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ABSTRACT
Chemical modifications have been extensively exploited to circumvent shortcomings in therapeutic
applications of small interfering RNAs (siRNAs). However, experimental designing and testing of these
siRNAs or chemically modified siRNAs (cm-siRNAs) involves enormous resources. Therefore, in-silico
intervention in designing cm-siRNAs would be of utmost importance. We developed SMEpred workbench
to predict the efficacy of normal siRNAs as well as cm-siRNAs using 3031 heterogeneous cm-siRNA
sequences from siRNAmod database. These include 30 frequently used chemical modifications on
different positions of either siRNA strand. Support Vector Machine (SVM) was employed to develop
predictive models utilizing various sequence features namely mono-, di-nucleotide composition, binary
pattern and their hybrids. We achieved highest Pearson Correlation Coefficient (PCC) of 0.80 during 10-
fold cross validation and similar PCC value in independent validation. We have provided the algorithm in
the ‘SMEpred’ pipeline to predict the normal siRNAs from the gene or mRNA sequence. For multiple
modifications, we have assembled ‘MultiModGen’ module to design multiple modifications and further
process them to evaluate their predicted efficacies. SMEpred webserver will be useful to scientific
community engaged in use of RNAi-based technology as well as for therapeutic development. Web server
is available for public use at following URL address: http://bioinfo.imtech.res.in/manojk/smepred.
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Introcuction

Short interfering RNA (siRNA) based mRNA knockdown tech-
nique is presently one of the standard methods in molecular
biology to study gene function.1 Theoretically, siRNA can target
any complementary mRNA and leads to degradation of latter
employing RNA interference (RNAi) machinery.2,3 This property
encouraged the idea to use siRNAs as potential next-generation
class of therapeutics especially against viruses.4 Currently many
siRNA-based therapeutics are already under advancement in var-
ious stages of clinical trials.5,6 However, uses of siRNA molecules
as therapeutics face some challenges. These include low efficacy
of mRNA inhibition, off targets, immunogenicity, low serum sta-
bility against the nucleases, cell specific delivery problems, target
site recognition, accessibility and its cleavage.7-9 To overcome
most of these shortcomings, siRNA molecules are engineered by
introducing chemical modifications.9,10

Natural RNAs comprises of ribonucleotide-moieties, composed
of sugar (Ribose), phosphate (phosphodiester bond) and nitroge-
nous bases Adenine (A), Guanine (G), Cytosine (C), and Uracil
(U).11 With modifications on these constituent molecules, sphere
of their functionality has been enhanced.8 Numerous studies on
chemical modifications directed on siRNAs are reported in the lit-
erature aimed to improve their therapeutic potential.6 Testing dif-
ferent chemical modifications at different positions and their
combinations on siRNAs are vast. For example to test 30 chemical

modifications on 21-mer double-stranded siRNA sequence there
would be 1260 (30 modifications £ 1time £ 21 per strand £ 2
strands of siRNA) instances. The complexity increases exponen-
tially by increasing permutations and combinations of multiple
modifications at various positions within the same siRNA. Experi-
mentally testing these huge number of combinations would involve
loads of time and cost. Therefore, the development of an algorithm
that can help in selecting the appropriate chemical modifications in
a siRNA is highly desirable.

There are many bioinformatics repositories for siRNAs or
related microRNA molecules available like siRecords,12

HuSiDa,13 HIVsirDB,14 VIRsiRNAdb15 miRBase,16 VIR-
miRNA17 or naturally occurring modified nucleotide database,
RNAMDB.11 Recently we have developed “siRNAMod” reposi-
tory of chemically modified siRNAs.18 Additionally, many web
servers are existing to predict the efficacy of siRNAs e.g.
siPRED19 BIOPREDsi20 MysiRNA,21 desiRm,22 VIRsiR-
NApred23 etc. However, none of these methods predict efficacy
for the chemically modified siRNAs (cm-siRNAs). We have
provided assessment of various siRNA prediction algorithms
and their related information in the comparison section below.
For this endeavor, we have developed SMEpred workbench
from experimentally validated cm-siRNAs using support vector
machine (SVM) to forecast the modulation of chemical modifi-
cations on siRNAs (Fig. 1).
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Results

