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ABSTRACT
RNA-binding protein with multiple splicing (RBPMS) is critical for axon guidance, smooth muscle plasticity, and
regulation of cancer cell proliferation and migration. Recently, different states of the RNA-recognition motif
(RRM) of RBPMS, one in its free form and another in complex with CAC-containing RNA, were determined by X-
ray crystallography. In this article, the free RRM domain, its wild type complex and 2mutant complex systems are
studied by molecular dynamics (MD) simulations. Through comparison of free RRM domain and complex
systems, it’s found that the RNA binding facilitates stabilizing the RNA-binding interface of RRM domain,
especially the C-terminal loop. Although both R38Q and T103A/K104A mutations reduce the binding affinity of
RRM domain and RNA, the underlining mechanisms are different. Principal component analysis (PCA) and
Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) methods were used to explore the dynamical
and recognition mechanisms of RRM domain and RNA. R38Q mutation is positioned on the homodimerization
interface and mainly induces the large fluctuations of RRM domains. This mutation does not directly act on the
RNA-binding interface, but some interfacial hydrogen bonds are weakened. In contrast, T103A/K104Amutations
are located on the RNA-binding interface of RRM domain. These mutations obviously break most of high
occupancy hydrogen bonds in the RNA-binding interface. Meanwhile, the key interfacial residues lose their
favorable energy contributions upon RNA binding. The ranking of calculated binding energies in 3 complex
systems is well consistent with that of experimental binding affinities. These results will be helpful in
understanding the RNA recognitionmechanisms of RRMdomain.
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Introduction

Protein-RNA interactions play essential roles in numerous cellular
processes, such as gene expression and its regulation.1 In mamma-
lian cells, more than 1,000 diverse proteins interact with RNA.2

The interactions of proteins with RNA have been generally
explained using different types of motifs such as RNA recognition
motif, double stranded RNA binding motif, Arginine rich motif,
GXXGmotif, tetra loops in RNA and so on.3 The RNA-recognition
motif (RRM) is themost abundant RNA-binding domain in higher
vertebrates, which is present in about 0.5%–1.0% of human genes.4

The first RRM structure was elucidated in 1990 by Nagai et al.5

Over the past 20 years, X-ray crystallographic and NMR experi-
ments promoted our understanding for the RNA-recognition
motif and Protein-RNA interactions.6,7 Generally, an RRM con-
sists of 80-90 amino acids with a typical b1-a1-b2-b3-a2-b4
topology, where 4 antiparallel b-strands are packed against 2
a-helices.8 Recently, Farazi et al. studied the transcriptome-wide
mRNA targets of the RRM domain of RNA-binding protein with
multiple splicing (RBPMS) systematically, and identified RNA tar-
gets composed of tandem CAC trinucleotide motifs separated by
variable spacer segments.9 Teplova et al. determined the X-ray
crystallographic structures of the RBPMS RRM domain in its free

form and in complex with CAC-containing RNA (Fig. 1).10 The
RRM domain of RBPMS adopts the classical RRM fold. The
homodimerization interface of RRM domain is mediated by resi-
dues of the first a-helix and adjacent loop region, as well as the
loop segment between the second a-helix and the fourth b-strand.
The UCAC segment of the RNA is positioned over the 4-stranded
b-sheet surface in the RBPMS RRM-RNA complex. These experi-
mental studies provided essential structural bases for understand-
ing the recognition mechanism of RRM domain and RNA.
However, several questions still remain unclear. What specific
interactions are formed at the interface between RRM domain and
RNA? Why and how do the different mutants reduce the binding
affinities? What is the relationship between the conformational
changes and the interfacial interactions?

In order to probe the above issues, we applied molecular simu-
lation methods to analyze the structural characters of the RRM
domain in free and in complex states. Modern computer simula-
tion methods have become important tools in exploring the recog-
nition mechanism of protein and RNA.11-13 Using NMR
measurements, combined with Molecular Dynamics (MD) simu-
lations, Scheiba et al. showed that the C-terminal RNA binding
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motif of HuR is a multi-functional domain which leads to HuR
oligomerization and binds to U-rich RNA targets.14 MD simula-
tions were also employed to investigate the dynamics of the
P22 N-peptide-boxB RNA complex and to elucidate the energetic
contributions to binding.15 Kormos et al. found that combination
of MD simulation and corresponding atomic fluctuation analysis
is an effective method for understanding and predicting coopera-
tivity at the molecular level in protein-RNA binding.16 Casu et al.
employed heteronuclear, multidimensional NMR and CD spec-
troscopy as well as MD simulations to investigate the conforma-
tional changes of the Rev ARM associated with RNA binding.17

