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Abstract

Introduction: Cell nuclei are important indicators of cellular processes and diseases. 
Segmentation is an essential stage in systems for quantitative analysis of nuclei extracted 
from microscopy images. Given the wide variety of nuclei appearance in different organs 
and staining procedures, a plethora of methods have been described in the literature to 
improve the segmentation accuracy and robustness. Materials and Methods: In this 
paper, we propose an unsupervised method for cell nuclei detection and segmentation in 
two‑dimensional microscopy images. The nuclei in the image are detected automatically 
using a matching‑based method. Next, edge maps are generated at multiple image 
blurring levels followed by edge selection performed in polar space. The nuclei contours 
are refined iteratively in the constructed edge pyramid. The validation study was 
conducted over two cell nuclei datasets with manual labeling, including 25 hematoxylin 
and eosin‑stained liver histopathology images and 35 Papanicolaou‑stained thyroid 
images. Results: The nuclei detection accuracy was measured by miss rate, and the 
segmentation accuracy was evaluated by two types of error metrics. Overall, the nuclei 
detection efficiency of the proposed method is similar to the supervised template 
matching method. In comparison to four existing state‑of‑the‑art segmentation 
methods, the proposed method performed the best with average segmentation error 
10.34% and 0.33 measured by area error rate and normalized sum of distances (×10). 
Conclusion: Quantitative analysis showed that the method is automatic and accurate 
when segmenting cell nuclei from microscopy images with noisy background and has 
the potential to be used in clinic settings.

Key words: Cell nuclei detection and segmentation, multiscale method, 
pathology images

INTRODUCTION

Cell nuclei in two‑dimensional  (2D) pathology images 
can yield quantitative information about the presence 
or absence of disease processes and also help evaluate 
disease progress.[1‑5] Detecting and segmenting nuclei 
correctly with minimum human effort is important 
for cell nuclei analysis. Jung and Kim[6] showed 
that improved segmentation accuracy led to better 
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classification performance using the unique classifier 
for thyroid follicular lesions. However, automatic nuclei 
segmentation in pathology images still remains a difficult 
problem due to the high variability in images caused by 
differences in slide preparation, image acquisition, and 
nuclei heterogeneity.[1,7]

Cell nuclei detection plays a critical role in the overall 
segmentation procedure, which requires a point per 
nucleus and close to nucleus center, referred to as 
seed. Many approaches have been described in the 
literature to locate cell nuclei in 2D microscopy images. 
The combination of finding peaks in the Euclidean 
distance map and watershed,[4] though often resulting 
in overseeding, can be applied to locate seeds. The 
circular‑shaped nuclei can be effectively located using 
Hough transformation methods at the cost of expensive 
computation.[8] H‑maxima/minima transform is a powerful 
approach to detect nuclei by finding the local maximums 
in images.[9] However, it often leads to overseeding 
due to its sensitivity to image textures. Recently, other 
nuclei detection methods have been proposed as well. 
The multiscale Laplacian‑of‑Gaussian  (LoG) filtering 
constrained by the distance map‑based adaptive scale 
selection can be used to detect cell nuclei.[10] This method 
improves seed accuracy but is sensitive to minor peaks in 
the distance map and thus leads to overseeding. Qi et al.[11] 
proposed a method based on single‑path voting followed 
by mean‑shift clustering to find seeds for touching and 
overlapping nuclei.

Speaking of segmentation methods more broadly, a wide 
range of methods has been described in the literature. 
Thresholding, morphological operation, watershed, region 
growing, active contour model, clustering, and graph cut are 
the cornerstones of the segmentation methods proposed in 
the literature. The simplest thresholding method followed 
by morphological operation[12] works well for objects with 
little intensity variations and high foreground/background 
contrast. Watershed is a nonparametric method widely 
applied in nuclei segmentation, with the disadvantage 
of over‑segmentation.[13] Active contour models can 

