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Abstract
Hydroxylapatite (or hydroxyapatite, HAp) exhibits excellent biocompatibility with various
kinds of cells and tissues, making it an ideal candidate for tissue engineering, orthopedic
and dental applications. Nanosized materials offer improved performances compared
with conventional materials due to their large surface-to-volume ratios. This review
summarizes existing knowledge and recent progress in fabrication methods of nanosized
(or nanostructured) HAp particles, as well as their recent applications in medical and dental
fields. In section 1, we provide a brief overview of HAp and nanoparticles. In section 2,
fabrication methods of HAp nanoparticles are described based on the particle formation
mechanisms. Recent applications of HAp nanoparticles are summarized in section 3.
The future perspectives in this active research area are given in section 4.
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1. Introduction

Apatite is a general term for the crystalline minerals that
can be represented by the formula M10(ZO4)6X2. Each
component (M, ZO4 and X) in the formula can be replaced
by a large number of different ions as listed in table 1. The
most common apatite found in the nature is calcium phosphate
apatite, where M and ZO4 are Ca2+ and PO3−

4 , respectively.
When X is OH− (i.e. Ca10(PO4)6(OH)2, stoichiometric Ca/P
molar ratio 1.67), the mineral is called hydroxylapatite [1, 2]
or hydroxyapatite (HAp), which is the main subject of this
review. HAp is the inorganic component of the hard tissues
of vertebrates. Biological apatite is a non-stoichiometric
Ca2+-deficient form of HAp containing trace ions. The trace
ions include cations (such as Mg2+, Na+ and K+) and anions
(such as CO2−

3 , Cl− and F−). The most common substituting

ion is carbonate (CO2−

3 ) that can replace OH− and PO3−

4
ions via the so-called A-type and B-type replacements,
respectively. Detailed chemical structures of HAp and other
ion-substituted HAp can be found in recent reviews [3–9] and
books [10–13].

Traditional HAp sintered ceramics (in dense, porous
and powder forms) have been used in medical and dental
fields [13–16], and the applications include alveolar ridge
reconstruction and augmentation [17, 18], fillers for bone
defects [19–22], middle ear implant [23], etc. HAp is
bioactive (osteoconductive), that is, HAp can encourage
bone growth along its surface when placed in the vicinity
of viable bone or differentiated bone-forming cells [11].
HAp composites have been developed to overcome the
inferior mechanical properties (brittleness and low stiffness)
of traditional HAp sintered ceramics (or to improve
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Table 1. Major ions that can be part of apatite, M10(ZO4)6X2.

Component Ions

M Ca2+, Mg2+, Sr2+, Ba2+, Mn2+, Fe2+, Zn2+, Cd2+,
Pb2+, H+, Na+, K+, Al3+, etc

ZO4 PO3−

4 , AsO3−

4 , VO3−

4 , SO3−

4 , CO2−

3 , SiO3−

4 , etc
X OH−, F−, Cl−, Br−, O2−, CO2−

3 , etc

bioactivity of the composite matrix). The original concept of
bioceramics/polymer composite was introduced by Bonfield
et al [24], and the idea was based on the concept that
cortical bone itself comprises an organic matrix reinforced
with a mineral component. The bone analogue HAp/polymer
composite (commercialized under the trade name HAPEX)
consists of HAp (∼50 vol%) mixed in a polyethylene matrix,
and provides the stiffness and bioactivity of HAp and the
toughness of polyethylene.

Nanoparticle (nanopowder, nanocrystal or nanostructured
particle) is a microscopic particle with at least one dimension
in the nanometer scale (usually, 100 nm or less). In general,
nanoparticles offer improved performances compared
with materials of conventional size due to their large
surface-to-volume ratios (specific surface areas). For
instance, HAp nanoparticles exhibit improved sinterability
(densification) [25–29]. Recently, a transparent HAp block
having nanosized pores was prepared simply by drying an
aqueous dispersion of HAp nanoparticles (particle size 32 nm)
at a low temperature (∼60 ◦C) without binder molecules [30].
Contrary to natural bone minerals, conventional HAp sintered
ceramics are hardly resorbed after implantation [31, 32]. On
the other hand, artificially precipitated carbonate-substituted
HAp nanoparticles (also called as poorly crystalline apatites)
exhibit similar physico-chemical characteristics to those
of bone minerals [33, 34]. Moreover, nanostructured HAp
ceramics are expected to have better bioactivity than
conventional ones [35–39]. For example, Webster and
co-workers showed an enhanced osteoclast-like cell adhesion
and function on HAp ceramic surfaces with nanometer-sized
surface topography [35, 36]. Sun et al [37] reported
that nanophase HAp can better promote the proliferation
and osteogenic differentiation of periodontal ligament
cells compared to dense HAp. Nanoscale HAp/polymer
composites also revealed improved bioactivity (and
mechanical properties) compared to microscale HAp
composites [40–43].

This review summarizes existing knowledge and recent
progress in fabrication methods of HAp nanoparticles,
specifically highlighting the techniques allowing to control
the nanoparticle morphology. The morphology control is very
important because HAp belongs to a hexagonal crystal system
and possesses different properties on its a and c planes.
Hence the morphology of HAp strongly affects the adsorption
of biopolymers and the ion-exchange property [44]. In this
review, the fabrication methods of HAp nanoparticles are
classified on the basis of particle formation mechanisms.
HAp is one of many types of calcium orthophosphates listed
in table 2. While other calcium phosphates have also been
used as biomaterials in their nanoparticle forms, they are

summarized in other recent reviews [3–7, 45–47]. Recent
applications of HAp nanoparticles are one of the topics of
this paper. A major application of HAp is filling materials to
impart bioactivity to various composite biomaterials, which
can be found in recent reviews [47–52].

