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ABSTRACT

Gene transcription is regulated mainly by transcrip-
tion factors (TFs). ENCODE and Roadmap Epige-
nomics provide global binding profiles of TFs, which
can be used to identify regulatory regions. To this
end we implemented a method to systematically con-
struct cell-type and species-specific maps of regula-
tory regions and TF-TF interactions. We illustrated
the approach by developing maps for five human cell-
lines and two other species. We detected ~144k puta-
tive regulatory regions among the human cell-lines,
with the majority of them being ~300 bp. We found
~20k putative regulatory elements in the ENCODE
heterochromatic domains suggesting a large regula-
tory potential in the regions presumed transcription-
ally silent. Among the most significant TF interac-
tions identified in the heterochromatic regions were
CTCF and the cohesin complex, which is in agree-
ment with previous reports. Finally, we investigated
the enrichment of the obtained putative regulatory
regions in the 3D chromatin domains. More than 90%
of the regions were discovered in the 3D contacting
domains. We found a significant enrichment of GWAS
SNPs in the putative regulatory regions. These sig-
nificant enrichments provide evidence that the reg-
ulatory regions play a crucial role in the genomic
structural stability. Additionally, we generated maps
of putative regulatory regions for prostate and col-
orectal cancer human cell-lines.

INTRODUCTION

Recent genomic technologies have demonstrated that the
functional DNA is not only formed by genes, but also by
a sizeable fraction of the non-coding sequences (1,2). Con-
sequently, two large consortia (3,4) were set to prioritize the

identification, interpretation and interconnection of all the
genomic elements related to genomic transcription regula-
tion, including transcribed sequences and gene regulatory
elements. Chromatin immunoprecipitation (ChIP) followed
by high-throughput sequencing (ChIP-seq) is nowadays a
commonly used technique to identify transcription factor
binding sites (TFBS) and locations of histone modifications
(HM) on a genome-wide scale (5). Such marks have been
identified in various locations throughout the genome in-
cluding gene coding and non-coding regions (6). The EN-
CODE (4,6) and NIH Roadmap Epigenomics (3) projects
focused on producing of comprehensive, publicly available
data and analysis of such data sets.

The vast majority of the human genome (~98%) consists
of non-coding regions and a surprisingly large fraction has
been proven to have a functional regulatory role containing
promoters, enhancers, Locus Control Regions (LCR), insu-
lators and silencers (7). Promoters, enhancers and LCR are
associated with gene expression activation, while insulators
and silencers are associated with gene expression repression
(8).

The main focus of the research performed using ChIP-
seq data has been targeting specific biological issues such
as promoter and enhancer annotation marks (9), genome
accessibility (10), HM functionality (11), nucleosome posi-
tioning (12), exon inclusion (13) etc. Additionally, various
research projects have focused on applying machine learn-
ing techniques on such data, in order to reveal genomic
marks that can characterize and annotate multiple genome-
wide phenomena (14-16).

Several pipelines and software tools have been established
to detect TFBSs and their motifs throughout the genome
(17). However, very few methods have been developed to
detect transcription regulatory regions genome-wide (18-
21). These methods require large data pre-processing and
do not dynamically integrate public or custom data collec-
tions into their pipelines since they use prior knowledge
to report regulatory regions, such as TF binding motifs.
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While TF binding is largely affected by sequence specific
motifs, recruiting these motifs in a regulatory region de-
tection pipeline may lead to overfitting due to ignoring the
sequence-independent TF-TF interactions. Specific syner-
gistic operations are also very important in defining the en-
tire regulatory landscape.

Here, we aimed to provide sets of genomic loci of signif-
icant importance to gene regulation and to facilitate their
experimental investigation in a TFBS-data-driven, cell-line-
specific and species-specific manner. To this end, we re-
cruited the well-established notion that clusters of TFs
mark putative regulatory regions (22-24) and developed
tfNet, an algorithm that constructs genomic regions from
sets of ChIP-seq data. tfNet builds clusters of genomic sig-
nals, based on their distance, that constitute putative regu-
latory regions. The output consists of two types of results:
(1) genomic-region data sets, and (i1) genomic signals inter-
action networks. Using public ChIP-seq data we detected
large sets of putative cell-specific regulatory regions in five
human cell lines and in a collection of cell lines of two cancer
types. Additionally, we detected maps of putative regulatory
regions in five Mus musculus (M. musculus) cell lines and in
four developmental stages of Drosophila melanogaster (D.
melanogaster). A subset of the identified genomic regions
has been validated experimentally to test for transcriptional
activity. More importantly, we investigated the role of the
proposed regions in the genomic regulatory mechanism, es-
pecially in the less studied heterochromatin, and the three
dimensional structure of the genome. We discovered that
the majority of the regions were located in open chromatin
and intersected with the ENCODE genomic annotations.
The participation of the putative regulatory regions in the
formation and the body of the genomic 3D looping struc-
ture was confirmed computationally in over 90% of the
cases. With such a large enrichment we could map a large
number of the identified regulatory regions in the 3D ge-
nomic space. The putative regulatory regions are publically
available at http://bioinf.icm.uu.se/tfnet.php.