be used to obtain a smooth contour by minimizing an 
energy function and can be utilized in pathology images 
where nuclei appear unclear. The well‑known Chan and 
Vese model was used to obtain the outer contours of 
nuclei, followed by a watershed‑like algorithm to separate 
the clustered nuclei.[14] Al‑Kofahi et  al.[10] utilized a 
graph‑cut‑based binarization to extract the foreground 
and then a second graph‑cut‑based algorithm to refine 
the initial contours obtained by constrained multiscale 
LoG filter, which was shown to perform well in pathology 
images with dense nuclei. Thévenaz et  al.[15] proposed 
a method called Ovuscule which was a modified snake 
model taking the shape of an ellipse. Its evolution is 
driven by the combination of the integral of data over 
the inner ellipse and outer elliptical shell. More nuclei 
segmentation methods including active contour model, 
watershed‑based method, and Markov random field are 
described in Irshad paper.[1] Here, we show a comparison 
between the method we propose and a few such modern 
methods.

In this paper, we describe an unsupervised nuclei 
segmentation method, which we call multiscale 
edge selection in polar space  (MESPS). Specifically, 
a filter bank consisting of rings with various sizes is 
first constructed to locate nuclei by finding the local 
maximums in the response map. In the segmentation 
step, the nuclei contours are iteratively refined by 
selecting the correct edges in polar space at different 
smoothing levels. The produced final contour would 
attach tightly to the actual nucleus border. Figure 1 shows 
the overview of the proposed method. We believe the 
accurate nature of the segmentation procedure, simplicity 
of use, and computational efficiency are key advantages 
of our method as will be demonstrated.

MATERIALS AND METHODS

Case Selection
Tissue blocks and cytology slides were obtained from 
the archives of a local hospital (approved as an exempt 

Figure 1: Overview of the nuclei detection and segmentation procedure. The nuclei seeds are firstly detected using a set of filters with 
different sizes. An edge pyramid is then constructed, where edge maps are generated using a set of smooth parameters. Edge selection is 
performed at each level and the nuclei contour evolves across the edge pyramid to delineate the spatial content of cell nuclei
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protocol by the Institutional Review Board). Cases for 
analysis included liver resection specimens and cytology 
slides prepared from fine‑needle aspiration biopsies of 
thyroid nodules.

Tissue Procurement and Processing
Liver tissues were procured at the time of a designated 
surgical procedure. All tissues were fixed in 10% 
neutral‑buffered formalin and processed on a conventional 
tissue processor using a series of graded alcohols and 
xylenes before paraffin embedding. Tissue sections were 
cut at 5 µ thickness from the paraffin‑embedded block 
and placed on conventional 25 mm × 75 mm × 1.0 mm 
Superfrost Plus microscope slides using Fisherbrand 
Superslip coverslips (50 mm × 24 mm × 0.17 mm; Fisher 
Scientific, Thermo Fisher Scientific, Inc., Waltham, MA, 
USA). All tissue sections for imaging were stained using 
conventional hematoxylin and eosin  (H  and  E) protocol 
used in the histology laboratory. For the thyroid cytology 
preparations, aspirate smears were fixed in 95% ethanol 
and then stained with the Papanicolaou  (Pap) staining 
technique. Briefly, the Pap stain uses hematoxylin, OG‑6, 
and eosin azure  (combination of eosin Y, light‑green SF, 
and green FCF dyes) to stain cytological preparations. 
Nuclei stained with this technique have blue‑green color 
and excellent chromatin detail that can be visualized by 
light microscopy.

Digital Image Acquisition
Whole slide digital images of the liver slides were 
acquired using an Omnyx VL4 digital whole slide 
scanner  (Omnyx, LLC, Waterfront PI, Pittsburg, PA, 
USA) equipped with a  ×60 dry objective. Images 
obtained had a resolution of 0.1375 µ/pixel and were 
saved in the proprietary format and then converted to 
lossless JPEG format. All thyroid cytology slide images 
were acquired using an Olympus BX51 microscope 
equipped with a  ×100 UIS2 UPlanFl oil immersion 
objective  (numerical aperture 1.30; Olympus America, 
Central Valley, PA, USA) and 2 megapixel SPOT Insight 
camera  (Diagnostic Instruments, Sterling Heights, MI, 
USA). Image specifications were 24‑bit RGB channels 
and 0.074 µ/pixel, 118 × 89 µm field of view.