Coarse-grained methods were also carried out to study the direc-
tion of functional movements and explain the process of structural
rearrangement of Ffh protein and the SRP RNA.18

Here, we used all-atom MD simulation to investigate the free
RRM domain, its wild type complex and 2 mutant complex sys-
tems. The dynamical properties of RRM domain and RNA were
explored by using the dynamical cross-correlated map (DCCM)
analysis, principal component analysis (PCA) and free energy land-
scape (FEL) methods. We analyzed the crucial interfacial interac-
tions of RRM domain and RNA, and explained the loss of binding
affinities of 2 mutants relative to the wild type. Finally, we further
discussed the possible correlations between the conformational
changes of complex structures and the interfacial interactions.

Results and discussion

Comparative analysis of 4 MD trajectories

Four 120 ns MD simulations were carried out for the free RRM
domain, its wild type complex and 2 mutant complex systems
(R38Q and T103A/K104A). The R38Q mutation is located on
the homodimerization interface, whereas the T103A/K104A

mutations on the binding interface between RRM domain and
RNA. For convenience, the 4 systems were designated as free
RRM-WT, complex-WT, complex-R38Q and complex-T103A/
K104A, respectively. As shown in Fig. 2A, the RMSD values of
4 systems are stable after 20 ns, so the MD trajectories of the
last 100 ns are chosen for further analyses. Fig. 2B displays the
distributional probability of RMSD in 4 systems. The mean val-
ues of RMSD are 4.06, 2.72, 4.23 and 3.55 A

�
for the free RRM-

WT, complex-WT, complex-R38Q and complex-T103A/
K104A systems, respectively. The complex-R38Q and complex-
T103A/K104A systems were mutated from complex-WT sys-
tem. Therefore, these mutations may cause the simulated com-
plex structures move away from the starting structure.
Similarly, the free RRM-WT was modeled from L81M mutant,
also showing a relatively higher RMSD value. The previous
experiments showed that R38Q mutation reduced binding
affinity by 3- to 4-fold, whereas Ala mutations of both Thr103
and Lys104 resulted in undetectable binding.10 Nevertheless,
the mean value of RMSD in complex-T103A/K104A system is
lower than that in complex-R38Q system. Therefore, it’s neces-
sary to analyze the specific flexible regions of these mutant
systems.

The root mean square fluctuation (RMSF) is usually used
to assess the flexibility of different regions. Figs. S1A and S1B
show the RMSF values of RRM domain and RNA calculated
from the equilibrium trajectories of 4 systems, respectively.
The two RRM domains of RBPMS form a symmetrical dimer.
The two RNA molecules are bound to RRM domain in the
same orientations. The simulation data are similar for these 2
symmetrical groups. Without loss of generality, we choose
chain B of RRM domain and chain Q of RNA for analyses. In
order to display the hierarchies of flexible regions intuitively,
the residues and nucleotides in Fig. S2 were colored according

Figure 1. Cartoon representation of the free RRM domain (A) and the RNA-binding complex (B) systems. Two RRM domain (chain A and chain B) are colored cyan and
blue, respectively. Chain P and chain Q of RNA are colored yellow and orange, respectively. The secondary structure elements are labeled on the free RRM domain. The
important RNA-binding residues are highlighted in stick model, and the nucleotides are labeled on the RNA-binding complex.
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to their RMSF values. As shown in Fig. S1A, most regions of
the RRM domain in complex-R38Q system possess higher
RMSF values than those in free RRM-WT, complex-WT and
complex-T103A/K104A systems. Especially, the regions with
higher RMSF values are around residues Arg38, Ala80 and the
C-terminal loop. These regions are mainly located at the
homodimerization interface (Fig. S2C). It indicates that R38Q
mutation is unfavorable to the dimerization of RRM domain.
Interestingly, both free RRM-WT and complex-T103A/K104A
show higher RMSF values around Thr103. It implies that
without RNA binding or mutations of the RNA-binding resi-
dues will destabilize the interfacial residues. Thus, RNA bind-
ing will facilitate the stability of the residues at the RNA-
binding interface. As shown in Fig. S1B, the RMSF values of
RNA in 2 mutant complex systems are both higher than those
in complex-WT system. The profile of RMSF curve of com-
plex-R38Q system is still similar to that of complex-WT sys-
tem. The nucleotide U1 has higher RMSF value, but the
subsequent CAC trinucleotides are relatively stable. Neverthe-
less, the complex-T103A/K104A system shows higher RMSF
values at the last 2 nucleotides A3 and C4. These results imply
that the R38Q and T103A/K104A mutations may change the
dynamical properties of the RRM domain and the RNA,
respectively.