2. Fabrication methods for HAp nanoparticles

HAp nanoparticles can be obtained via a variety of methods
including dry-synthesis (solid-state) and wet-synthesis
methods (table 3). Other attempts at classification of HAp
nanoparticle fabrication techniques can be found elsewhere
[3–7, 53]. Dry synthesis usually yields stoichiometric and
well-crystallized products, but they require relatively high
temperatures (typically above 700 ◦C) and long treatment
time. Besides, HAp is generally obtained in a bulk form by
dry synthesis, and therefore grinding or milling is necessary
to obtain nanoparticles. Wet-synthesis methods require
relatively low temperatures and easily produce nanoparticles,
but their crystallinity and Ca/P ratio are relatively low.

2.1. Dry synthesis

Stoichiometric and well-crystallized HAp can be prepared by
solid-state reactions of calcium orthophosphates with calcium
oxide or related salts such as Ca(OH)2 (e.g. CaHPO4 +
CaO [54], Ca2P2O7 + CaO [55, 56], β-Ca3(PO4)2 + CaO
[57, 58]) at a stoichiometric Ca/P mixing ratio for HAp
formation at high temperatures (typically above 700 ◦C).
Calcination of chlorapatite in a steam also leads to the
formation of a stoichiometric HAp [59]. Non-stoichiometric
HAp can be derived from natural materials such as
bovine bones [60–62], fish bones [63], coral [64–66] and
eggshell [67, 68] after thermal treatments. By controlling
the parameters of the solid-state reactions, the morphological
control of the products in the nanoscale can be achieved.
For example, nanostructured biphasic calcium phosphate
(HAp and β-Ca3(PO4)2) particles in the form of plates
with nanosized hollows have been prepared by a solid-state
reaction [69].

These HAp materials are generally obtained in the bulk
form, and therefore grinding or milling is necessary to
obtain HAp as nanoparticles. Trakhtenberg et al [70] recently
reported the effects of grinding in planetary mills on the phase
composition, morphology and water content of HAp powder.

Mechanochemical processing (or mechanical alloying)
through direct ball milling for the above mixtures (that
is, calcium orthophosphates and calcium oxide) is another
way to fabricate HAp nanoparticles in a dry state [71–76].
Otsuka et al [71] reported the effect of environmental
conditions on the crystalline transformation of metastable
calcium phosphates during grinding, and found that a mixture
of CaHPO4 · 2H2O and Ca(OH)2 transformed into HAp after
grinding in air. The crystallinity of the products was low
and hence post-synthesis annealing at temperatures between
500 and 1000 ◦C was required. Yeong and Wang [72]
used CaHPO4 and CaO as raw materials and fabricated
well-crystallized HAp nanoparticles (particle size 25 nm,
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Table 2. Major calcium phosphates and their properties [6, 46].

Ca/P molar Water solubility pH stability
ratio Chemical formula Name Abbreviation at 25 ◦C(g l−1) range at 25 ◦C

0.5 Ca (H2PO4) · H2O Monocalcium phosphate monohydrate MCPM ∼18 0–2
0.5 Ca(H2PO4) Monocalcium phosphate anhydrous MCPA ∼17 a

1.0 CaHPO4 · 2H2O Dicalcium phosphate dihydrate (brushite) DCPD ∼0.088 2–6
1.0 CaHPO4 Dicalcium phosphate anhydrous (monetite) DCPA ∼0.0048 a

1.2–2.2 Cax Hy(PO4)z · nH2O Amorphous calcium phosphate ACP b
∼5–12c

(n = 3–4.5)
1.33 Ca8(HPO4)2(PO4)4 · 5H2O Octacalcium phosphate OCP ∼0.0081 5.5–7
1.5 α-Ca3(PO4)2 α-Tricalcium phosphate α-TCP ∼0.0025 d

1.5 β-Ca3(PO4)2 β-Tricalcium phosphate β-TCP ∼0.0005 d

1.5–1.67 Ca10−x (HPO4)x (PO4)6−x (OH)2 Calcium-deficient hydroxyapatite CDHA ∼0.0094 6.5–9.5
(0 < x < 1)

1.67 Ca10(PO4)6(OH)2 Hydroxyapatite HAp ∼0.0003 9.5–12
2.0 Ca4(PO4)2O Tetracalcium phosphate (hilgenstockite) TTCP ∼0.0007 d

a Stable above 100 ◦C.
b Cannot be measured precisely.
c Always metastable.
d These compounds cannot be precipitated from aqueous solutions.

Table 3. Fabrication methods of HAp particles.

Section Ref.