Nuclei Detection
The basic idea of nuclei detection is to find local 
evidence for the presence or absence of a nucleus in the 
image. To that end, we construct a filter bank composed 
of rings of different sizes modeled by the function: 
r2 ≤  x2  +  y2 ≤  (r + ζ) 2 , where r is the radius and ζ is 
the thickness. Given a certain dataset, prior information 
such as ζ, the size of the smallest and largest nuclei can 
be reasonably estimated; thus, the size range of the filters 
can be defined according to image resolution. We note 
that the shape of filters can be changed and modeled 
by different functions to adapt the nuclei appearance 
in different datasets. In our experiment, the sampled 

locations � ,x x y= [ ]i i  can be obtained from a set of 
centered coordinates [x1,…, x2r + 1], −r −ζ ≤ xi ≤ r + ζ
The filter image patch with size r denoted as f xr( )

  is 
convolved with a Gaussian function, which is meant to 
be an approximation of point spread function. Given an 
image I x( ) , the likelihood of the pixel at x*  being the 
center of an underlying nucleus is defined as follows:
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The maximization procedure above is performed pixel 
by pixel searching for the filter f xr( )

  within the filter 
bank which best matches the appearance of the potential 
nucleus at location x* . Pixels having ring‑shaped 
surrounding pixels with similar radius as that of a filter 
will have strong responses and are likely to be nuclei 
centers. On the contrary, irrelevant tissue structures or 
noisy background tend to have weak responses. Thus, the 
method is able to yield size estimation for each nucleus 
by searching for the best‑matched filters.

Here, we note that most nuclei take the shape of an 
ellipse and thus, theoretically, elliptical filters would 
generate stronger responses compared with ring‑shaped 
filters. However, since more parameters  (e.g.,  length of 
major and minor axis, rotation angle) would be required 
to control an ellipse, leading to a larger searching space 
when performing NCC operation, we use the ring‑shaped 
filters instead. As we can see from the simulation 
experiment  [Figure  2], ring‑shaped filters are able to 
generate the strong responses when applied to detect 
both circular and elliptical nuclei in noisy background.

To locate the cell nuclei, the standard K‑means 
clustering method is applied to classify the responses 
into three classes based on the response intensity: 
(1) background;  (2) weak responses from nonnuclei 
structures;  (3) strong responses from potential nuclei. 
Using connected component analysis, nuclei seeds can be 
obtained by computing the mass center of each isolated 
pixel cluster classified as strong responses. Figure 3 shows 
the nuclei detection procedure applied to the real liver 
histopathology images.

In practice, the false positive nuclei seeds can be filtered 
out by postprocessing operations, such as thresholding 
the area of isolated pixels clusters.
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Nuclei Segmentation
With detected nuclei seeds, it is required that the 
subsequent segmentation algorithm delineate the nuclei 
contours efficiently and accurately with minimal manual 
intervention. Our goal is to segment nuclei correctly in 
the complex background  (existence of a large variety of 
nuclei morphology, chromatin texture, staining procedure 
as well as tissue heterogeneity). As well known, edge 
detection[16‑18] produces outlines at locations where large 
gradient exists, for example, nuclei borders and noisy 
background structures  [Figure  4a]. To obtain the initial 
segmentation, a “blurred” version of the nuclei image is 
required, which describes the nuclei outlines and excludes 
noisy details hindering the delineation of nuclei contours. 
The multiscale strategy enables the nucleus contour 
to refine iteratively from the initial segmentation by 
changing the blur parameter σ smoothly. The proposed 
method is designed to discriminate the nuclei borders 
pixels from remaining “garbage pixels.”

Specifically, the input image is first convolved with the 
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zero mean at multiple scales σ =  [σ0,…, σn−1], with 
σ0 and σn−1 being the minimum and the maximum of 
σ, respectively. Next, an edge pyramid is constructed 
consisting of a set of edge maps generated by the edge 
detector  (e.g.,  Canny detector), where the top level and 
the bottom level correspond to σ0 and σn−1, respectively. 
We aim to select the correct edges in polar space starting 
from the bottom level and then take it as guidance for 
edge selection in the next higher level. The algorithm 
refines the contour iteratively and produces the final 
contour when edge selection is performed at the top level 
of the edge pyramid.