10-fold cross validation

SMEpred model evaluation done by 10-fold cross validation
with Hetero-T2728 dataset and independent validation data set
Hetero-V303 is presented in Table 1. The mononucleotide com-
position (MNC) of sequence shows the best performance via
SVM technique. The composition of siRNA is one of the key
criteria in defining the efficacy of siRNA. During training/

testing, we achieved PCC of 0.80 for MNC (mononucleotide
composition). Dinucleotide composition (DNC) and binary
(BIN) sequence features did not show significant increase in
PCC (Pearson correlation coefficient) value. The hybrid models
also exhibited varied performance with PCC values ranging
from 0.30 to 0.77 (Table 1).

The hybrids models include nucleotide composition of both
sequences and the BIN of sense strand as well as antisense
strands, which showed PCC of 0.32. Besides, hybrid

Figure 1. Diagramatic representation of of SMEpred workbench development and its components.

Table 1. Performance achieved by SMEpred models for 10-fold cross validation and independent validation in terms of Pearson Correlation Coefficient (PCC) using SVM
for Hetero-T2728 and Hetero-V303 datasets.

S. No. Model Name Feature
PCC (10-fold validation)

Hetero-T2728
PCC (Independent Validation)

Hetero-V303

1A MNC Mononucleotide composition (SS and AS sequence) 0.80 0.808
2 DNC Dinucleotide composition (SS and AS sequence) 0.53 0.48
3 BIN Binary pattern (SS and AS sequence) 0.33 0.37
4 MNC C BIN CompositionC Binary (SS and AS sequence) 0.32 0.38
5 MNC C BIN (10-mer

both sequences)
CompositionC Binary (10ntds SS and AS sequences both

50and 30 end)
0.30 0.38

6 MNC C BIN (7-mer both
sequences)

CompositionC Binary (7 ntds SS and AS sequences both
50and 30 end)

0.42 0.39

7 MNC C BIN-AS (24) CompositionC AS binary (24 ntds length) 0.75 0.81
8 MNC C BIN-AS (seed-8) CompositionC AS seed Binary (8 ntds from 50-end) 0.78 0.83
9 MNC C BIN-AS (seed-10) CompositionC AS seed Binary (10 ntds from 50-end) 0.78 0.83
10 MNC C BIN-AS (mid-5) CompositionC AS mid Binary (9 to13 ntds from 50-end) 0.77 0.80
11B MNC C BIN-AS (seed 13) CompositionC AS Binary (13 ntds from 50-end) 0.77 0.86
12C MNC C BIN-AS (last 8) CompositionC AS Binary (last 8 ntds from 30-end) 0.76 0.78
13 MNC C BIN-AS (8-5-8) CompositionC AS Binary (Initial 13C last 8 ntds) 0.75 0.81
14 MNC-BIN-SS (24) CompositionC SS binary (only sense sequence 24 ntds) 0.58 0.59

(S. No. D serial number; SS D sense strand; AS D Antisense strand; ntds D nucleotides; A, B, C are the models finally used on the webserver).
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combinations like MNC with BIN of 7 nucleotides, 10 nucleoti-
des of sense as well as antisense strand from both 50 and 30ends
were checked. They too did not show increased performance as
compared to MNC. Antisense sequence is more important as it
finally bind to the cognate mRNA, so we further analyzed its
component fragments. These sections include seed region (8
nucleotides from 50-end) [model MNC C AS (seed-8)], mid
region (5 nucleotides starting from 9 to 13th position) [model
MNC CAS (mid-5)] and the 30end (8 nucleotides from 30-end)
[model MNC CAS (last 8)] or combination of former 2 (13
nucleotides from 50end). Their corresponding correlation val-
ues are provided in Table 1. We have also tested the same fea-
tures on the Homo2100 dataset (Supplementary Table S1) and
found the slightly higher correlation as compared to hetero
data set with PCC value of 0.86 for MNC Homo-T1900. Further
the hybrid models ranges in correlation with PCC value from
0.38 to 0.84.