Synthesis method
Dry

Solid-state reaction 2.1 [54–69]
Mechanochemical reaction 2.1 [71–76]
Plasma spraying 2.1 [77]

Wet
Wet chemical precipitation 2.2.1 [6, 46, 81–123]
Hydrothermal conversion 2.2.2 [124, 128–146]
Homogeneous precipitation

Thermal pH change 2.2.3 [168–176]
Thermal dissociation of 2.2.3 [177, 178, 180–182]
Ca ions

Sol–gel method 2.2.4 [191–193]
Emulsion method 2.2.5 [149, 194–210]

Post-treatment
Dry

Grinding/milling 2.1 [70]
Calcination with 2.2.6 [216–218]
anti-sintering agent

Wet
Hydrothermal crystal growth 2.2.2 [26, 125–127, 147–167]

specific surface area 75 m2 g−1) after 20 h of mechanical
activation. They proposed a mechanism for the dry
mechanochemical reaction: the initial stage of the mechanical
activation resulted in a refinement in apatitic crystallite and
particle sizes after amorphization (fragmentation and fracture)
of the starting CaHPO4 and CaO. This was followed by the
steady formation and subsequent growth of HAp crystals with
increasing degree of mechanical activation.

Another physical method to fabricate nanoparticles in
a dry state is the thermal plasma technique. During plasma
processing, the raw material is partly or completely melted,
or even instantaneously evaporated in a high-temperature
flame. The melted or vaporized particles will quench
or condense into ultrafine particles by subsequent rapid

cooling. Xu et al [77] conducted a radiofrequency plasma
spray process to fabricate HAp nanoparticles (particle size
10–100 nm), which contained both amorphous and crystalline
phases, using 15 µm sized HAp powders as a raw material.

2.2. Wet synthesis

HAp nanoparticles can be fabricated under milder conditions
in solutions via a number of ways, such as wet chemical
precipitation, sol–gel method, emulsion method, etc. The
morphology (shape and size) of HAp nanoparticles can be
widely varied by adjusting the reaction conditions [78–80].
However, highly crystallized HAp can be obtained only at
elevated temperatures, by hydrothermal treatment in a wet
condition or calcination in a dry state.

2.2.1. Wet chemical precipitation. Among the wet-synthesis
methods, the precipitation process (wet chemical
precipitation) has been widely used [6, 46, 81] because
of its simplicity. Mixing of two aqueous solutions of calcium
and orthophosphate (at pH > 7) results in the formation of
highly supersaturated solutions for HAp, which induces a fast
precipitation of nanoparticles [81] according to the following
reactions:

10Ca(OH)2 + 6H3PO4 → Ca10(PO4)6(OH)2 + 18H2O, (1)

10Ca(NO3)2 + 6(NH4)2HPO4 + 8NH4OH

→ Ca10(PO4)6(OH)2 + 20NH4NO3 + 6H2O. (2)

Some researchers conducted this precipitation process in a
simulated body fluid (SBF [82]) to obtain biomimetic apatite
nanoparticles [83, 84].

The aqueous precipitation process yields calcium-
deficient HAp (CDHA) via intermediate phases (precursors):
amorphous calcium phosphate (ACP) is formed over a broad
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range of precipitation conditions [85–95] and octacalcium
phosphate (OCP) was formed in some cases [46, 85, 96, 97].
Alternatively CDHA may precipitate without going through
an ACP precursor [98]. Recently, Mossaad et al [99]
reported the formation of 5-nm-sized HAp particles from a
Ca(C2H3O2)2–K3PO4–H2O system at room temperature: the
obtained nanoparticles were very unstable and, interestingly,
a crystalline to amorphous phase transformation was observed
when the nanoparticles were aged for 5 months in 30%
relative humidity.

The morphology (shape and size) of HAp nanoparticles
depends on precipitation conditions such as concentration
of reactants, ionic strength, pH and temperature [100]. The
mixing condition for two (calcium and orthophosphate)
aqueous solutions is also important. A microreactor is a
device that has microchannels on the order of micrometers
and that enables chemical reactions to be performed in a
space several orders of magnitude smaller than conventional
batch reactors [101]. The potential advantages of using a
microreactor, rather than a conventional batch reactor, include
high-speed mixing, better control of reaction conditions
and improved yield. Yang et al [102] prepared rod-like
HAp nanoparticles (particle size 58 nm) using a tube-in-tube
microchannel reactor. They reported that the particle size
decreased sharply with increasing the continuous-phase flow
rate, and a narrow size distribution was achieved at a high
flow rate. Kandori et al [103] recently prepared smaller HAp
nanoparticles (2 nm in width, 15 nm in length) by using a
multichannel microreactor.

The morphology of HAp nanoparticles also depends
on additives, such as surfactant molecules [104, 105]
(cf micelle-templated method described in the next
paragraph, and emulsion methods described in section 2.2.5),
alcohol [106], amino acids [107–109], citrates [110, 111],
poly(acrylic acid) [112, 113], poly(ethylene imine) [114, 115],
poly(ethylene oxide) (poly(ethylene glycol)) [116, 117],
poly(vinyl alcohol) [118, 119] and biopolymers [119], mainly
due to the inhibition of crystal growth by preferentially
adsorbing the additives onto a HAp surface (a or c plane).

