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ABSTRACT
RNA uridylation is a significant transcriptome-shaping factor in protists, fungi, metazoans, and plants. The
30 U-additions are catalyzed by terminal uridyltransferases (TUTases), a diverse group of enzymes that
along with non-canonical poly(A) polymerases form a distinct group in the superfamily of DNA
polymerase b-like nucleotidyl transferases. Within and across studied organisms and subcellular
compartments, TUTases differ in nucleotide triphosphate selectivity, interacting partners, and RNA targets.
A general premise linking RNA uridylation to 30–50 degradation received support from several studies of
small RNAs and mRNA turnover. However, recent work on kinetoplastid protists typified by Trypanosoma
brucei provides evidence that RNA uridylation may play a more nuanced role in generating functional
small RNAs. In this pathogen’s mitochondrion, most mRNAs are internally edited by U-insertions and
deletions, and subjected to 30 adenylation/uridylation; guide RNAs (gRNAs) required for editing are U-
tailed. The prominent role of uridylation in mitochondrial RNA metabolism stimulated identification of the
first TUTase, RNA editing TUTase 1 (RET1). Here we discuss functional studies of mitochondrial uridylation
in trypanosomes that have revealed an unorthodox pathway of small RNA biogenesis. The current model
accentuates physical coupling of RET1 and 30–50 RNase II/RNB-type exonuclease DSS1 within a stable
complex termed the mitochondrial 30 processome (MPsome). In the confines of this complex, RET1 initially
uridylates a long precursor to activate its 30–50 degradation by DSS1, and then uridylates trimmed guide
RNA to disengage the processing complex from the mature molecule. We also discuss a potential role of
antisense transcription in the MPsome pausing at a fixed distance from gRNA’s 50 end. This step likely
defines the mature 30 end by enabling kinetic competition between TUTase and exonuclease activities.
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Introduction

Post-transcriptional 30 end nucleotide additions wield profound
influence on RNA biogenesis, trafficking, function and turn-
over. With the advent of deep sequencing and the influx of new
genomes, it is becoming evident that few such modifications
have retained universal functions across various phyla, or even
within the same organelle. Eukaryotic mRNA polyadenylation
has long been held as an essential stabilizing process, although
A-tailing by non-canonical poly(A) polymerases may also
induce exosome-dependent decay in the nucleus.1,2 Indeed,
mitochondrial mRNA adenylation by homologous poly(A) pol-
ymerases may exert opposite effects: degradation in plants3 and
stabilization in trypanosomes.4,5 It appears that the 30 process-
ing history “written” by spatially and temporally resolved
dynamic interactions with protein complexes, and chemical
nature and extent of modification represent the major determi-
nants of mRNA stability. RNA uridylation activity was
described nearly a half-century ago in mammalian tissues and
later detected in plants along with stretches of non-encoded
uridines in cellular RNAs. Review by Rissland and Norbury
provides an excellent historical account leading up to more
recent developments.6 Although rigorous biochemical studies
have established the presence of terminal uridyltransferase
(TUTase) activities in many organisms, S. cerevisiae being a