Edge selection
The first step is to select correct edges from the edge 
map obtained at the largest scale σn−1, where artifacts 
are the least prevalent. The size of the image patch for 
each nucleus can be determined adaptively according 
to the size estimation from nuclei detection step. In 
the nucleus edge map, edges can be classified into 
three categories: correct edges  (forming the nucleus 
contour), edges inside the nucleus, and edges outside 
the nucleus.

One prominent feature to discriminate these three 
kinds of edges is that, intuitively, correct edge pixels 
on the nucleus counter often have smoother distance 
changes away from the seed in comparison to the 
drastic distance fluctuations of pixels on noisy edges 
inside or outside the nucleus. In addition, considering 
the intensity, edge pixels along the nucleus border have 
relatively consistent intensity compared with that of 
incorrect edge pixels. With these simple observations 
in mind, the solution of delineating nucleus 
contour becomes finding the path with the minimal 
transportation cost  (nonzero) starting and ending at 
any chosen point on the nucleus border based on both 
distance and intensity metrics.

The polar coordinate system provides a natural space to 
search for the optimal path connecting the start point 
and the end point for each nucleus. Given the edge 
map �E i

 detected at the ith level, edge pixel x x y= [ ,�] in  
Cartesian coordinate can be transformed into polar space 
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Figure 3: Nuclei detection on real nuclei image using the proposed 
method. Here, we adopted the hematoxylin channel extracted 
from the original image by color deconvolution. (a) Original image. 
(b) Response map. (c) K‑means clustering results (in colors). 
(d) Detected nuclei seeds (green dots)
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Figure 2: Simulation for detecting both circular and elliptical nuclei with ring‑shaped filters. (a) Constructed filter bank with filters of 
different sizes (magnified for viewing purpose). (b) Simulated circular nuclei. (c) Response map for (b). (d) Simulated elliptical nuclei. 
(e) Response map for (d)
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image patch. Figure  4b shows that the edge map in the 
subwindow of Figure 4a is transformed in polar space.

In the polar coordinate system, the transportation cost 
between any two neighbor edge pixels pm =  [rm, θ] and 
pn = [rn, θ + Δθ] is defined as follows:
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where vm and vn denote pixel intensities for pm and pn; Δθ 
is infinitesimal; a, b are the weights for the distance term 
and intensity term, respectively; Rmax and Vmax are the 
maximal distance difference and the maximal intensity 
difference, respectively, between pm and pn in the edge 
map, enabling both two metrics to have the same scale.

The optimal path ϕ* can be found by minimizing the 
function defined as follows:
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where lϕ denotes the length for the path ϕ.

In the discrete setting, the function above can be 
rewritten as follows:
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where nϕ is the number of edge pixels along the path ϕ.

Dijkstra’s algorithm is an algorithm widely applied to 
find the shortest path between the source node and the 

terminal node in a graph, such as road networks and 
telephone network. It was first conceived in 1956 by 
Dijkstra.[19] In our case, Dijkstra’s algorithm is suitable 
to solve the above minimization problem. We represent 
the edge pixels in polar space in the form of undirected 
graph G = [V, E] [Figure 4c], denote the edge pixels and 
the graph edges with weights c(θ, pm, pn) in E are only 
feasible for any two adjacent angle nodes pm, pn.

To make the algorithm robust against noisy edge pixels, 
the edge pixels are further represented/discretized by 
finding the locations with locally a maximal number of 
edge pixels for each angle in the polar space. A  sliding 
window with width w and height h, moving along the 
distance direction for each θ, is constructed to capture 
and count the edge pixels locally. The number of edge 
pixels in the sliding window centered at [rj, θi] is denoted 
as N (rj, θi) and locations with locally maximal number of 
pixels at angle θi are denoted as rl imax

( ) . These detected 
locations are the approximate representation of the 
original edge pixels in polar space [red dots in Figure 4b]. 
The benefit of discretizing edge pixels is that it helps 
reduce the number of possible paths between the source 
node and the terminal node. Thus, the computational 
cost is reduced dramatically when searching for the 
optimal path using Dijkstra’s algorithm.

In practice, it is not easy to select the source node and 
terminal node along the nucleus border. In this paper, we 
propose that the source node and the terminal node can 
be chosen as edge pixels with the same distances away 
from the seed at angle 0 and 2π. However, there might 
be multiple source‑terminal pairs in the graph, and thus 
multiple optimal paths are found by Dijkstra’s algorithm. 

