular catalytic reductive couplings of α-olefins with unactivated aldehydes and 

ketones remains an unmet challenge.75–77 In a significant step toward this goal, it was found 

that ruthenium(0) catalysts promote the transfer hydrogenative C-C coupling of 3-

hydroxy-2-oxindoles with α-olefins, including feedstocks such as ethylene, propylene and 

styrene, to furnish the branched adducts as single regio- and diastereomers. In the absence of 

carboxylic acid cocatalyst, only trace quantities of product were formed (Scheme 13).78

IV. Transfer Hydrogenative Cycloaddition

Intermolecular hydrogen transfer reactions that result in the formation of rings represent a 

new class of metal catalyzed cycloadditions.79,80 Ruthenium catalyzed C-C bond forming 

transfer hydrogenation contributes a new dimension to this emerging area. Using a 

ruthenium(0) catalyst, diols react with acrylates to form spiro-γ-butyrolactones (Scheme 

14).81 Ethyl 2-(hydroxymethyl)acrylate reacts with diols by way of transient 

oxaruthenacycles that engage in E1cB elimination to furnish α-methylene-spiro-γ-
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butyrolactones.81 As illustrated in couplings with 3-hydroxy-2-oxindoles, β-substituted 

acrylic esters provides spiro-γ-butyrolactones as single diastereomers.81 Remarkably, the 

cycloadditions may be conducted in oxidative, redox-neutral or reductive modes using diols, 

ketols or diones, respectively, as reactants. To illustrate, ethyl acrylate reacts with 

hydrobenzoin, benzoin or benzil to form an identical γ-lactone. For the latter reaction 

involving benzyl, 2-propanol (300 mol%) is employed as terminal reductant (Scheme 15).

In the presence of a ruthenium(0) catalyst, vicinal diols transfer hydrogen to conjugated 

dienes to furnish diones that engage in diene-carbonyl oxidative coupling. The resulting 

oxaruthenacycles incorporate an allylruthenium moiety that engages the pendant ketone in 

intramolecular allylruthenation to form products of formal [4+2] cycloaddition as single 

diastereomers (Scheme 16).82,83 The cycloadducts are readily transformed to the 9–12 

membered 1,6-diketones upon exposure to iodosobenzene diacetate.83 Alternatively, the 

cycloadducts can be dehydrated to form products of benzannulation.84 Two-directional 

benzannulation is especially powerful. For example, exposure of the indicated pyracylene-

based tetraol to butadiene in the presence of the ruthenium(0) catalyst delivers the double 

[4+2] cycloadduct, which is directly dehydrated to form the indeno[1,2,3-cd]-fluoranthene in 

a single “one-pot” operation.

Exposure of 3,4-benzannulated 1,5-diynes (benzo-endiynes) to α-ketols in the presence of 

ruthenium(0) catalysts derived from Ru3(CO)12 and RuPhos results in successive redox-

triggered C-C coupling to generate products of [4+2] cycloaddition (Scheme 17).85 Here, 

redox-neutral couplings using α-ketols are essential, as diols require a sacrificial hydrogen 

acceptor, which contributes to partial reduction of the diyne reactant. Regioselective 

cycloaddition is achieved using nonsymmetric diynes with alkyne termini substituted by n-

propyl and t-butyl groups. This strategy for cycloaddition has been extended to the reaction 

of ortho-acetylenic benzaldehydes with α-ketols. Using ruthenium(0) catalysts modified by 

CyJohnPhos, the indicated products of [4+2] cycloaddition form as single regio- and 

diastereomers.86 This methodology enables convergent construction of ring systems 

characteristic of type II polyketides, specifically those of the angucycline class.87–89

V. Hydroaminoalkylation

Since the initial discovery of metal catalyzed hydroaminoalkylation Maspero90 and 