Micelles form when the concentration of surfactant
molecules is greater than the critical micelle concentration
(CMC). The shape (sphere, cylinder or lamella) and size
of a micelle can be controlled by the surfactant molecular
geometry and solution conditions (surfactant concentration,
temperature, pH and ionic strength). The addition of
surfactant micelles as a template is beneficial for the
fabrication of nanostructured HAp particles. Yao et al [120]
utilized surfactant micelles for preparing mesoporous HAp
nanoparticles. They prepared HAp nanoparticles with
channels approximately 3 nm in diameter by precipitation
of HAp on rod-like micelles of cationic surfactants
(cetyltrimethylammonium bromide, CTAB) in an aqueous
medium. Wu and Bose [121] have also reported the
preparation of HAp nanoparticles by the precipitation process
in the presence of anionic dodecyl phosphate micelles. Ye
et al [122] reported micelle-templated synthesis of HAp
hollow nanoparticles or nanotubes (outer diameter ∼35 nm,
inner diameter 13 nm, length 50–250 nm) with nonionic

surfactants (EO20PO70EO20; EO = ethylene oxide, PO =

propylene oxide). Surfactant molecules can also stabilize oil
droplets (or air bubbles) in aqueous solutions, and these
droplets can be used for the fabrication of nanostructured
HAp hollow or capsule particles having larger cavities as
compared with the use of micelles alone. For example, He
et al [123] reported the formation of HAp nanocapsules (size
50 nm–1 µm) by precipitation of HAp on hexane droplets
stabilized with bis(2-ethylhexyl)sulfosuccinate.

2.2.2. Hydrothermal process. Hydrothermal processes
include several techniques for crystallizing materials in
aqueous media at high temperatures (typically 100–250 ◦C,
and hence under high vapor pressure when the temperature is
above 100 ◦C). Microwave irradiation [124–127] can be used
instead of conventional heating in pressure-resistant vessels.
The hydrothermal process usually produces HAp particles
with larger size (up to millimeter range), higher degree of
crystallinity and a Ca/P ratio close to the stoichiometric
value compared with those obtained by the precipitation
processes at lower temperature (see section 2.2.1). However,
the size distribution of the produced particles is usually broad.
Hydrothermal processes can be further classified into two
categories: (i) hydrothermal conversion and (ii) hydrothermal
crystal growth techniques.

2.2.2.1. Hydrothermal conversion. The hydrothermal
conversion technique involves the hydrolysis of
other calcium phosphates (CaHPO4, CaHPO4 · 2H2O,
Ca8(HPO4)2(PO4)4 · 5H2O, Ca3(PO4)2, fluorapatite and
chlorapatite [128]) into HAp in aqueous media, usually
with the aid of calcium, phosphate and/or alkaline sources
to control the Ca/P ratio of HAp particles [129–135].
Hydrothermal conversions of poorly soluble calcium
salts such as CaCO3 (from coral [136–138], seashells
[139, 140], aragonite or calcite crystals [141, 142]) and
CaSO4 · 2H2O [124] into HAp have also been studied, and
the conversion mechanism—ion exchange, dissolution
and recrystallization—has been discussed. Although
hydrothermal conversion techniques generally lead to
the formation of large crystalline HAp particles due to
the small number of nucleation sites, Shih et al [132]
prepared stoichiometric HAp nanoparticles (50 nm in
width and 100 nm in length) by hydrolysis of a mixture of
CaHPO4 · 2H2O and CaCO3, performed with 2.5 M aqueous
solution of NaOH at a relatively low temperature (75 ◦C).
Rahaman and co-workers reported the fabrication of hollow
HAp microspheres with nanosized porous shells (∼13 nm)
via a conversion of Li2O–CaO–B2O3 glass microspheres in a
K2HPO4 solution [143, 144].

As is the case in the wet chemical processes, the
morphology of HAp particles can be varied by adding
chemicals, such as carboxylic acids [145] and methanol [146],
during the hydrothermal conversion.

2.2.2.2. Hydrothermal crystal growth. The hydrothermal
crystal growth technique involves post-hydrothermal
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treatment for as-prepared low-crystallinity HAp nanoparticles
(prepared by wet chemical precipitation in many cases)
in aqueous media. The dimensions of the precipitated
HAp nanoparticles increase by the Ostwald ripening
(maturation) under boiling or ambient aging in the mother
liquid [147–150]. Pang and Bao [148] investigated the effects
of temperature and ripening time on the crystallinity and
morphology of the HAp nanoparticles, and found that the
crystallinity and crystallite size increased with the increase
in the treatment temperature and time. Wei and co-workers
also reported the same tendency, but they observed that the
length of the HAp decreased when the temperature was
raised above 170 ◦C [26]. Pathi et al [151] recently reported
a two-step hydrothermal method to obtain HAp nanoparticles
with varying crystallinity and average length (32–103 nm).
Although general hydrothermal treatment is a batch process,
Darr and co-workers developed a continuous hydrothermal
flow process [152–154] and prepared 8-g crystalline HAp
nanoparticles (39 nm in width, 166 nm in length) within 1 h
(yield > 95%).

Many investigations have been carried out to
understand the effect of organic additives. Additives such as
surfactants [155–158], amino acid [159, 160], dicarboxylic
acid [161] and citrates [162] as well as pH [162] affect the
morphologies of the particles treated. Wu et al [163] recently
revealed that the chirality of the additives plays an important
role in the asymmetric crystal growth of apatite by using
l- or d-form of glutamic acid or aspartic acid.