Figure 4: (a) Original image with a subwindow showing the edge map for one nucleus (detected by Canny edge detector, σi = 3) with the 
seed in the center (red dot). (b) Edge pixels are transformed into polar space with the nucleus seed being the origin. Red points are the 
locations with locally maximal number of pixels; green points show the edge pixels along the optimal path searched by Dijkstra’s algorithm. 
The blue solid line is the fitted curve. In the cyan area, edge pixels from the i + 1th level are chosen as candidates. (c) Constructed undirected 
graph with nodes being the red points in (b) and edge weights being the cost defined by the combination of distance and intensity metrics. 
Nodes marked as red constitute the optimal path. (d) Final contour (red), and optimal path (green) are shown in the image patch
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This is so especially when a small σ is applied, where 
many noisy edge pixels exist at the angle 0 and 2π. When 
noisy edge pixels are selected as the source or terminal 
node, the optimal path would be searched by Dijkstra’s 
algorithm at the cost of passing through edges with large 
weights in the constructed graph. Thus, the real nucleus 
contour can be found by choosing the path with the 
minimal cost connecting source‑terminal pairs.

One potential issue is that some detected edges may not 
be complete due to the weak gradient at the nucleus 
border and thus some pixels along the optimal path are 
not necessarily on the real nucleus contour. Here, we 
apply the RANSAC[20] algorithm and the spline curve 
fitting method to estimate the nucleus contour. Given 
the edge pixels on the optimal path, a subset of pixels 
is selected to generate a fitted curve model describing 
the rough shape of the optimal path. The points fit the 
estimated model well are called inliers and points with 
large errors are called outliers. Afterward, the model 
is refined using only the inliers. The step repeats for a 
fixed number of times, and the model with the maximal 
number of inliers is kept. The curve fitting step takes 
as input the pixels along the optimal path and outputs 
the final smooth contour Ck connecting the isolated and 
incomplete detected edges when performed at the kth 
level of the edge pyramid.

Edge iteration
The smooth contour generated from the kth level is taken 
as the initial nucleus border and helps guide the edge 
selection for the k + 1th level. Specifically, at the k + 1th 
level, edge pixels within the distance range  [Ck  −  d, 
Ck  +  d] are chosen as edge candidates and edge pixels 
outside the range are discarded in the sense that a more 
refined contour at the k  +  1th level should be close to 
the contour obtained from the kth level with a distance 
tolerance d. When the blur parameter σ is changed 
slightly, the edge locations change smoothly and would 
not shift too much. Therefore, for the k  +  1th level, 
the edge pixel locations at angle θ should be within 
the range  [Ck(θ)−d, Ck(θ) + d]. With the set of edge 
candidates, the edge selection is performed as described 
above to generate a more accurate nucleus contour Ck+1.

As the contour is refined iteratively from the bottom 
level of the edge pyramid up to the top level, it gradually 
attaches to the real border of nucleus. Given the small 
blurring σ0 at the top level, our algorithm can delineate 
the nucleus spatial extent precisely.

RESULTS

Before our algorithm is applied to pathology images, the 
nuclei channel should be extracted from RGB color space 
by color deconvolution[21]  (e.g.,  extracting hematoxylin 
channel from H  and  E‑stained images). After that, all 

image data are normalized to fit the intensity range 
[0, 1]. We demonstrate the proposed method on two 
real datasets including thyroid dataset  (35 representative 
images, Pap‑stained, 903 cell nuclei) and liver datasets 
(25 images, H and E‑stained, 2145 cell nuclei).

In our experiment, the sliding window width w and 
height h were set as 15 degrees and 2 pixels, respectively, 
and were fixed for both two datasets. The only parameter 
to be changed differently for the two datasets is the 
maximal smooth level σmax which was set to be 3 and 5 
for the thyroid dataset and the liver dataset, respectively. 
The minimal smooth level σmin is usually set to be 1 to 
capture the precise nucleus border.