Dynamical cross-correlated map analysis of RRM domain
and RNA
The dynamical properties of RRM domain and RNA can be
detected by dynamical cross-correlated map. According to
Equation 1, the correlated fluctuations of RRM domain and
RNA in complex-WT, complex-R38Q and complex-T103A/
K104A systems are graphically presented in Fig. 3. Positive cor-
relations are mapped in the upper left triangle while negative
correlations are mapped in the lower right triangle. Deeper
color indicates more correlated (or anticorrelated).

In the map of complex-WT system (Fig. 3A), some positive
correlations were observed between the antiparallel b-sheet of
RRM domain. RNA shows positive correlations with the antiparal-
lel b-sheet in RRM domain, especially residues Phe27, Phe65 and
Phe98-Met105. These residues are found by the previous experi-
ments to form interfacial hydrogen bonds and intermolecular
stacking interactions for RNA recognition.10 Meanwhile, RNA
exhibits negative correlations with the 2 a-helices. Nevertheless, as
shown in Fig. 3B, the positive and negative correlations are
increased remarkably in the map of complex-R38Q system. This
result is mainly caused by the large movements of complex-R38Q
system. Fortunately, RNA also remains its positive and negative
correlations, which are similar to those in complex-WT system.
For complex-T103A/K104A system (Fig. 3C), the internal

Figure 3. Dynamical cross-correlated map of complex-WT (A), complex-R38Q (B) and complex-T103A/K104A (C) systems. Positive correlations and negative correlations
are mapped in the upper left triangle and lower right triangle, respectively. Deeper color indicates more correlated (or anti-correlated). Both x and y axes of the map are
residue indices in RRM domain (chain B) and nucleotide indices in chain Q of RNA. In curve of complex-WT, RNA shows positive correlations with the antiparallel b-sheet
at residues Phe27, Phe65 and Phe98-Met105.

Figure 2. Comparison of RMSD for free RRM-WT (red), complex-WT (purple), complex-R38Q (blue) and complex-T103A/K104A (yellow) systems. (A) The RMSD values of
non-hydrogen atoms versus simulation time. (B) The probability distribution of RMSD calculated from the equilibrium trajectories.
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correlated values of RRM domain are between those of complex-
WT and complex-R38Q systems. It implies that the correlated
motions of RRM domains in complex-T103A/K104A system are
more remarkable than those in complex-WT system but weaker
than those in complex-R38Q system. However, the positive and
negative correlations between RRM domain and RNA are
decreased in the complex-T103A/K104A system, which indicates
that the correlated motions between RRM domain and RNA are
reduced in this mutant system. The decreasing correlated motions
imply that T103A/K104A mutations may weaken the interactions
between RRM domain and RNA.

Motion mode analysis of 4 systems

To further explore the direction of dynamical motion, both
PCA and FEL were carried out for the 4 MD trajectories. Fig. 4

shows the average structures and the first motion modes (PC1)
of 4 systems. As shown in Fig. 4A, the homodimerization inter-
face is stable in the free RRM-WT system, but the C-terminal
loop has remarkable motions. The C-terminal loop in the free
RRM-WT system even shows a moving trend to the conforma-
tion in the complex-WT system. In the complex-WT system
(Fig. 4B), the RRM domain is relatively stable, including the C-
terminal loop. This comparison implies that RNA binding sta-
bilize the C-terminal loop conformation in RRM domain. Nev-
ertheless, the nucleotide U1 in RNA has remarkable
movements in the complex-WT system, which is consistent
with the above RMSF analysis. As shown in Fig. 4C, the 2 RRM
domains exhibit large opposite motions in complex-R38Q sys-
tem. It implies that R38Q mutation may induce the separation
of the RBPMS homodimer. However, the average structure of
RNA in complex-R38Q system is similar to that in complex-

Figure 4. First slowest motion modes of free RRM-WT (A), complex-WT (B), complex-R38Q (C) and complex-T103A/K104A (D) systems. The average structure is depicted
with tube model. RRM domain and RNA are colored blue and orange, respectively. The motion modes are shown as cone model and colored red. The length of cone is
positively correlated with the motion magnitude, and the orientation of cone indicates the motion direction.
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WT system. In contrast, as shown in Fig. 4D, the T103A/
K104A mutations obviously adopt the distinct average struc-
ture in comparison to complex-WT system and change the
moving trend of RNA.