Some researchers succeeded in preparing nanostructured
HAp hollow particles without templates. For examples,
Nathanael et al [164] reported a template-free formation
of HAp nanorings with an inner diameter of 70 nm by
a combined high gravity and hydrothermal crystal growth
approach. Jiang et al [165] reported a template-free route to
fabricate nanostructured hollow HAp microspheres assembled
with nanorods (50 nm in thickness, 0.5–1 µm in length) by
hydrothermal approach using poly(aspartic acid) as both a
chelating and a capping agent. Ma and Zhu [166] reported
the fabrication of hierarchically nanostructured HAp hollow
spheres (assembled from nanorods) using solvothermal
method at 200 ◦C in water/N,N-dimethylformamide (DMF)
mixed solvents. They proposed a self-assembly/base-erosion
mechanism for the formation of the nanostructured hollow
spheres [167].

2.2.3. Homogeneous precipitation. The homogeneous
precipitation starts with a homogeneous, acidic calcium
phosphate solution, and nucleation/growth of HAp is
induced by thermal decomposition (hydrolysis) of urea
((NH2)2CO + H2O → CO2 + 2NH3) [168–171] or acetamide
(CH3CONH2 + H2O → CH3COOH + NH3) [172, 173].
The resultant NH3 raises the solution pH (and degree
of supersaturation for HAp), leading to the formation
(precipitation) of HAp particles. Slow hydrolysis of the
molecules at a high temperature leads to the formation of
large and well-crystallized HAp particles. The hydrolysis of
urea can be accelerated by the addition of enzyme (urease),
especially at a low temperature of 37 ◦C [174]. Zhuang

et al [175] recently synthesized plate-shaped HAp particles
with a preferred orientation to the c plane by a homogeneous
precipitation method via an enzyme reaction of urea. Yu
et al fabricated willow-leaf-like nanorods (diameter 25 nm,
length 120 nm) in a water/ethanol mixed solvent using urea
as additive at 80 ◦C [176].

Hydrothermal treatment of the homogeneous calcium
phosphate solution, in which calcium ions are dissolved by
a chelating agent ethylenediaminetetraacetic acid (EDTA),
also leads to the formation of HAp particles due to
thermal dissociation of calcium-EDTA chelates in phosphate
solutions [177, 178]. From the Ca-EDTA chelate solutions,
HAp particles are obtained in the micrometer-size range
after hydrothermal treatments, because EDTA ions do
not inhibit HAp crystal growth [179]. López-Macipe
et al [180] used citrate ions, which inhibit HAp crystal
growth, as a calcium-chelating agent, and rod-like HAp
nanoparticles (30–60 nm) were obtained after microwave
heating. These calcium-chelated homogeneous precipitation
methods utilize the promotion of Ca2+ dissociation by the
calcium chelates (and solubility decrease of HAp) at an
elevated temperature above 100 ◦C. Recently, He et al [181]
and Cheng et al [182] fabricated nanostructured HAp porous
microspheres by employing homogeneous precipitation
methods with calcium-chelated phosphate solution in the
presence of CO2 bubbles as a hollow template.

2.2.4. Sol–gel method. The sol–gel method has been used
for fabricating fine ceramics in wet conditions for a long
time [183]. A typical precursor is metal alkoxide, which
undergoes hydrolysis and polycondensation reactions to form
a solid phase. In this process, the sol (i.e. solution) dissolving
precursors evolves gradually towards the formation of a
gel-like network of the solid phase. The solid phase can also
be deposited on a substrate to form a film. By controlling the
reaction parameters, the solid phase can also be obtained as
nanoparticles dispersed in media [184].

The sol–gel method is also an effective way to fabricate
nanostructured HAp sintered ceramics [185–187] and coating
layers on several substrates [188–190] with a number of
precursor combinations (calcium alkoxides and phosphorus
alkoxides). Some researchers reported the effect of the starting
precursor structure on the product (such as size, structure and
crystallinity) [191, 192].

In the sol-gel method for HAp preparation, the
as-obtained solid phase is generally amorphous Ca–P
intermediates (and/or the mixture of unreacted precursors)
and hence a thermal treatment (typically at 400–500 ◦C, which
is lower than the sintering temperature of HAp powder,
∼800–1000 ◦C) is necessary to obtain well-crystallized HAp.
The products are obtained in a sintered polycrystalline form
and hence grinding or milling is usually necessary to obtain
HAp nanoparticles (see also section 2.1). Recently, Costa
et al [193] prepared microspheres consisting of nanosized
HAp wires (25–800 nm in thickness) by a combination of
sol–gel and hydrothermal (conversion) processes.
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1 µm 1 µm 1 µm

(b) (c) (a) 

Figure 1. SEM images of HAp calcined (a) without additives and (b, c) with anti-sintering agents for (a, b) spherical and (c) rod-shaped
nanoparticles.