For comparison, we choose the following state‑of‑the‑art 
algorithms used for nuclei segmentation including the 
Ovuscule,[15] level set[22] and template matching.[23] 
Template matching has the ability of detecting nuclei in 
the image while level set and the Ovuscule need detected 
nuclei seeds for segmentation. In our experiment, level 
set and the Ovuscule adopted the seeds detected by 
MESPS for comparing the segmentation performance.

For qualitative comparison, sample segmentation results 
by approaches listed above are shown in Figure  5, where 
the rows from the top to the bottom correspond to the 
results from level set, the Ovuscule, template matching, 
and our method, respectively, and the columns from left 
to right correspond to sample images from liver dataset 
and thyroid dataset, respectively.

In addition, we evaluated the nuclei detection efficiency 
of template matching and MESPS using the miss 
rate (MR) defined as follows:

MR
SA SM SA SM

SM
=

∪ − ∩
× 100%

where SA are the seeds detected by the algorithms 
and SM are the seeds selected manually; SA∪SM and 
SA∩SM are the number of seeds in the union set and the 
intersection set of SA and SM, respectively.

The segmentation accuracy was measured by the area 
error rate (AER)[24] focusing on the number of incorrectly 
segmented pixels and the spatially‑aware evaluation 
metric normalized sum of distances  (NSD)[25] with the 
ground truth labeled manually. Quantitative analysis of 
nuclei detection and segmentation efficiency of different 
approaches is shown in Table 1.

From the quantitative evaluation of different approaches, we 
note that the proposed method showed similar or superior 
performance compared with existing segmentation methods 
validated on two datasets. For the thyroid dataset, level 
set segmented nuclei with the highest accuracy with AER 
and NSD being 8.31% and 0.29, respectively. Our method 
generated similar results as that of level set, showing that 
MESPS has the nuclei segmentation ability comparable 
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Figure 5: Segmentation results from two validation datasets. First 
column: liver dataset; second column: thyroid dataset. From the 
top row to the last row are the results by level set, the Ovuscule, 
template matching, and multiscale edge selection in polar space, 
respectively. Note that segmentation flaws are pointed out by 
black arrows

Table 1: Quantitative evaluation of different approaches on nuclei detection and segmentation efficiency

Algorithms Level set The Ovuscule Template matching MESPS

AER/NSD (10) Thyroid dataset 8.31%/0.29 12.63%/0.44 15.29%/0.46
MR: 29.24%

8.45%/0.31
MR: 27.97%

Liver dataset 21.39%/0.64 17.46%/0.42 19.56%/0.44
MR: 21.19%

12.22%/0.35
MR: 26.21%

to the state‑of‑art method. Moreover, for the liver dataset 
in the complex setting  (nonuniform illumination, noisy 
background, and nuclei heterogeneity), MESPS could still 
be able to find the nuclei borders accurately and perform 
the best compared with the listed approaches. Considering 
the comprehensive performance over the two validation 
datasets, MESPS archived the best segmentation accuracy 
with 10.34% AER and 0.33 NSD on average.

For the overall nuclei detection efficiency, both template 
matching and MESPS could detect most nuclei labeled 

manually with the similar MRs. However, we should be 
aware of the supervised fashion of template matching 
method that needs users to select a set of nuclei for 
training and then finds the templates that best match 
the testing nuclei from the constructed statistical model.

DISCUSSION AND CONCLUSION

This paper proposed an unsupervised method to detect 
and segment cell nuclei automatically from the 2D 
pathology images based on NCC and MESPS. The 
validation experiment showed that the method could 
segment the cell nuclei accurately when applied to real 
pathology images with different stainings  (e.g., H and E, 
Pap staining) and image qualities  (e.g.,  blurring, noise, 
texture heterogeneity).

There are several advantages of the method. First, it has 
the ability to locate nuclei borders accurately with certain 
robustness. The multiscale strategy ensures that the ill 
effects caused by noise, nonuniform intensity, etc., could 
be greatly reduced by smoothing. The small smooth 
level at the top of the edge pyramid helps the generated 
contour gradually cling to the real nucleus border at the 
pixel level. With the small step size of σ, the contour 
changes smoothly as it iterates from the bottom level up 
to the top level of the edge pyramid. Second, it is designed 
in an unsupervised way that does not need users to train 
a model used for segmentation. Once the parameters 
are set, the algorithm could detect and segment the cell 
nuclei in the dataset automatically. The performance of 
MESPS depends on the image gradient; thus, it is not 
sensitive to staining techniques or imaging modalities, 
which makes it useful and applicable to various datasets 
in clinic settings. Finally, the proposed algorithm is light 
weight, consisting of several basic but effective algorithms 
including NCC, edge detection, and Dijkstra’s algorithm. 
The proposed framework is mathematically simpler than 
the mentioned state‑of‑the‑art methods.