Fig. S3 shows the first 50 eigenvalues obtained from the
diagonalization of the covariance matrix. The eigenvalues of 4
systems quickly decrease and converge to zero with the increas-
ing of eigenvector index. The first 2 principal components (PC)
capture 50.9%, 20.9%, 59.6% and 39.4% of the system’s variance
for free RRM-WT, complex-WT, complex-R38Q and complex-
T103A/K104A systems, respectively. The complex-WT system
does not have remarkable motions on the backbone. Its motion
are mainly the localized random motions, so the fraction of first
2 PCs are only around 20%. In contrast, the free RRM-WT,
complex-R38Q and complex-T103A/K104A systems possess
specific motion modes (see Fig. 4), so the first 2 PCs capture
higher fraction of the system’s variance.

As shown in Fig. 5, the free energy contour maps are con-
structed for 4 systems at 298 K with deeper color indicating the
lower energy. According to the above stability analyses, it is
found that the free RRM-WT, complex-R38Q and complex-
T103A/K104A systems could adopt conformational states
wider than those for complex-WT system. Therefore, as show
in Fig. 5, the PC1 and PC2 motion modes of these 3 systems
span larger ranges than those of the complex-WT system. The
free energy landscapes of the 4 systems generally can be divided
to 2 distinctive local basins. The two minima correspond to the
conformations from the former and latter 50 ns of equilibrium
trajectories, respectively. Fig. S4 shows the representative

structures in the 2 local energy basins compared with the crys-
tal structure. For free RRM-WT (Fig. S4A), the C-terminal
loop in the representative structures has remarkable move-
ments and shows similar structure to that in the complex-WT
system. As shown in Fig. S4B, the nucleotide U1 in RNA exhib-
its the movement away from the RRM domain in the 2 repre-
sentative structures of complex-WT. In complex-R38Q system
(Fig. S4C), 2 RRM domains move far away from each other,
but the RNA conformations are also similar to those in the
complex-WT system. Different to complex-R38Q system, the
RNAs in the representative structures of complex-T103A/
K104A system undergo large conformational changes at
nucleotides A3 and C4 (Fig. S4D).

The conformational changes of RRM domain and RNA are
related to the rearrangement of interactions, so we further ana-
lyzed the detailed interactions in the complex systems below.

Comparison of interactions in 3 complex systems

The binding energies of the 3 complex systems were calculated
by g_mmpbsa and shown in Table 1. The ranking of calculated
binding energies is well consistent with that of experiment
binding affinities.10 The complex-WT system has the lowest
binding energy, whereas the complex-T103A/K104A system
possesses the highest binding energy. The van der Waals
energy, the polar and nonpolar solvation energies of complex-
R38Q system are similar to those of complex-WT system, but
its electrostatic energy is slightly higher than that of complex-
WT system. The loss of electrostatic energy may be induced by

Figure 5. Free energy contour map vs. the principal components PC1 and PC2 for free RRM-WT (A), complex-WT (B), complex-R38Q (C) and complex-T103A/K104A (D)
systems. Deeper color indicates lower energy. The distinctive local basins are denoted as B1 and B2, respectively. B1 and B2 basins correspond to the conformations from
the former and latter 50 ns of equilibrium trajectories, respectively.
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the fluctuation of RRM domain. Nevertheless, in the complex-
T103A/K104A system, all of the van der Waals energy, the elec-
trostatic energy, the polar and nonpolar solvation energies are
higher than those of complex-WT system. It implies that
T103A/K104A mutations may break most of the interactions in
the interface between RRM domain and RNA. MM-PBSA
method is widely applied to calculate absolute binding affini-
ties.19,20 However, MM-PBSA results may be influenced by sys-
tem-dependent properties, such as the features of the binding
site, the extent of protein and ligand conformational relaxation
upon association, and the protein and ligand charge distribu-
tion. The current implementation of the MM-PBSA method
within g_mmpbsa does not include the calculation of entropic
terms, and therefore in principle it is unable to give the absolute
binding energy. In this work, the conformational entropy may
be indirectly reflected by the probability distribution of RMSD
(see Fig. S1B). The conformational flexibility of T103A/K104A
system is slightly higher than that of complex-WT system, and
the R38Q system possesses the highest conformational flexibil-
ity in the 4 systems. The mutations of R38Q and T103A/
K104A systems will cause the increase of conformational
entropy, which could be favorable for binding. Nevertheless,
the cross-correlated map analysis implies that the increased
conformational flexibility of T103A/K104A system is not
related to protein-RNA interactions. Therefore, these increased
conformational flexibility could not make a favorable contribu-
tion to RNA binding.