Independent evaluation

Independent dataset (Hetero-V303) from the primary data set
(Hetero-3031) was used to authorize performance of models
generated. Independent dataset consists of similar sequences
similar to those used in model development but are not used in
the training/testing. We observed that the model based on com-
position features of modified siRNAs performed well in model
development and validation (Table 1). For MNC independent
validation, we achieved a PCC of 0.80 for Hetero-V303 data set.
Other models also showed the comparable PCC values for
independent validation. For hybrid model of composition and
binary pattern of seed region (13 nucleotides) and binary pat-
tern for last 8 nucleotides, we achieved PCC value of 0.86 and
0.78 respectively for independent validation dataset. The scatter
plot showing the correlation between the predicted and experi-
mental efficacies of the chemically modified siRNAs during
independent validation is depicted in the Fig. 2.

Likewise, Homo independent validation was performed
using Homo-V210 data set, which also showed the comparable
PCC values as that of their training/testing models (Supple-
mentary Table S1). Finally, we built a web server based on best
performance models according to PCC value and biological sig-
nificance of the cm-siRNAs.

Web server components

We developed the workbench for predicting efficacy of cm-siR-
NAs, with 3 components namely SMEpred, MultiModGen and
SiMEPred tool.

SMEpred
SMEpred is a support vector machine based method of predict-
ing efficacy of 21-mer long nucleotide siRNAs. This algorithm
is actually the pipeline of various modules and requires mRNA
or gene sequences in fasta format. In the first step, the sequence
is divided in 21-mer long sequences, followed by predicting
efficacy of each siRNA with a score. Score of 100, 80 to 90 and
70 to 80 represents very high efficacy, high efficacy and moder-
ate efficacy respectively.

Further, user can select the siRNA of choice (by clicking)
from the generated siRNA list, which will be subsequently
chemically modified at each position computationally. Each

Figure 2. Scatter plot of percentage activities between actual and predicted chem-
ically modified siRNA activities from independent validation data set Hetero-V303.
(A) Model-A; Mononucleotide nucleotide composition (MNC); (B) Model-B; Compo-
sition (MNC) and antisense strand binary (50-end 13 nucleotides); (C) Model-C;
Composition (MNC) and antisense strand binary (30-end 8 nucleotides).
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single siRNA develops 1260 cm-siRNAs, with one modification
type on each 21 positions on both siRNA strands. Next the effi-
cacy of these modified cm-siRNAs will be predicted based on
the MNC-model (Model-A). This algorithm also offers its out-
put as efficacy values ranging form 0 to 100, with 100 as the
best cm-siRNA and 0 with no effect on silencing the target
gene. The pictorial representation of SMEpred is displayed in
Fig. 3.

MultiModGen
MultiModGen module complements the SMEpred component.
It assists users to generate cm-siRNA sequences with multiple
modifications of same or different nature on either strand of
siRNA. This module requires format of customized cm-siRNA
sequences that can be generated in first part. Latter, these cm-
siRNAs (format) will be analyzed by the MNC-model for their
predicted efficacies and will be reported in the next page. For
generation of the sequence format, we need to submit siRNA
sequence, position of modification from 50-end and one-letter
symbol of the chemical modification as input. Chemical modi-
fications with one letter symbol are provided in Supplementary
Table S2 as well as on the MultiModGen web page.