In addition, we proposed some ways to reduce the 
computational cost by reducing the number of both 
nodes and edges when Dijkstra’s algorithm is applied. 
First, the edge pixels in polar space are represented by 
the points which have locally maximal number of pixels 
within a sliding window for each angle. This operation 
reduces the number of nodes greatly in the constructed 
undirected graph with the additional benefit of denoising. 
Moreover, edges between two nodes in the graph would 
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be deleted if the distance difference is over a certain 
threshold, in the sense that pixels at adjacent angles on 
the nucleus contour should be near each other and the 
distance away from the nucleus center changes little. 
Each node only connects a few nodes at adjacent angles, 
which prominently cut down the number of possible 
paths between the source and the terminal nodes.

We should note that there are parameters introduced 
in our proposed method, including filter size, σmin, σmax, 
smooth step size, cost weights  (a, b), and the threshold 
for edge deletion used to reduce computational cost. 
Here, the parameters to be set to adapt to various datasets 
are filter size and σmax. As described in the previous 
section, the filter size depends on the image resolution 
as well as the cell nuclei type in study, whose size could 
be usually found in the literature. σmax can be determined 
based on the image gradient in datasets. It is desired to 
keep the correct nuclei edge pixels in the edge map, at 
the same time, be able to filter out the noisy edges. In 
practice, the optimal σmax can be set experimentally by 
randomly selecting a few sample images in the dataset 
and observing the edge maps so that the edge detector 
could describe the outlines of most nuclei. Our algorithm 
is not sensitive to other parameters and they were fixed 
when validated on two datasets. In our experiment, the 
values of σmin, smooth step size, a, b, and the threshold 
were set to be 1, 0.5, 0.4, 0.6, and 20 pixels, respectively.

Besides the advantages mentioned above, the method 
also has some limitations that are noteworthy of 
discussion. First, the method is designed for segmenting 
convex‑shaped cell nuclei. In the polar space, parts of 
the contour for nonconvex shape nucleus are mapped 
to multiple locations at the same angle, which violates 
our assumption that there is only one optimal location 
along the nucleus contour per angle. Even though 
most cell nuclei have the shape of sphere or ellipsoid, 
highly concave cell nuclei can be sometimes observed 
under microscopy due to the sectioning of nuclei at 
odd angles or tissue distortion in slides preparation 
procedure, or both. Second, the method could not 
handle overlapping cell nuclei even if the nuclei seeds 
are detected correctly. Because of the blurring of border 
in the overlapping area, the edge detector usually does 
not generate the edge pixels delineating the two nuclei. 
The method would treat the two nuclei as one and 
produce the outer border of them. However, we should 
note that (1) the ultimate goal of nuclei segmentation is 
for exploring the correlation between nuclei morphology 
and cellular/disease progress,  (2) overlapping cell nuclei 
provides limited information for analysis due to the 
difficulty of recovering inherent information within 
the overlapping area. Therefore, with plenty of isolated 
cell nuclei available in the dataset, nuclei overlapping 
problem is negligible in nuclei based analysis.

The proposed method locates cell nuclei by measuring 
the matching degree between local image patches and 
the predefined nucleus‑shaped filters. Afterward, the 
method transforms the object segmentation problem 
into a classic shortest path problem. The cost function 
is constructed considering both shape and intensity 
characteristics of nuclei borders. The accurate delineation 
of cell nuclei is based on the detected edge pixels on the 
border which can be correctly selected by the well‑known 
Dijkstra’s algorithm. The multiscale strategy enables the 
contour generated at each level evolves smoothly to the 
actual nuclei border. In the future, the method could be 
further automated by enabling the algorithm to select 
the optimal maximal smooth parameter based on image 
gradient statistics.
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