In order to investigate the detailed interactions between
RRM domain and RNA, we used the energy decomposition
strategy to analyze the contribution of each residue or nucleo-
tide (Fig. 6). In three complex systems, 11 residues in RRM
domain contribute unfavorable energies for RNA binding.
These residues are mainly located on the loop structure or the
regions far away to the RNA binding interface. In complex-WT
system, residues Arg24, Phe27, Lys36, Arg38, Arg45, Lys48,
Lys56, Lys60, Phe65, Arg71, Lys78, Arg85, Arg95, Ala99,
Lys100, Thr103, Lys104, Met105, Lys107 and Lys109 make
favorable contributions for RNA binding. These interfacial resi-
dues are also reported by the previous experiments,10 which
may form hydrogen bonds or intermolecular stacking interac-
tions with RNA. As shown in Fig. 6C, the favorable contribu-
tions of residues Arg38 and Met105 are lost in complex-R38Q
system. Similarly, the favorable contributions of residues
Thr103-Met105 are disappeared in complex-T103A/K104A
system (Fig. 6E). Moreover, T103A/K104A mutations decrease
the favorable contribution of residue Phe65, which is identified
by previous experiments to make the crucial intermolecular
stacking interactions with A3.10 In 3 complex systems, all of 4
nucleotides make favorable energy contributions in the energy
decomposition of RNA (Figs. 6B, D, F). The three nucleotides

CAC contribute most of the binding energies, so these 3
nucleotides are more stable than U1 in the representative struc-
tures shown in Fig. S4. Nevertheless, the contributions of trinu-
cleotides CAC are decreased in the 2 mutant systems, especially
the contributions of nucleotides A3 and C4 in complex-T103A/
K104A system.

To understand the detailed interactions, we further analyzed
the hydrogen bonds between RRM domain and RNA. The
hydrogen bonds formed by RRM domain and RNA with occu-
pancy over 10% for complex-WT, complex-R38Q and com-
plex-T103A/K104A systems are shown in Table 2. In complex-
WT system, high occupancy hydrogen bonds mainly formed
between RRM domain and trinucleotides CAC. The nucleotide
U1 does not make any high occupancy hydrogen bonds with
RRM domain. As shown in Fig. 7, these high occupancy hydro-
gen bonds are labeled in 2 representative structures of the com-
plex-WT system. Eight hydrogen bonds are maintained in the
2 representative structures. Only nucleotide C2 alternates the
hydrogen bonds with Lys100-NZ by atoms O1P and O2P
(Figs. 7C, F). These high occupancy hydrogen bonds may con-
tribute to stabilize the orientations of intermolecular stacking
interactions between RNA and RRM domain (residues Phe27
and Phe65). Compared to complex-WT system, most of hydro-
gen bonds (8 out of 10) are remained in complex-R38Q system,
except 2 hydrogen bonds Lys100-NZ:Cyt2-O2P and Met105-N:
Cyt4-O2 (see the hydrogen bonds highlighted in bold). There-
fore, consistent to the energy decomposition, the favorable con-
tribution of residue Met105 is lost in complex-R38Q system.
Notably, only one native hydrogen bond is remained in com-
plex-T103A/K104A system between C2 and Phe98, and the
other 8 hydrogen bonds are non-native. This result implies that
T103A/K104A mutations break most of the high occupancy
hydrogen bonds in the interface between RRM domain and
RNA, which could results in complete loss in binding affinity.