Nugent91 in the early 1980’s, significant advances in the field of hydroaminoalkylation using 

early transition metal catalysts have been made. In contrast, the development of 

corresponding late transition metal catalyzed amine C-H functionalizations has proven 

challenging.92–94 Indeed, with the exception of the present authors work,95–99 all other late 

transition metal catalyzed hydroaminoalkylations require pyridyl directing groups in 

combination with mono-olefin reactants.100–108 In a significant departure from prior art, it 

was found that ruthenium catalyzed hydrogen transfer from 4-aminobutanol to 1-

substituted-1,3-dienes results in the generation of dihydropyrrole-allylruthenium pairs, 

which combine to form products of hydroaminoalkylation with good to complete control of 

anti-diastereoselectivity (Scheme 18).95 As corroborated by deuterium labeling experiments, 

kinetically preferred hydrometalation of the terminal olefin of the 1-substituted-1,3-diene 

delivers a 1,1-disubstituted π-allylruthenium complex that isomerizes to the more stable 
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monosubstituted π-allylruthenium complex. Imine addition then occurs with allylic 

inversion through a closed transition structure. Using a carboxylic acid cocatalyst, 

pyrrolidine itself can be engaged in direct ruthenium catalyzed diene hydroaminoalkylations. 

Finally, 2-propanol mediated reductive coupling of butadiene with the dihydropyrrole trimer 

provides the identical product of diene hydroaminoalkylation. All three reaction types 

proceed through a common set of reactive intermediates, as shown in the indicated 

stereochemical model.

Carbonylative hydroaminomethylation (hydroformylation-reductive amination)109–115 has 

only been reported for mono-olefin reactants, as hydroformylation of dienes and allenes 

suffers from poor regioselectivity and “over-hydroformylation” to form dialdehyde products. 

In contrast, 2-propanol-mediated reductive couplings of allenes or dienes with 

formaldimines (generated in situ from saturated 1,3,5-triazines) are efficient and selective 

processes.95–98 Specifically, ruthenium catalyzed transfer hydrogenation of allenes in the 

presence of 1,3,5-tris(4-methoxyphenyl)-hexahydro-1,3,5-triazine provides products of 

hydroaminomethylation as single regioisomers.96 Under similar conditions, butadiene and 

related 2-substituted dienes engage in regioselective reductive C-C coupling to furnish 

products of hydroaminomethylation.97 Here, higher temperatures (140 °C) are required to 

supress the competing aza-Diels-Alder reaction of formaldimine. Regioselective 2-propanol 

mediated reductive coupling of dienes with iminoacetates also have been described (not 

shown).98

Whereas ruthenium(II) catalysts promote hydroaminoalkylation through hydrometalative 

pathways, ruthenium(0) catalysts derived from Ru3(CO)12 and triphos enable catalytic 

mechanism involving diene-imine oxidative coupling (Scheme 20).99 Presently, 

transformations of this type are restricted to the hydroaminoalkylation of isoprene with aryl 

substituted hydantoins. The catalytic mechanism involves hydrogenolytic cleavage of the 

azaruthenacyclopentane intermediate through hydrogen transfer from the hydantoin reactant, 

which releases product and regenerates the requisite imine for oxidative coupling.

VI. Conclusion and Outlook

Since the seminal work of Sabatier and Grignard, hydrogenation and carbonyl addition have 

found longstanding use as methods for chemical synthesis. Merging the chemistry of 

transfer hydrogenation and carbonyl or imine addition, we have developed a broad, new 

family of reductive and redox-neutral hydrohydroxyalkylations and hydroaminomethylations 