notable exception, the respective enzymes remained unidenti-
fied until 2002. The prominent role of RNA uridylation in U-
insertion/deletion mRNA editing typical of kinetoplastid proto-
zoans necessitated a tour de force biochemical purification of
the major TUTase activity from mitochondria of Leishmania
tarentolae. An orthologous enzyme from Trypanosoma brucei
was identified in the same work.7 This protein was subse-
quently shown to uridylate guide RNAs and was termed RNA
editing TUTase 1 (RET1) for chronological reasons, and to dis-
tinguish it from RNA editing TUTase 2 (RET2). The latter
enzyme functions as an integral subunit of the RNA editing
core complex in internal mRNA U-insertion editing.8,9 Diver-
gent protein sequences of 2 editing TUTases have been used to
define a family of alike enzymes in trypanosomes10 that
includes another mitochondrial TUTase MEAT1,11 mitochon-
drial poly(A) polymerases KPAP14 and KPAP2,12 cytoplasmic
TUT313 and TUT414,15 TUTases, and nuclear non-canonical
poly(A) polymerases ncPAP1 and ncPAP2.16 Pioneering work
from the Norbury laboratory has identified the non-canonical
poly(A) polymerase CID1 as cytosolic TUTase linked to deade-
nylation-independent mRNA decay 17,18 in S. pombe. Although
nucleotide triphosphate selectivity often cannot be inferred
from primary sequences, X-ray crystallography has established
U-specific contacts characteristic for exclusively U-specific
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RET219 and MEAT1,20 and the basis for a more relaxed A/U-
specificity of CID1.21 In mammalian cells, the TUTase/non-
canonical PAP family consists of 7 proteins.22 The rapidly
growing list of their functions includes regulation of microRNA
decay23-25 and processing,26 snRNA processing,27,28 histone
mRNA cycling,29 global mRNA decay30 and mitochondrial
mRNA adenylation.31 Although the field is still young, some
general concepts are already emerging. It appears that uridyla-
tion provides chemical means of distinction from adenylation,
thereby creating an alternative binding platform for RNA decay
and processing effectors. In this Point-of-View, we elaborate on
recent advances in mitochondrial RNA processing in trypano-
somes and propose an unorthodox model of small RNA bio-
genesis of which antisense RNA-controlled uridylation-
induced 30–50 degradation is the key. Although at this time
such a mechanism has been described for guide RNAs involved
in mRNA editing, an evolutionary conservation of the TUTase-
RNase II-like exonuclease coupling and existence of closely-
spaced convergent promoters in many organisms32 are indica-
tive of a potentially more general mechanism.

Much ado about U

The mitochondrial genome of Trypanosoma brucei, the causative
agent of African sleeping sickness, is composed of a few 25-kb
maxicircles and approximately 10,000 of 1-kb minicircles that are
catenated and densely packed into a nucleoprotein structure
called kinetoplast. Maxicircles encode genes typically found in
mitochondrial genomes (rRNAs, subunits of respiratory com-
plexes and a single ribosomal protein) while minicircles produce
a diverse population of small RNAs.33,34 Six of the 18 annotated
pre-mRNAs contain open reading frames and are referred to as
unedited; the remaining transcripts must undergo U-insertion/
deletion editing to acquire a protein coding sequence and, some-
times, start and stop codons. The extent of editing varies from
insertion of 4 nucleotides into CO2 mRNA to hundreds of Us in
pan-edited transcripts. Short (50–60 nt) guide RNAs (gRNAs),
transcribed predominantly fromminicircles have been recognized
as carriers of editing information by their complementarity to
fully-edited mRNAs.35 The postulated mechanism by which
gRNA directs specific endonucleolytic cleavage of pre-mRNA,
subsequent insertion or deletion of a defined number of uridines,
and re-ligation of mRNA fragments35 has been confirmed by in
vitro assays with mitochondrial extracts36,37 and purified enzy-
matic editing complexes.38-40 The ensuing work by several groups
detailed the composition of the enzymatic RNA editing core com-
plex (RECC,41 20S editosome) responsible for the elemental edit-
ing reaction and assigned specific functions to individual
endonucleases (REN1, REN2 and REN3), exonucleases REX1
and REX2, RNA ligases REL1 and REL2, and RET2 TUTase.33,34
42 More recently, exploratory proteomics43 and the identification
of 2 homologous RNA binding proteins essential for gRNA stabil-
ity, GRBC1 and GRBC2,44 led to the discovery of the guide RNA
binding complex, also referred to as the mitochondrial RNA
binding complex 1 (MRB1). Although still an evolving concept,45

this trimodular assembly of »20 polypeptides binds RNA editing
substrates (pre-edited mRNAs and gRNAs), intermediates (par-
tially edited mRNAs) and products,46 and coordinates interac-
tions with the polyadenylation complex. The RNA-mediated

assembly of the RNA editing core and RNA editing substrate
binding complexes appears to constitute an »2 MDa RNA edit-
ing holoenzyme (40S editosome).