For input 3 boxes should be filled on the MultiModGen web
page. First the siRNA sequence (GCAGCACGACUUCUUCAA-
GUU-CUUGAAGAAGUCGUGCUGCUU) that user wants to
modify. In this sequence A, T, G, C, U stand for their universal
nucleotides representing Adenine, Thymine, Guanine, Cytosine
and Uracil respectively. In second and third box, one letter

symbol of chemical modifications (F,T-T) and their positions
(2,5,7,10,11,12,13,14,15,16,20,21-20,21) needs to be provided
respectively. For more than one modification e.g., 2 different
types of modifications, their one letter symbol and correspond-
ing positions provided should be separated with double com-
mas (,,) in between them. For further clarification please see
Fig. S1. MultiModGen output can also be used as input in
SiMEPred tool to predict efficacy based on different models as
described below.

SiMEPred-tool
The SiMEPred algorithm predicts the efficacy of cm-siRNAs
based on 3 different models. These models are based on best
performance and importance of siRNA-features. Models-A is
based on MNC only while model-B and C are based on MNC
along with antisense strand nucleotide position. Model-B con-
sists of information related to first 13 nucleotides from 50end
and the last one comprises of last 8 nucleotide positions from
30end.

Cm-siRNA sequence format (e.g. GFAGFAFGAFFFFFF-
FAAGTT-CUUGAAGAAGUCGUGCUGCTT; Sense-Anti-
sense) as defined above (MultiModGen) is required as input for
this section. This format includes siRNA sequence, chemical
modification and position of modifications. An illustrative
example is displayed in Fig. S2. The output of SiMEPred dis-
plays columns in result page with serial number, siRNA
sequence, length and predicted SVM model score of the corre-
sponding sequences. The score can be sorted in ascending or

Figure 3. Pictorial representation of working of SMEpred pipeline. (A) Write or paste the gene or mRNA sequence in the space provided, in fasta format and click submit
button. (B) Normal siRNAs that are 21-mer long nucleotides are generated from the provided sequence along with their predicted efficacy scores. (C) Further select one
of the siRNA (by clicking on it) and it will redirect to the next page with 1260 cm-siRNA. This page displays cm-siRNA sequence, chemical modification highlighted in the
red color predicted efficacy and value of modulated efficacy.
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descending order by clicking on the model score option to
choose the best modification or their combinations.

Comparison with the existing web servers

For comparison of the various webservers designing and pre-
dicting siRNAs we have provided Table 2. As revealed in table,
our webserver is the only one that can predict efficacy of cm-
siRNAs as well as normal siRNA. Furthermore our pipeline is
founded on the models with PCC values greater than most of
these algorithms.

Web server implementation

Linux platform (Apache-2.2.17), Perl are functioning at back-
end and PHP (5.2.14), HTML, JavaScript are employed for
front-end of SMEpred web server.24,25 The following URL link
provides the access to the algorithm web server for user accessi-
bility http://bioinfo.imtech.res.in/manojk/smepred. General
information for web server usage, data used etc. is provided on
“HELP” section on the web server.

Discussion

SMEpred is a machine learning based web server to predict the
efficacy of cm-siRNAs. In this method we tried to employ bio-
informatics approach to promote the siRNA technology and
application one step ahead. SMEpred web server offers an
advanced aspect in siRNA therapeutics research involving
chemical modifications. Chemical modifications in siRNA play
a cardinal role in enhancing efficiency,26-28 serum stability,29-31

reducing off-targets9,32 etc. These aspects are key to their use as
therapeutic molecules.

This web server is distinct from the existing algorithms in
terms of predicting efficacy of cm-siRNAs (Table 2). This char-
acteristic adds a new domain to the collection of siRNA predic-
tion software packages. Theoretically, this web server can
predict the activity of any number and pattern of 30 modifica-
tions (along with 5 canonical nucleotides used in training/test-
ing of models) in cm-siRNAs with high accuracy. In this study,

we developed composite models and assigned complex nota-
tions for chemical modifications, which is comparatively
straightforward in case of wild siRNAs.