From the above analyses, we discussed the recognition
mechanism of the RRM domain and RNA. Through the com-
parison of free RRM-WT and complex systems, it’s found
that the RNA-binding interface of free RRM domain is not
stable, especially the C-terminal loop. The C-terminal loop in
free RRM-WT even adopts the conformation similar to that
in the complex-WT system. The previous studies also found
that the C-terminal loop is often directly involved in the rec-
ognition of the target RNA molecule and are necessary for
their ‘positive discrimination’.8,21 Similarly, our study also
found that the structure of the C-terminal loop is stabilized
by the specific RNA binding in the complex-WT system. The
binding affinity between RRM domain and RNA is mainly
contributed by the trinucleotides CAC. The nucleotide U1
does not form any high occupancy hydrogen bonds and
moves far away from the RRM domain in the representative

Table 1. Comparison of binding energy components between RRM domain and RNA in 3 complex systems.

TYPE DEvdw
a DEelec DGpolar DGnonpolar DGbinding

Complex-WT ¡43.01 § 3.68 ¡234.96 § 22.12 132.62 § 23.59 ¡4.89§ 0.40 ¡150.25 § 14.02
Complex-R38Q ¡45.52 § 4.90 ¡215.22 § 25.93 134.95 § 29.95 ¡5.28§ 0.59 ¡131.07 § 14.78
Complex-T103A/K104A ¡27.27 § 6.51 ¡182.70 § 26.25 111.02 § 26.77 ¡3.40§ 0.72 ¡102.35 § 15.38

aDEvdw, DEelec, DGpolar, andDGnonpolar are binding energy components of van der Waals, electrostatic, polar and nonpolar solvation energies, respectively. DGbinding is the
total binding energy. The energies are in kilocalories per mole.
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Figure 6. Binding energy decomposition of complex-WT (A-B), complex-R38Q (C-D) and complex-T103A/K104A (E-F) systems. Energetic contributions of residues in RRM
domain are shown in the left figures (A), (C) and (E). Energetic contributions of nucleotides in RNA are shown in the right figures (B), (D) and (F). Energies are given as kilo-
joules per mole. Error bars represent the standard deviations of the energies.

Table 2. The hydrogen bonds formed by RRM domain and RNA with occupancy over 10% for 3 complex systems.

Complex-WT Complex-R38Q Complex-T103A/K104A

RRM domain RNA Occupancy RRM domain RNA Occupancy RRM domain RNA Occupancy

Asn102-O C4-N4 86.51% ASN102-Oa C4-N4 83.61% Phe98-O C2-N4 82.60%
Thr103-OG1 A3-N1 84.46% Thr103-OG1 A3-N1 69.67% Lys100-N C2-N3 56.72%
Lys104-N C4-N3 73.26% Lys104-N C4-N3 69.48% Glu97-OE2 C2-N4 43.22%
Lys100-NZ A3-O2P 68.88% Phe98-O C2-N4 66.97% Arg95-NH1 C2-O1P 37.99%
Phe98-O C2-N4 65.60% Lys100-N C2-O2 58.02% Lys100-N C2-O2 33.37%
Lys104-N C4-O2 35.17% Lys104-N C4-O2 40.88% Glu97-OE1 C2-N4 22.31%
Lys100-NZ C2-O1P 22.55% Lys100-NZ A3-O2P 27.48% Arg95-NH2 C2-O1P 20.22%
Lys100-NZ C2-O2P 15.42% Lys56-NZ A3-O20 18.68% Lys100-NZ A3-O1P 19.92%
Thr103-N A3-N6 14.91% Lys100-NZ C2-O20 14.96% Ala101-N C2-O2 18.40%
Met105-N C4-O2 13.98% Thr103-N A3-N6 12.28%

Lys100-NZ C2-O1P 11.72%

aThe hydrogen bonds that are same to those in complex-WT system are highlighted in bold.
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structures of complex-WT. Both R38Q and T103A/K104A
mutations reduce the RNA-binding affinities of RRM domain,
but the underling mechanisms are different. R38Q mutation
causes the large movements of 2 RRM domains and induces
the separation of RBPMS homodimer. Several experimental
data proposed that multiple RRMs will help achieving higher
affinity and specificity than the isolated RRM.4,22 In this
work, although the R38Q mutation does not directly act on
the RNA-binding interface, some interfacial hydrogen bonds
(Lys100-NZ:Cyt2-O2P and Met105-N:Cyt4-O2) are weak-
ened because of the large fluctuations of RRM domains. Then,
the calculated binding energy is increased in complex-R38Q
system. In contrast, T103A/K104A mutations mainly change
the dynamical properties of RNA. Hydrogen bonds and inter-
molecular stacking interactions were found to contribute to
sequence-specific RNA recognition and binding affinity.23