Impressive progress in understanding mRNA editing often
overshadows the fact that editing is an essential, but only one
of several RNA processing steps in mitochondrial gene expres-
sion. Except for the identity of mitochondrial RNA polymer-
ase,47,48 we know little about transcription from maxicircle and
minicircle templates. A “cryptic” endonuclease that presumably
partitions multicistronic precursors prior to editing remains a
hypothetical explanation for the observed tight packing of pre-
mRNAs49 within the conserved region of the minicircle, yet no
such enzyme has been identified. The chemical nature of RNA
termini is often instructive about the processing history; we
keep in mind that maxicircle-encoded rRNAs and mRNAs
bear 50 monophosphate, but are uridylated and adenylated,
respectively.50,51 In contrast, guide RNAs52 and guide RNA-like
molecules46 start with 50 triphosphate indicative of the tran-
scription initiation site, and end with an oligo(U) tail.

Master of many tails

RET1-catalyzed uridylation targets all classes of mitochondrial
RNAs,53 but the resultant 30 extensions can be divided into 2 dis-
tinct categories: approximately 13 nt-long continuous U-tails
found in mature rRNAs and gRNAs, and 200-300 nt-long A/U-
heteropolymers that are added to fully-edited and unedited
mRNAs.54 The A/U-tailing is accomplished by a concerted action
of KPAP1 poly(A) polymerase and RET1 TUTase, and is aided
by kinetoplast polyadenylation factors 1 and 2 (KPAF1/2 com-
plex). It has been proposed that the pre-editing addition of a short
A-tail by KPAP1 stabilizes the partially-edited transcript4,5 while
the A/U-tailing commits the fully-edited and unedited mRNA to
translation by recruiting the small ribosomal subunit.55

Initial cues that 30 uridylation and nucleolytic processing
may be coupled came from observation of 800-1000 nt-long
guide RNA precursors accumulating in a T. brucei cell line with
silenced endogenous RET1, or in cells overexpressing catalyti-
cally inactive enzyme.53 These results were puzzling because
RET1 TUTase lacks nuclease activity,56 yet its TUTase activity
is apparently required for nucleolytic precursor processing.
Furthermore, RET1 knockdown also triggers buildup of rRNA
and mRNA precursors along with an increase in the abundance
of a few mature unedited mRNAs.53 Conversely, decay rates of
de-uridylated gRNAs in RET1 RNAi cells were similar to those
of U-tailed molecules, suggesting that gRNA stabilization rests
with the GRBC complex and does not depend on the U-tail’s
presence. To resolve this convoluted picture, Suematsu et al
took an immunoaffinity purification approach to define puta-
tive components of the RET1 complex.57 Remarkably, RET1,
RNase II-like 30–50 exonuclease DSS1, and 3 large proteins lack-
ing discernible motifs were identified as nearly stoichiometric
components of this complex. Cross-tagging and in vitro recon-
stitution confirmed that RET1, DSS1 and associated MPSS1-3
proteins form a stable »900 kDa particle termed the mitochon-
drial 30 processome (MPsome). Genetic knockdowns of verified
MPsome components lead to RET1 RNAi-like defects in gRNA
processing and arrested cell growth phenotype. The Read labo-
ratory previously identified DSS1 exonuclease58 by similarity to
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a hydrolytic subunit of the mitochondrial degradosome from S.
cerevisiae, which is composed of DSS1 and SUV3 helicase, a
member of a conserved Ski2 family of DExH box RNA heli-
cases.59 However, extensive proteomic investigation of the
MPsome-associated proteins failed to verify the proposed inter-
action60 between DSS1 and a putative SUV3 ortholog in trypa-
nosomes.57 Unlike most members of the RNase II/RNR family,
DSS1 proteins lack RNA binding motifs and are inactive in
autonomous form. In yeast and trypanosomes DSS1 gains exo-
nuclease activity by associating with a cognate complex, albeit
by different means. In yeast, DSS1 exonuclease relies on SUV3
helicase for RNA binding and for ATP hydrolysis-driven
unwinding of structured RNAs. In trypanosomes, the
MPsome-embedded DSS1 likely utilizes RET1 for RNA binding
and accumulates the energy of RNA hydrolysis61 to propel the
MPsome through long gRNA precursors.