Biologically two aspects of the siRNA (as well as cm-siR-
NAs) are of prime importance. One is the nucleotide composi-
tion of either strand, second is the position of the modification
in general and seed region of antisense in particular.33,34

Directed at these features we have developed our models
in SMEpred server. Two cm-siRNA datasets were used
Hetero-T2728 (Heterogeneous data set) and Homo-T1900

(homogenous dataset) for investigation with 10-fold cross vali-
dation. Furthermore, Hetero-V303 and Homo-V210 data sets
were used for their independent validations respectively.
Hertero-T2728 contains dataset with varied experimental condi-
tions and more number and combinations of chemical modifi-
cations. Heterogeneous data set gave robustness to models
developed as it includes more number of chemical modification
and varied experimental conditions. For Hetero-T2728 dataset
MNC model performed best among all SVM models. DNC and
BIN did not exhibit any increase in PCC value hence performed
poorly. Next, we chose to include the MNC of both the strands
and various BIN features for the development of models.23

These hybrid models using BIN with MNC23 incorporated
information based on the composition as well as position of
modifications (Table 1).

The hybrid model performance of MNC and BIN patterns
showed lower values of PCC. For example MNC C BIN (both
sequences), MNC C BIN (10-mer both sequences and MNC C
BIN (7-mer both sequences) showed PCC value less than 0.50.
Models with MNC and BIN-AS either entire antisense
sequence as MNC C BIN-AS (24 sequence length) model 7 of
Table 1 or antisense variants performed well with PCC value
greater than 0.75. Furthermore, MNC and BIN of sense strand
(SS) i.e. MNC C BIN-SS 24; (model 14 of Table 1) showed
PCC value of 0.58. The performance of final models used in
terms of PCC values of our algorithm is equivalent or better to
other prediction algorithms of unmodified siRNA23 (Table 2).

With Homo-T1900 same pattern in PCC value was seen as
0.86 for MNC (Supplementary Table S1). This data set also
exhibited the similar trend in PCC values on different models,

Table 2. Comparison of the various siRNA prediction methods.

S. No. Publication PMID Year Technique siRNA data set used siRNA Prediction cm-siRNA Prediction Pearson correlation coefficient -R

1 15201190 2004 NA 581 Yes No 0.46
2 16025102 2005 ANN 2431 Yes No 0.66
3 17137497 2006 Linear 2431 Yes No 0.67
4 16870995 2006 Linear 526 Yes No 0.55
5 16472402 2006 NA 653 Yes No 0.55
6 17553157 2007 SVM 2431 Yes No 0.78
7 17884914 2007 Linear 2431 Yes No 0.72
8 17259216 2007 Linear 702 Yes No 0.77
9 17644215 2007 Rule, SVM, RFR 3589 Yes No 0.85
10 22102913 2011 SVM 2431 Yes No 0.77
11 23118925 2012 Linear 2182 Yes No 0.67
12 23241392 2013 SVM 2431 Yes No 0.8
13 24330765 2013 SVM 1380 Yes No 0.58
14 25888201 2015 Semi supervised tensor 2431 Yes No 0.64
15 25725126 2015 ANN 2431 Yes No 0. 74
16 SMEpred 2016 SVM 2182a;3130b Yes Yes 0.72a; 0.80b

(S. NoD serial number; 2182 aindicates the training set of normal siRNA sequences while 3130 brepresents the cm-siRNAs and 0.72a and 0.801b is their respective PCC
value.)
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as DNC and BIN individually performed poor. Whereas,
increasing PCC value with hybrids as MNC C BIN-AS and its
variants was seen. Nearly in all cases 2 datasets indicated a sim-
ilar correlation with increased values in case of Homo-1900
data set than Hetero-3031 dataset. The reason for these
decreased values of PCC in hereto data set is because of its var-
ied experimental conditions and increased number of
modifications.