T103A/K104A mutations break most of high occupancy
hydrogen bonds in the interface between RRM domain and
RNA. Thus, many key interfacial residues, including Thr103-
Met105 and Phe65, lose their favorable energy contributions
for RNA binding. The energy decomposition also implies that
the intermolecular stacking interactions between A3 and
Phe65 could be weakened. The correlated motions between
RRM domain and RNA are decreased, and large conforma-
tional changes are taken place at nucleotides A3 and C4.
Therefore, the complex-T103A/K104A system possesses the
highest binding energy and its binding affinity is undetectable.
Our study shows that the binding affinity of RRM domain and
RNA is influenced by many reasons, such as the homodimeri-
zation of RRM domain or the crucial interactions on the
RNA-binding interface. Likewise, if the binding affinity of
RRM domain and RNA need to be improved, it will be possi-
ble to mutate those residues that contribute unfavorable
energies.

Conclusions

In this work, MD simulation was applied to investigate the
dynamical properties and crucial interactions of RRM domain
and RNA. The comparative analysis of MD trajectories indi-
cates that the RNA binding increases the stability of RRM
domain, but residue mutations of RRM domain induce the
fluctuation of complex systems. The calculated binding energies
based on MM/PBSA agree well with the binding affinities.
R38Q mutation causes large fluctuations of 2 RRM domains
and induces the separation of RBPMS homodimer. These fluc-
tuations of RRM domains weaken the favorable contribution of
residue Arg38 and Met105, which makes slight influence on
the RNA binding. In contrast, the RBPMS homodimer is rela-
tively stable in the T103A/K104A system, so its global fluctua-
tion values are lower than those of R38Q system. However,
T103A/K104A mutations break most of high occupancy hydro-
gen bonds in the interface between RRM domain and RNA,
and large conformational changes take place at nucleotides A3
and C4. These fluctuations go against RNA binding directly, so
the binding energy of complex-T103A/K104A system increases
remarkably and its binding affinity is completely lost. This
study explains the reduced binding affinity caused by different
mutations and provides useful insights into the RNA recogni-
tion mechanisms of RRM domain.

Systems and methods

Simulation protocols

The RRM domain (residues Glu21-Val111) of human RBPMS
in the free state and the RNA-binding state were built from
X-ray crystallographic structures (PDB code: 5CYJ and
5DET).10 According to the experimental reference, the free
RRM domain is L81M mutant. In order to be consistent with

Figure 7. The crucial interactions of RRM domain and RNA in 2 representative structures of the complex-WT system. The interfacial hydrogen bonds and intermolecular
stacking interactions formed by nucleotides C4, A3 and C2 are shown in the first representative structure (A-C) and the second representative structure (D-F), respectively.
RRM domain and RNA are depicted with cartoon (blue) and ribbon (orange) models, respectively. Atoms involved in interfacial hydrogen bonds and intermolecular stack-
ing interactions are shown in stick model.
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the complex structure, the M81 in the free RRM domain are
mutated back to L81 in this work. In addition, there are 2
RNA chains in the experimental complex structure, including
chain P and chain Q. Chain P is 4-nt RNA, and chain Q is 5-
nt RNA. In order to keep consistence, we retained 4-nt RNA
in both chains. Besides the wild types of free RRM domain
and RRM-RNA complex, we also modeled 2 mutant systems
for comparison with the experimental data. The mutations of
residues in the 2 mutant systems were R38Q and T103A/
K104A, respectively. The mutations of these residues were
performed using CharmmGUI.24

Then, 4 independent molecular dynamics simulations were
performed using the NAMD 2.10 program25 with the
CHARMM 36 all-atom force field.26,27 In each simulation, the
initial structure was solvated in a cubic periodic water box with
the edges of the box at least 12 A

�
from any parts of solutes. The

four simulation systems (free RRM-WT, complex-WT, com-
plex-R38Q and complex-T103A/K104A) contained 18924,
17533, 17540 and 17556 TIP3P water molecules with a total of
59814, 55885, 55892 and 55922 atoms, respectively. Sodium
and chloride ions were added to each system to get a final ion
concentration of 150 nM. The SHAKE algorithm was used to
constrain the covalent bonds involving hydrogen atoms.28 The
Particle Mesh Ewald (PME)29 summation algorithm was used
to calculate the long-range electrostatic interactions. The cut-
off of non-bonded interactions was set as 12 A