2.2.5. Emulsion method (surfactant-based biphasic process).
This process involves the crystal nucleation/growth in a
restricted space [194–202], which is generally prepared
with inverse (water-in-oil type) emulsion droplets, inverse
microemulsion droplets or inverse micelles (cf precipitation
of HAp ‘on’ the normal micelles formed in aqueous
media, described in section 2.2.1). The morphology control
of HAp nanoparticles can be achieved by restricting the
crystal growth, and this surfactant-based process can also
inhibit excessive agglomeration of the particles. That is, this
process has a lot of promise to synthesize nanocrystalline
material without aggregation, but it has a drawback
of contamination by the surfactants. For example, Lim
et al [194] have prepared HAp powders by reacting CaCl2
and (NH4)2HPO4 in an inverse microemulsion formed with
non-ionic C15H23O(C2H4O)x H (x = 5 or 9) in cyclohexane.
They found that the microemulsion route led to a significant
refinement in the particle size and the degree of particle
agglomeration as compared with the particles obtained by
a direct reaction in the absence of the emulsifiers and
oil (that is, by a conventional wet chemical precipitation).
The effect of reaction temperature (25–70 ◦C) on the
morphology of HAp nanoparticles formed in non-ionic
C12H25O(C2H4O)5H-stabilized inverse emulsion droplets in
dodecane media was investigated in terms of the cloud
point (the temperature at which dissolved molecules are no
longer completely soluble) of the non-ionic emulsifier [203,
204]. Sun et al [205] demonstrated the morphology control
of HAp nanoparticles using inverse microemulsion systems
(aqueous microemulsion in n-butanol/cyclohexane media
stabilized with nonionic C14H22O(C2H4O)9–10H and cationic
CTAB) under hydrothermal conditions at 160 ◦C. Cationic
CTAB micelles are also used to modulate the formation
of HAp nanoparticles [206, 207]. Cao et al [208] reported
the preparation of ultrahigh-aspect-ratio HAp nanofibers
in inverse CTAB micelles under hydrothermal conditions.
They showed that after the HAp nucleation in the inverse
micelles, the surfactant headgroups preferentially adsorb
on the surface planes parallel to the c-axis of HAp,
resulting in the formation of anisometric nanofibers. Saha
et al [209] compared the surfactant types (anionic dioctyl
sulfosuccinate sodium salt (AOT) and dodecyl phosphate
(DP); and nonionic C15H23O(C2H4O)x H (x = 5 or 12)) in
terms of the morphology of the particles obtained in inverse
microemulsions [209].

Cosurfactants are often used to increase the stability and
the solubilizing capacity of microemulsions. An example of
such a cosurfactant is a long-chain alcohol, which is also
known to reduce the rigidity of water-in-oil interfaces [149].
Garcı́a et al [210] studied the effect of cosurfactant (n-butanol)
in a CTAB/toluene/water microemulsion system under
hydrothermal conditions. They found that the cosurfactant
to surfactant molar ratio also played an important role in
controlling the morphology of HAp nanoparticles.

2.2.6. Calcined HAp nanoparticles. When low-crystallinity
HAp nanoparticles prepared by precipitation processes (see
section 2.2.1) or precursor nanoparticles prepared by sol–gel
methods (see section 2.2.4) are calcined to improve their
crystallinity (and hence their thermal and chemical stabilities),
the nanoparticles typically sinter into large polycrystals
(figure 1(a)) [211–215]. Consequently, calcined HAp crystals
dispersed in a liquid on the nanoscale have been difficult to
obtain. Hydrothermal crystal growth (see section 2.2.2) of
HAp particles in aqueous medium is effective for preparing
well-crystallized single crystals, but generally leads to an
increase in crystal size and is restricted to laboratory-scale
products as it is a high-pressure process.

A novel calcination method was developed to prepare
well-crystallized HAp nanoparticles [216–218]. In this
calcination method, an anti-sintering agent covering the
nanoparticles is used to prevent the contact (and hence
to prevent the calcination-induced sintering) between the
nanoparticles; the agent is removed after calcination. Calcium
salts (such as Ca(OH)2 and Ca(NO3)2) were selected as the
anti-sintering agent, and poly(acrylic acid) (PAA) was used
to cover the HAp nanoparticles with the anti-sintering agent.
The morphology of the calcined nanoparticles corresponds to
that of as-prepared low-crystallinity nanoparticles (prepared
by a wet chemical process) before calcination. Spherical or
rod-like single HAp nanocrystals were fabricated by the novel
calcination methods (figures 1(b) and (c)). Calcination with an
anti-sintering agent has potential application to a wide range
of calcined nanoceramic powders, such as alumina, titania and
magnesia.

3. Applications of HAp nanoparticles

HAp nanoparticles received considerable attention
due to their large surface area, improved sinterability
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(densification) [25–29] and better bioactivity [35–39]
compared to coarser crystals. A major application of
HAp nanoparticles is filling materials to impart bioactivity to
various composites [47–52]. In this section, other applications
of HAp nanoparticles are summarized.

3.1. Carriers for drug, protein and gene delivery

HAp surfaces can bind various kinds of molecules (both
acidic and alkaline proteins), because HAp belongs to a
hexagonal crystal system and possesses different properties
on its a and c planes [44]. HAp nanoparticles, therefore,
have been investigated as a carrier for delivery of drugs such
as growth factors [219, 220], antibiotics [5, 221–225] and
anticancer drugs [5, 226, 227]. The adsorption/desorption
characteristics [44, 220, 228–230] and conformation
changes [230–235] of various kinds of proteins (or peptides)
on HAp surfaces have been studied. Mukhopadhyay
et al [236] recently reported that HAp nanoparticle
supplementation increases thermal stability of pectate
lyase from Bacillus megaterium, that is, this enzyme can
retain high activity at elevated temperatures (up to 90 ◦C) in
the presence of HAp nanoparticles. Recently, computational
(in silico) studies have been gradually progressed to
clarify the interaction between proteins (or peptides) and
HAp surfaces [237–239]. Detailed information on the
protein/peptide adsorptions can be found in the original
papers or a recent review by Goobes et al [235].