How to start and when to stop?

Historically, guide RNAs were identified as short patches of
complementarity between minicircle or maxicircle DNA and
fully-edited mRNAs while allowing G-T base-pairing and 2–3
mismatches.62 The limited number of available minicircle

sequences, however, precluded comprehensive gRNA annota-
tion, leaving significant coverage gaps for known mRNA edit-
ing sites. Initial RNA-Seq studies of small (40–65 nt)
mitochondrial RNAs have uncovered an extremely complex
transcriptome and highly redundant guide RNA coverage of
edited mRNAs.34,63 Although specific values vary depending on
assembly and alignment criteria, 60,441 unique species have
been identified as potential guide RNAs while the remaining
73,360 small RNA assemblies were designated as non-guide
RNAs (ngRNAs).57 Considering the difficulties of accounting
for 50 and 30 heterogeneities and gRNA redundancy, these val-
ues probably overestimate the number of functional gRNA
families. In any event, the 50 triphosphates and 30 U-tails found
in most gRNAs and ngRNAs46 indicate a lack of 50 processing
while the 30 processing/modification pathway appears to be
similar. Mapping sequenced small RNAs to available mini-
circles has revealed an extremely complex transcriptional pro-
file of these 1 kb-long molecules and immediately suggested an
unorthodox mechanism of small RNA biogenesis (Fig. 1). The
remarkable juxtaposition of small RNAs that map as sense and
antisense to multiple loci suggests that guide RNA genes are
transcribed bi-directionally giving rise to long sense and anti-
sense precursors which overlap head-to-head. Similar data

Figure 1. Guide RNA Biogenesis Model. Bidirectional transcription of gRNA gene generates sense and antisense precursors with overlapping 50 regions. Mitochondrial 30
processome-embedded RET1 TUTase and DSS1 30–50 exonuclease catalyze 3 coupled reactions: primary precursor uridylation, processive precursor degradation and sec-
ondary uridylation of trimmed gRNA. Primary uridylation stimulates DSS1hydrolytic activity, which provides energy for unwinding the secondary structures along gRNA
precursor. The MPsome stochastically pauses at 10–12 nt from stable duplex regions formed by head-to-head hybridization of sense and antisense primary transcripts.
The MPsome pausing allows RET1 TUTase to engage the single-stranded 30 overhang and perform secondary uridylation. This step may disengage the MPsome from the
duplex intermediate. Double-stranded RNA intermediate likely undergoes unwinding before mature gRNA can be sequestered by the gRNA binding complex and deliv-
ered into the editing pathway.
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were obtained in a related organism Leishmania tarentolae.64 In
agreement with this scenario, accumulation of both sense and
antisense precursors, along with the loss of their respective
gRNA and antisense ngRNA, occurs upon knockdown of either
DSS1 or RET1 activities.57 Furthermore, sequencing of gRNA
precursor termini has revealed that most of the 800–1000 nt-
long primary transcripts also contain 30 U-tails. The in vitro
reconstitution experiments featuring affinity purified MPsome
and a series of model RNA substrates have confirmed the main
postulates of the gRNA processing model presented in Fig. 1.
First, it has been demonstrated that the U-tail’s presence facili-
tates MPsome-catalyzed degradation of a long gRNA precursor;
this explains the inhibition of processing by a point mutation
that inactivates TUTase activity.53 Second, the MPsome’s
highly processive 30–50 exonucleolytic activity appears to be
fine-tuned to degrade structured RNAs, but to pause 11–13
nucleotides from the stable 30–40 nt double-stranded region
formed by overlapping sense and antisense precursors. The
pausing seems to be stochastic as the MPsome eventually
moves through the double-stranded RNA until the substrate is
degraded to 5–7 nucleotides. Third, the pausing creates a dou-
ble-stranded processing intermediate with a single-stranded 30
overhang, which incidentally corresponds to the length of a
minimal RNA substrate for RET1 TUTase.56 Although the sec-
ondary uridylation was not captured in reconstitution experi-
ments, it seems plausible that the MPsome pausing generates a
“window of opportunity” for RET1 TUTase to add an oligo(U)
tail thereby disengaging the MPsome from mature gRNA.
Although this model provides a conceivable explanation for the
existence of the U-tail in small RNAs, the following steps lead-
ing to double-stranded region separation and loading of func-
tional gRNAs onto the guide RNA binding complex44 remain
unclear. This process is likely to be accompanied by the asym-
metric degradation of anti-sense ngRNAs; indeed, these mole-
cules are typically present at much lower steady-state levels
than cognate gRNAs are. Likewise, one would expect guide
RNA to be maintained in a single-stranded state favorable for
hybridization with pre-edited mRNA during editing.