The algorithm developed was further authenticated using
the independent datasets. The PCC via independent validation
data sets of corresponding siRNA feature was of the same order
as that of the 10-fold cross validation Table 1 (and Supplemen-
tary Table S1). For instance PCC value of MNC (Hetero-3031)
is 0.80 and 0.80 for 10-Fold cross validation and independent
validation respectively, signifying a balanced training of the
models. This provides support for the models developed for
their authenticity. The correlation between the actual and pre-
dicted percentage inhibitions of independent validation dataset
of Hetero-V303 is shown in Fig. 2. Each data-point represents
the intersection of actual and predicted values of the cm-siRNA
efficacy for final 3 webserver models (A, B, C). It suggests that
the entire independent validation data set displays positive cor-
relation with stronger agreement for higher efficacies.

For the web server execution we have chosen only MNC
(Model-A) as the main model, which performed best. Further-
more, we offered 2 more models along with latter one consider-
ing the PCC value and different functional components of cm-
siRNAs. These include (IV) MNC CBIN AS (seed 13) model;
and (V) MNC C BIN SS (last 8) model as model B and C
respectively on the web server (SiMEPred-tool). MNC shows
best performance and is set as default model on the web server,
based on the over all composition of the entire siRNA. More-
over if the user wants to check the effect of the modification on
the first half of antisense strand he can opt for the model-B.
This model involves information of MNC of entire siRNA and
position of the nucleotides or modified nucleotides in the anti-
sense strand up to 13 nucleotides from 50-end. Likewise the
model-C contains MNC for the entire siRNA and the binary
pattern for the last 8 nucleotides starting from 30-end of anti-
sense strand.

All the 3 components (SMEpred, MultiModGen, SiMEPred-
tool) of the web server can be used to complement each other.
SMEpred designs and predicts normal as well as single modifi-
cation siRNAs, which can be further customized using Multi-
ModGen for more permutations and combinations.

MultiModGen generates the modified siRNA sequences as
per format that act as input in SiMEPred-tool. In this tool user
can select different models and explore cm-siRNA features to
check the modulation in their activity.

Conclusion

The SMEpred algorithm is the first pipeline, based on experi-
mentally validated cm-siRNA datasets to generate, design,
modify and check their efficacy computationally. Prediction
models were developed using SVM machine learning technique
utilizing cm-siRNA data set. The compositions (including
chemical modification) as well as position in siRNA sequences
were applied to make prediction models more robust and

comprehensive. Three models were finally integrated in the
web server namely model-A based on MNC which is set as the
default model. Model-B is developed on MNC with binary pat-
tern (BIN) (13 nucleotides from 5-end) and model-C repre-
senting MNC along with 8 nucleotides from 30-end). These
models were based on their performance during model devel-
opment and siRNA sequence features. SMEpred would be use-
ful for general scientific community especially those working
on the development of siRNA therapeutics via chemical
modifications.

Materials and methods

Data collection

We have searched research articles in PubMed and mined cm-
siRNAs and collected data from siRNAmod database.18 After
curation, 3031 unique experimentally verified cm-siRNAs with
30 most common chemical modifications were selected based
on their usage and availability of quantitative efficacy values.
List of these chemical modifications along with their one letter
and binary codes used in this study is provided in the Supple-
mentary Table S2. The length of the siRNA sequences varies
from 21 to 24 oligonucleotides. This dataset contains non-
redundant modified siRNAs i.e., they possess different chemical
modification or different positions if the modification is same.
Besides, this data is obtained from diverse experimental condi-
tions and hence termed as heterogeneous data set (Hetero-
3031). To select the training/testing and the validation dataset
we have used 2 approaches. In the first approach, 3031 cm-siR-
NAs were arranged in the decreasing order of their activities.
Next every 10th sequence starting from 5th sequence (5th, 15th,
25th, and so on) was picked up for the independent validation
data set, total 303 sequences represented as Dataset-1 (Supple-
mentary Table S3). Similarly, 2 other series of cm-siRNA
sequences starting from 2nd and 8th sequence were chosen with
interval of 10 sequences separately as Data set-2 and Dataset-3
respectively for independent validation. While remaining 2728
sequences were used as training/testing data set in each case.
This procedure insures the proper distribution of siRNA effi-
cacy values (entire range) in the training/testing as well as in
the independent validation datasets. Whereas in the second
approach, cm-siRNAs were chosen randomly to make 3 inde-
pendent validation data sets and remaining 2728 sequences for
training/testing for each combination. Random numbers were
generated using Microsoft Excel “RAND()” function. Perfor-
mance of SVM models for all 6 combinations (as mentioned
above) using mononucleotide composition (MNC) feature dur-
ing 10-fold cross validation as well as on the respective inde-
pendent validation datasets is shown in Supplementary
Table S3. All the models achieved almost similar performance.
It implies that the obtained correlation is independent of the
data sets chosen. Of these, “Dataset-1” comprising 2728
sequences for training/testing (Hetero-T2728) and 303 sequen-
ces for independent validation (Hetero-V303) was selected for
further SVM models development.