Calcium phosphate (CaP)-deoxyribonucleic acid (DNA)
co-precipitation method has been used for in vitro gene
transfection because of the biocompatibility, biodegradability
and ease of handling of CaP [240, 241]. To achieve
effective gene transfection, the conditions for CaP-DNA
co-precipitation method have been studied [242–244]. HAp
nanoparticles can also be utilized as gene carriers because of
their capability to absorb DNA molecules [245, 246].

Because of their small size, inhaled nanoparticles can
have a high deposition rate in alveolar regions of the lung. Fan
et al [247] investigated a time-dependent effect of spherical
HAp nanoparticles (∼90 nm, prepared by a wet chemical
process) on a pulmonary surfactant protein. They found that
at a low concentration of 50 µg ml−1 HAp nanoparticles
inhibited the biophysical function of the surfactant protein due
to adsorption of surfactant proteins onto the nanoparticles,
whereas the nanoparticle concentrations up to 100 µg ml−1

did not elicit any significant toxicological effects on human
bronchial epithelial BEAS-2B cells in vitro. Fan et al claimed
that the conventional cytotoxicological test alone may not
be sufficient in evaluating the toxicological effect of inhaled
nanoparticles, but also claimed that the interaction between
HAp nanoparticles and pulmonary surfactant proteins shed
light on the feasibility of HAp nanoparticle-based pulmonary
drug delivery.

3.2. Reparative materials for damaged enamel

HAp nanoparticles have been investigated as fillers for
dental composites [248–250] and glass-ionomer cements to
improve their mechanical properties [251]. The application

of HAp to repair the damaged enamel has recently attracted
considerable attention in dental field because of the chemical
and structural similarities of HAp to tooth minerals (20–40 nm
particles of HAp [252, 253]). Li et al [254] reported a
higher remineralization effect when using 20-nm-sized HAp
compared with several hundred nanometer-sized HAp or
20-nm-sized ACP. Huang et al [255] demonstrated that HAp
nanoparticles have a similar re-mineralization effect on an
initial caries lesion to fluoride. Kim et al [256] examined the
effect of carbonate HAp nanoparticles to prevent re-staining
and the change of enamel surface after dental bleaching.

3.3. Particulate emulsifier (Pickering emulsion stabilizer)

General emulsions are stabilized by adsorption of surfactant
molecules onto oil/water interfaces. Pickering emulsions are
solid-particle-stabilized emulsions, in which solid particles
are adsorbed onto oil/water interfaces [257, 258]. Inorganic
particles (such as silica [259–263], clay [264, 265] and carbon
black [266, 267]), organic particles (such as latex [268–270]
and microgels [271, 272]) and Janus particles [273–276]
have been used as particulate emulsifiers. These solid-
stabilized emulsion droplets can be used as polymerization
vessels; therefore, Pickering-type suspension polymerization
[277, 278], inversed suspension polymerization [279, 280],
and mini-emulsion polymerization [281–283] methods can be
used to prepare nanocomposite particles.

HAp nanoparticles have been tested as a particulate
emulsifier [284]. Stable oil-in-water type emulsions were
readily obtained using oils containing an ester group
(e.g. methyl myristate or methyl trimethyl acetate, see
figure 2). Although no stable emulsion was obtained
using oils without an ester group (e.g. dichloromethane),
dichloromethane droplets could be stabilized by dissolving
polymers having ester groups (or carboxyl terminal group)
via the interaction between polymer and HAp nanoparticles
at the oil/water interfaces [285, 286]. It was also demonstrated
that emulsification–demulsification cycles could be repeatedly
achieved by pH adjustment, because the HAp-adsorbed
emulsion droplets became unstable at lower pH (< 4) and
the emulsion stability was recovered by raising pH. The
HAp-nanoparticle-stabilized emulsions are pH-responsive
emulsions, and can be used for preparing porous HAp
ceramics and HAp-coated microspheres (see section 3.4.2).

3.4. Coating agent

HAp composites are generally fabricated by mixing HAp
particles with a matrix. However, the bioactivity of HAp is
sometimes hindered because most of HAp is buried inside
the composite matrix by the simple mixing methods. HAp
coatings are employed to improve the bioactivity of the matrix
(table 4).

HAp coating in the dry state (especially by plasma
spraying) is a well-accepted and widely used technique, but
it has some intrinsic drawbacks related to the extremely
high processing temperature (above 10 000 ◦C): coating on
polymer substrates and onto intricate shapes [363, 364], as
well as incorporation of biological molecules (such as growth
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100 µm Water

Oil

HAp nanoparticle

Figure 2. Photograph (left), optical microscopy image (center), and schematic (right) of oil droplets stabilized by adsorption of spherical
HAp nanoparticles in an aqueous medium.

Table 4. HAp coating methods.

Method Substratea Ref.

Dry
Thermal spraying M [287–290]
Physical vapor deposition M [291–305]
Chemical vapor deposition M [306–312]
Electrospray deposition M [313–315]
Co-blast deposition M [316, 317]

Wet
Biomimetic mineralization process P, M, C [82, 318–323]
Laser assisted biomimetic process P, M, C [324, 325]
Alternate soaking P, M, C [326–328]
Hydrothermal treatment P, M, C [329–331]
Thermal substrate method M [332–335]
Cathodic electrolysis method M [334, 336, 337]
Electrophoretic deposition M [338–345]
Nanocrystal coating P, M [346–358]
Pickering emulsion coating P [285, 359–362]

a P: polymer; M: metal; C: ceramic.

factors that stimulate bone healing) in the coating layer, is
impossible by the dry-coating methods.