Although the mechanisms of microRNAs, siRNAs, and most
other classes of small RNA processing vary to some extent, an
underlying mechanism invokes multiple cleavages of a partially
double-stranded precursor by RNase III-like endonucleases.65

In contrast, trypanosomal mitochondrial guide RNAs are
derived from the 50 extremity of a primary molecule by uridyla-
tion-induced, antisense transcription-controlled 30–50 exonu-
cleolytic degradation.

Outlook

As debate on the evolutionary origins of RNA editing contin-
ues,66,67 the experimental focus is on molecular mechanisms
that adapted ancient catalytic modules (RNase III, nucleotidyl
transferase, ligase etc.) to function in protein assemblies capable
of introducing RNA-programmed sequence changes. To some
extent, the elemental editing reactions still resemble the path-
ways of their origin. For example, subunits of the core editing
complex RET2 TUTase and U-specific 30–50 REX1 exonuclease
are reminiscent of Pol b DNA polymerase and AP exonuclease,
respectively, acting in concert on abasic DNA lesions. By the

same token, guide RNA biogenesis reflects an evolutionarily
conserved RNA decay pathway involving functional coupling
between TUTase and RNase-II-like exonuclease, wherein uri-
dylation stimulates RNA decay.30,68,69 However, sequestering
the enzymes with seemingly opposing nucleotidyl transferase
and hydrolase activities into the stable protein complex
(MPsome) probably serves a more nuanced purpose of anti-
sense transcription-dependent 30end definition. It seems likely
that such an antisense transcription-dependent mechanism is
more universal and eventually will be discovered in other
organisms. Indeed, there is ample evidence of closely-spaced
convergent promoters in mammalian and other cells.32 The
current model of gRNA biogenesis highlights the lack of knowl-
edge about the nature of mitochondrial promoters, transcrip-
tion factors and coupling between transcription and guide
RNA processing. For example, the notion of guide RNA genes
being flanked by imperfect inverted repeats70 may need to be
re-examined in the light of precursor processing mechanisms.
Based on a RET1 knockdown study,53 one could envisage that
the MPsome is also responsible for processing maxicircle-
encoded rRNA and mRNA precursors. These findings position
controlled the 30–50 degradation as the main nucleolytic proc-
essing pathway in mitochondria of trypanosomes, which may
also function in bulk RNA decay. With that, however, comes
an inherent challenge to the decade-old concept of endonucleo-
lytic partitioning of multicistronic maxicircle precursors that
originate outside of the gene-packed conserved region. In T.
brucei, minicircles typically encode several gRNAs so each pre-
cursor is bound to contain several gRNAs, of which all but the
most 50 unit are degraded. If the same concept is applicable to
maxicircle precursor processing, then one must assume the
existence of gene-specific promoters and a source of antisense
transcripts to delimit the 30–50 degradation.
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