– processes in which the transfer or redistribution of hydrogen is accompanied by C-C bond 

formation. We have just begun to exploit the potential of this novel reactivity mode, yet 

already one may see that carbonyl additions traditionally employing stoichiometric 

organometallic reagents can now be conducted catalytically via hydrogen transfer. Perhaps 

most importantly, this new reactivity has enabled transformations that have no counterpart in 

the current lexicon of synthetic methods.
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Scheme 1. 
Selected milestones in homogeneous ruthenium catalyzed hydrogenation and transfer 

hydrogenation.a

aBINAP = 2,2′-bis-(diphenylphosphino)-1,1′-binaphthalene. TsDPEN = N-p-Tosyl-1,2-

diphenylethylenediamine.
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Scheme 2. 
Ruthenium catalyzed C-C coupling of primary alcohols with 1,3-dienes to form homoallylic 

alcohols or β,γ-enones.a

Yields are of material isolated by flash chromatography on silica gel. aLigand = (p-

MeOPh)3P, bLigand = rac-BINAP, 2,2′-bis-(diphenylphosphino)-1,1′-
binaphthalene. c120 °C.
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Scheme 3. 
Diastereo- and enantioselective alcohol mediated hydrohydroxyalkylation of butadienes.a

aYields are of material isolated by flash chromatography on silica gel. Diastereoselectivity 

was determined through 1H NMR analysis of crude reaction mixtures. Enantiomeric excess 

was determined by chiral stationary phase HPLC analysis. DM-SEGPHOS = 5,5′−bis-

[di(3,5-xylyl)phosphino]-4,4′-bi-1,3-benzodioxole. dppf = 1,1-bis-

(diphenylphosphino)ferrocene. SEGPHOS = 5,5′-bis-(diphenylphosphino)-4,4′-bi-1,3-

benzodioxole
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Scheme 4. 
Divergent regioselectivity in 2-propanol mediated reductive couplings of dienes with 

paraformaldehyde and redox neutral couplings of ethanol.a

aYields are of material isolated by flash chromatography on silica gel. Diastereoselectivity 

was determined through 1H NMR analysis of crude reaction mixtures. dppb = bis-

(diphenylphosphino)butane.
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Scheme 5. 
Divergent regioselectivity in the hydrohydroxyalkylation of 2-substituted dienes.
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Scheme 6. 
Alcohol-mediated hydrohydroxyalkylation of allenes.a

aYields are of material isolated by flash chromatography on silica gel. Diastereoselectivity 

was determined through 1H NMR analysis of crude reaction mixtures. dippf = bis-

(diisopropylphosphino)ferrocene
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Scheme 7. 
Alkynes as latent allenes in alcohol-mediated hydrohydroxyalkylation to form linear or 

branched homoallylic alcohols.a

aYields are of material isolated by flash chromatography on silica gel. Diastereoselectivity 

was determined through 1H NMR analysis of crude reaction mixtures. Enantiomeric excess 

was determined by chiral stationary phase HPLC analysis. SL-J009-1 = (R)-1-[(SP)-2-

(dicyclohexylphosphino)ferrocenyl]ethyldi-tert-butylphosphine. Ar = 2,4,6-

triisopropylphenyl.
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Scheme 8. 
anti-Diastereo- and enantioselective siloxy-crotylation in the transfer hydrogenative coupling 

of primary alcohols with alkynes via hydride-shift enabled π-allyl formation.a

aYields are of material isolated by flash chromatography on silica gel. Diastereoselectivity 

was determined through 1H NMR analysis of crude reaction mixtures. Enantiomeric excess 

was determined by chiral stationary phase HPLC analysis. SL-J009-1 = (R)-1-[(SP)-2-

(dicyclohexylphosphino)ferrocenyl]ethyldi-tert-butylphosphine.
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Scheme 9. 
Transfer hydrogenative couplings of 2-butyne to form allylic alcohols and conjugated 

enones.a

aYields are of material isolated by flash chromatography on silica gel.
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Scheme 10. 
Carbonyl propargylation via 1,3-enyne hydrohydroxyalkylation.a

aYields are of material isolated by flash chromatography on silica gel. Diastereoselectivity 

was determined through 1H NMR analysis of crude reaction mixtures. Enantiomeric excess 