Recent research has shown that the biomimetic process
is one of the most promising techniques for producing
a bioactive coating under nearly ambient conditions
(e.g. body temperature and atmospheric pressure) [365],
overcoming the drawbacks of dry processes. Other wet
coating techniques (e.g. thermal substrate method, cathodic
electrolysis method and electrophoretic method) have been
proposed as approaches to forming HAp coatings on metallic
substrates. However, these wet-synthesis methods have
disadvantages such as poorly crystalized products (in the case
of biomimetic approach) or restriction of electron-conducting
substrates (in the cases of thermal substrate method,
electrolysis and electrophoretic approaches).

3.4.1. Nanocrystal coating. To coat well-crystallized HAp
on a broad range of substrates, the nanocrystal coating has
been developed [346–355]. This approach involves four steps:
(i) preparation of calcined HAp nanocrystals (see section
2.2.6), (ii) surface modification of the substrate to react with
HAp surfaces, (iii) adsorption of HAp nanocrystals onto the
modified substrate, and (iv) reaction at the interface between
the HAp nanoparticle and the substrate (figure 3).

The surface modification of the substrate is essential
to determine the bonding strength of HAp [354]. In the
nanocrystal coating method, the substrates were modified
by graft polymerization of functional monomers having
alkoxysilyl, isocyanate or carboxyl groups. The HAp surface
possesses hydroxyl groups and calcium and phosphate ionic
sites that can react with several functional groups. For
example, alkoxysilyl groups (silane coupling agents) [210,
366] and isocyanate groups [367] can covalently react with
surface hydroxyl groups of HAp, and carboxyl groups can
interact ionically with calcium ions on the HAp surfaces.
Polymer and metal substrates have been used [346–355].
After adsorption of HAp nanocrystals and reaction at
the interface between HAp nanocrystals and substrate
surfaces, the HAp-nanocrystal-coated substrates retained the
mechanical properties of the substrates and showed improved
cell adhesion properties owing to the presence of HAp crystals
on the surface [349–353, 355]. The HAp nanocrystal coating
is applied to percutaneous devices [349,356], artificial blood
vessels [357, 358] and stents [352].

3.4.2. Nanoparticle coating via Pickering emulsion route.
Solid-particle-stabilized emulsions (see section 3.3) have been
utilized for the preparation of HAp-coated biodegradable
polymer microspheres by evaporation of solvent (oil) from
HAp-nanoparticle-stabilized oil droplets dissolving polymer
(figure 4). By using a water-in-oil-in-water multiple emulsion,
multiholow microspheres can also be prepared in the same
manner [359]. The HAp-nanoparticle-coated microspheres
showed improved cell adhesion and spreading compared
with bare biodegradable microspheres [285]. Recently,
Mima et al [368] showed the effectiveness of HAp-coated
biodegradable polymer microspheres as an injectable cell
scaffold for cell-based therapeutic angiogenesis.

4. Summary and future perspectives

This paper reviewed the fabrication methods of HAp
nanoparticles, highlighting recent improvements for
morphology control. Numerous methods for fabricating HAp
nanoparticles have evolved in the past few decades to control
biological effects of nanostructured HAp. However, the
development of facile fabrication methods for monodispersed
HAp nanoparticles (with very narrow size distribution) is still
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1 µm

(b) (a) 

1 µm

Figure 3. SEM images of HAp-nanocrystal-coated polymer substrates: (a) low- and (b) high-density coatings.

100 µm

HAp

PLLA core

Fractured cross-section

100 nm

Figure 4. SEM images of HAp/PLLA microspheres prepared by evaporation of CH2Cl2 from a HAp-nanoparticle-stabilized emulsion.

a challenging task. The monodispersity of nanoparticles is
important to guarantee the homogeneity of the nanoparticles
in a batch, and hence to define the biological effects of
HAp nanoparticles. Monodispersed HAp nanoparticles are
now fabricated in a limited size range [102] because of the
fabrication strategy to eliminate the particle growth stage.
The fabrication of monodispersed HAp nanoparticles in
a broad size range will be realized by precise adjustment
(separation) of the nucleation and growth stages [369], seeded
crystal growth techniques [369] or by entirely different
approaches [370]. Dispersion of HAp nanoparticles in
liquid media (or in solid matrices) is also important for the
applications of HAp nanoparticles and for the development
of well-designed HAp-filled composites [53]. Although the
dispersion is now improved by adding surface modifiers,
another approach will be proposed because modifying pristine
HAp surfaces generally hinders their bioactivity.

Recent applications of HAp nanoparticles are also
summarized in this review. The greatest motivation behind the
use of HAp is to accurately mirror the chemistry of natural
minerals. The recent progress in computational analyses for
the conformation changes, which alter structure and function
at a distant active site, of the proteins interacting with HAp
surfaces [235, 237–239] will provide a guide for designing
nanostructured HAp surfaces to transcend the chemistry of
natural minerals. Although nanostructured biomaterials have

many potential advantages, it is important to remember that
the effects of nanoparticle exposure on human health are
not well understood. Understanding the biological effects of
nanosized HAp is essential for the applications.
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