�
. Each system

was energetically minimized with 20000 steps. Then, all back-
bone atoms of solutes were restrained with a harmonic con-
straint of 0.1 kcal¢mol¡1¢A� ¡2 and the system was slowly heated
up from 0 to 298 K over a period of 1.0 ns. Finally, the non-
constrained MD simulation was performed at constant pres-
sure (1 atm) by Langevin piston method30 and constant tem-
perature (298 K) by Langevin dynamics31 for 120 ns. For each
system, the MD integration step was set as 2 fs, and one snap-
shot was sampled every 1000 steps. Total 60000 conformations
were collected for further analyses. The analyses of trajectories
including RMSD and RMSF values were performed with VMD
1.9.2.32 RMSD values were calculated over the non-hydrogen
atoms of RBPMS RRM domain and RNA, and RMSF values
were measured based on the Ca atoms of RRM domain and
C5’ atoms of RNA.

Dynamical cross-correlated map analysis

Dynamical cross-correlated motions play an important role in
the recognition and biological function of a bio-macromolecu-
lar system.16,33 In MD simulations, the extent of cross-corre-
lated fluctuations between atoms can be described by the
covariance matrix C.34 The element Cij in the matrix is defined
as:

Cij D hDRi�DRj i
.hDR2

i i � hDR2
j i/16 2

(1)

where DRi(DRj) is the displacement vector corresponding to ith
(jth) atom of the systems, and h � � � i indicates an ensemble
average. The cross-correlated values range from ¡1 to 1. Posi-
tive values represent positively correlated movements (the

same direction), and negative values imply anti-correlated
movements (the opposite direction). The higher the absolute
value of Cij is, the more correlated (or anti-correlated) the 2
atoms (or residues) are. In this work, the covariance matrix for
all Ca (protein) and C5’(RNA) atomic fluctuations was
extracted from the MD trajectory by using the Gromacs 4.5
package.35

Principal component analysis

Principal component analysis (PCA) is widely applied in MD
simulations to extract the slow and global functional motions
of bio-molecules by using the dimensional reduction
method.36,37 On the basis of the above dynamical cross-corre-
lated analysis, the covariance matrix C is diagonalized to obtain
the orthogonal eigenvectors and the corresponding eigenvalues.
The eigenvectors are also called the principal components
(PCs), which indicate the directions of the concerted mot ions.
The first few PCs usually represent the slow and global func-
tional motions of a bio-molecular system.34,38 The correspond-
ing eigenvalues describe the magnitude of the motions along
the direction. In this work, PCA was performed with Gromacs
4.5 package35 to obtain the global functional motions in the 4
systems.

Free energy landscape

Free energy landscape (FEL) is widely used to identify the dom-
inant conformational states during the biological process.38,39

The relative free energy between 2 states is calculated by

G1.X/¡G2.X/D ¡ kT ln
P1.X/
P2.X/

� �
(2)

where k is the Boltzmann constant, T is the absolute tempera-
ture, X is the reaction coordinate, and P.X/ is the probability
distribution of system along the reaction coordinate. The unit
of the free energy landscapes is kT, where k is the Boltzmann
constant and T is absolute temperature. On the basis of the
above PCA data, the first 2 PCs are chosen as the reaction coor-
dinates X1 and X2.

34,40 Then, the 2-dimensional free energy
landscapes are constructed from the joint probability distribu-
tions P.X1;X2/. In the FEL, the local basins usually represent
the conformational ensemble in the relatively stable states, and
the barriers indicate the transient states.41

Analysis of the interfacial interactions

The interfacial interactions between RRM domain and RNA are
dominated by the hydrogen bonds and intermolecular stacking
interactions.10 In this article, the hydrogen bonds were calcu-
lated by VMD 1.9.232 with a distance cut-off value of 3.5 A

�
and

an angle cut-off value of 35�.42 The relative binding energy
between RRM domain and RNA were calculated by
g_mmpbsa.43 It implements the Molecular mechanics Poisson-
Boltzmann surface area (MM-PBSA) approach to estimate
interactional free energies. This tool can calculate molecular
mechanics potential energy (include both electrostatic and van
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der Waals interactions) and free energy of solvation (include
polar and nonpolar solvation energies). It also has been used to
estimate the energy contribution per residue or nucleotide to
the binding energy.
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