Simultaneously, we have also selected another sub data set of
2110 cm-siRNAs tested under same experimental conditions
termed as Homo-2110. It was used to generate training/testing
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(Homo-T1900) and independent dataset (Homo-V210) as per the
strategy used for Hetero-3031 data set. The outline of the
SMEpred model development is shown in Fig. 1.

SMEpred normal siRNA generation and prediction

This algorithm is based on the homogenous dataset of 2182
siRNA sequences.20 This module is based on a previous work
of our lab, for more details check the following link (http://
imtech.res.in/raghava/sirnapred/index.html).35 The best model
(Hybrid-7) is provided in its backend to design the siRNAs,
which is based on binary pattern and nucleotide frequency
with the PCC value of 0.72.35

siRNA sequence features

Nucleotide composition
The ratio of each type of nucleotide in the siRNA sequence is
called nucleotide composition. siRNA sequences were com-
prised of 5 usual (A, T, G, C, U) and 30 chemically modified
nucleotides in both sense and antisense strand (Supplementary
Table S2). For 35 different nucleotides, the fixed length vectors
of 70 for mononucleotide composition (MNC) and 2450 for
dinucleotide composition (DNC) were generated for each
siRNA (sense and antisense).23

Binary pattern (BIN)
To obtain descriptions reflecting the position of nucleotides,
BIN is used for siRNA sequences. A BIN of size 35 is formed
one for each type of nucleotide common or modified. 24 posi-
tions of siRNA for each strand resulted in 48-vector length per
siRNA sequence. For list for BIN used refer Supplementary
Table S2. For each nucleotide we defined 6–bit code e.g., for
adenosine nucleic acid we used “000001.” Working of the BIN
model is based on the position of the particular nucleotide in
the siRNA sequence.23

Hybrid approach
The hybrid approach involves models developed using com-
binations of MNC and BIN patterns (Table 1). These were
used to check the performance of the prediction method23

based on different criteria. For example, MNC and BIN
were analyzed on the basis of different lengths as well as
either or both siRNA strands. The BIN of antisense strand
(AS) was further explored e.g. complete length of antisense
or different regions as seed region (8 nucleotide), up to mid
region (13 nucleotide) and remaining 30-end region (8
nucleotides). The reason for selecting these regions is based
on their importance in siRNA based interference of the cog-
nate mRNA. See Table 1 for different combinations and
their features used.

Validation

To evaluate the performance of the algorithm, we have used 10-
fold cross validation technique. We divided the data set into 10
equal sized sets to carry out training and testing 10 times. In
each cycle 9 data sets were used for training; besides one sepa-
rate set in testing i.e. this set is not included in that particular

training cycle. Performance is measured in terms of Pearson
Correlation Coefficient (PCC) using the formula:
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Where n is the size of the test set, Ei
Pred and Ei

act is its pre-
dicted and actual efficacy respectively.23

Subsequently, we performed independent validation, which
includes use of independent cm-siRNA sequences excluded in
model development. This data set is used only for evaluation so
that our model should not be biased or over-trained toward the
training dataset used during model development. Scatter plots
are formed between actual (experimental) and predicted effi-
cacy values for independent validation sets using Microsoft
excel for the 3 models used in SMEpred workbench.36
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