was determined by chiral stationary phase HPLC analysis. dppb = bis-

(diphenylphosphino)butane. dppf = 1,1-bis-(diphenylphosphino)ferrocene. BINAP = 2,2′-
bis-(diphenylphosphino)-1,1′-binaphthalene.
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Scheme 11. 
Conversion of secondary to tertiary alcohols via ruthenium(0) catalyzed C-C bond forming 

transfer hydrogenation with conjugated dienes.a

aYields are of material isolated by flash chromatography on silica gel. PCy3 = 

tricyclohexylphosphine.
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Scheme 12. 
Ruthenium(0) catalyzed C-C coupling of diols with alkynes via transfer hydrogenation.a

aYields are of material isolated by flash chromatography on silica gel. C10H15CO2H = 1-

adamantanecarboxylic acid. PCy3 = tricyclohexylphosphine.
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Scheme 13. 
Ruthenium(0) catalyzed C-C coupling of diols with α-olefins via transfer hydrogenation.a

aYields are of material isolated by flash chromatography on silica gel. C10H15CO2H = 1-

adamantanecarboxylic acid. PCy3 = tricyclohexylphosphine.
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Scheme 14. 
Ruthenium(0) catalyzed C-C coupling of acrylic esters with diols and α-hydroxycarbonyl 

compounds via transfer hydrogenation.a

aYields are of material isolated by flash chromatography on silica gel. C10H15CO2H = 1-

adamantanecarboxylic acid. dppp = bis-(diphenylphosphino)propane.
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Scheme 15. 
Redox level-independent cycloaddition to form a γ-lactone.a

aYields are of material isolated by flash chromatography on silica gel. C10H15CO2H = 1-

adamantanecarboxylic acid. dppp = bis-(diphenylphosphino)propane.
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Scheme 16. 
Transfer hydrogenative diene-diol [4+2] cycloaddition.a

aYields are of material isolated by flash chromatography on silica gel. dppp = bis-

(diphenylphosphino)propane. BINAP = 2,2′-bis-(diphenylphosphino)-1,1′-binaphthalene. 

dppPh = bis-(1,2-diphenylphosphino)benzene.
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Scheme 17. 
Transfer hydrogenative cycloaddition of α-ketols with benzannulated 1,5-diynes or ortho-

acetylenic benzaldehydes.a

aYields are of material isolated by flash chromatography on silica gel.
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Scheme 18. 
Transfer hydrogenative imine addition and hydroaminoalkylation.a

aYields are of material isolated by flash chromatography on silica gel. FcCO2H = ferrocene 

carboxylic acid. dCypp = bis-(dicyclohexylphosphino)propane.
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Scheme 19. 
Regioselective hydroaminomethylation of allenes and dienes via 2-propanol mediated 

reductive coupling with formaldimines.a

aYields are of material isolated by flash chromatography on silica gel. dCypm = bis-

(dicyclohexylphosphino)methane. dCype = bis-(dicyclohexylphosphino)ethane.
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Scheme 20. 
Regioselective ruthenium(0) catalyzed hydroaminoalkylation of isoprene with hydantoins.a

aYields are of material isolated by flash chromatography on silica gel. triphos = bis-

(diphenylphosphinoethyl)phenylphosphine.

Perez et al. Page 34

Top Curr Chem (J). Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	I. Catalytic Hydrogenation – A Brief Historical Perspective
	II. Conversion of Primary Alcohols to Secondary Alcohols
	III. Conversion of Secondary Alcohols to Tertiary Alcohols
	IV. Transfer Hydrogenative Cycloaddition
	V. Hydroaminoalkylation
	VI. Conclusion and Outlook
	References
	Scheme 1
	Scheme 2
	Scheme 3
	Scheme 4
	Scheme 5
	Scheme 6
	Scheme 7
	Scheme 8
	Scheme 9
	Scheme 10
	Scheme 11
	Scheme 12
	Scheme 13
	Scheme 14
	Scheme 15
	Scheme 16
	Scheme 17
	Scheme 18
	Scheme 19
	Scheme 20