MATERIALS AND METHODS
Identification of the regulatory landscape

tfNet assigns clusters of consecutive TFBSs located within
a predefined distance to regulatory regions. The details of
tfNet are provided in Supplementary Note S1 and Sup-
plementary Figure S1. We applied tfNet to identify puta-
tive regulatory regions for five human cell lines (GM 12878,
H1-hESC, HeLa-S3, HepG2 and K562). We employed TF
ChIP-seq and DNasel Hypersensitivity data sets from EN-
CODE for the selected cell lines (Supplementary Table S1)
(4). We merged the overlapping TFBSs originating from dif-
ferent replicates of the same TF into single peaks in order
to avoid artefacts and misleading TF interactions (multi-
ple peaks of the same TF originating from different repli-
cates binding the same genomic loci) using the function
mergeBed of bedtools (25). Next, we ran tfNet to detect
regulatory regions for each cell line. The distance threshold
between consecutive peak summits (d,) was set to 300 bp,
which was greater than the distance between 87% of the in-
put TFBS data (Supplementary Figure S2). We considered
only those regulatory regions harbouring at least 2 peaks of
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different sources (regions containing at least two different
TFs or those containing a TF and a DNasel signal). The
tfNet tool is freely accessible through http:/figshare.com/
articles/tfNet_manual/1408532 and the generated putative
regulatory regions for all five cell lines are made publically
available on http://bioinf.icm.uu.se/tfnet.php.

TF interaction detection

In order to detect TF-TF interactions we constructed three
regulatory networks: co-occurring, neighbouring and over-
lapping. The co-occurring network models the interactions
between TFs that appeared to bind (co-occurred) in the
same regulatory regions. The neighbouring network stands
to model the interactions of TFs whose ChIP-seq peak sum-
mits are located 20-60 bp away from each other. The over-
lapping network models the interactions of TFs that have
summit pairs within 20 bp. These chosen distance values
are empirical and may be sensitive towards data resolution
or systematic technical differences among various ChIP-seq
experiments. Here, we aim at providing potential interac-
tions of TFs to be subjected to further investigation. Only
statistically significant TF interactions were reported for the
generated models. P-values for the neighbouring and the
overlapping TF pairs were calculated using the hypergeo-
metric distribution since each peak may have at most one
succeeding neighbour (Supplementary Equation S1A). Sig-
nificant interactions in the co-occurring pairs were calcu-
lated using the binomial distribution since one peak can
be used to construct several pair connections with replace-
ment (Supplementary Equation S1B). Stringent multiple-
test correction (Bonferroni) was applied.

Regulatory region annotation

We investigated the genomic context where the putative reg-
ulatory regions were located using the GENCODEv23 data
set (26) for all five cell lines (Supplementary Table S1). We
first converted the genomic coordinates from hg38 to hgl9
genome assembly, removed all the pseudogenes and the “to
be experimentally confirmed” genes, and we constructed
promoters for each gene spanning +1.5 kb from the tran-
scription start site (TSS). Finally, we extracted all exons and
introns from the gene annotation data set and intersected
the locations of the putative regulatory regions with the pro-
moters, the exons and the introns.

We merged the 12 ChromHMM annotation classes pro-
posed by ENCODE into 7 (enhancers, promoters, hete-
rochromatin, repetitive, repressed, transcribed and insula-
tors) (Supplementary Table S2). Next, we intersected the
putative regulatory regions with the annotated regions for
the available cell lines (GM 12878, HI-hESC, HepG2 and
K562). ChromHMM has not annotated HeLa-S3 hence its
putative regulatory regions could not be characterized. To
avoid artefacts, we considered as robust the unique annota-
tions that overlapped with a putative regulatory region by
more than 20% and for the rest we introduced a new anno-
tation class named “Mixed”.


http://bioinf.icm.uu.se/tfnet.php
http://figshare.com/articles/tfNet_manual/1408532
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Enrichment of GWAS SNPs in regulatory regions

Single nucleotide polymorphisms (SNPs) reported in the
GWAS catalogue were downloaded from the European
Bioinformatics Institute and converted to the hgl9 genome
assembly. The enrichment of SNPs located within the pu-
tative regulatory regions of HepG2, K562 and GM 12878
were compared to those enriched in randomly generated re-
gions in the corresponding cell lines. The shuffleBed feature
of bedtools (25) was used to obtain a random set of regula-
tory regions with similar properties to those of the original
set. This process was repeated 10 000 times and a P-value
was calculated according to a one sided T-test.

We compared the enrichment of SNPs associated with
selected terms (liver for HepG2; lymphoma and blood for
GM12878 and K562) in the putative regulatory regions and
the random sets using the statistical T-test to check for en-
richment of SNPs related to a particular disease or trait.

Analysis of regulatory regions in the three dimensional space

Employing the genomic signals (peaks) (27) of regions
brought to close proximity by the three dimensional con-
formation, we investigated all types of annotated putative
regulatory regions for contacting domains. We used data
for the cell lines common between Rao et al., 2014 (27) and
our analysis (GM 12878, K562 and HeLa-S3) to map inter-
actions of the annotated putative regulatory regions. We in-
tersected the putative regulatory regions with the contacting
domains of the corresponding cell line and we created pairs
of interactions between putative regulatory regions mark-
ing the upstream and downstream contacting domains. In
cases when more than one putative regulatory region was
intersecting with the same contacting domain we assumed
a complete interaction graph. In cases when no putative
regulatory region intersected with the contacting domain
we marked this domain as “Unknown”. As a result we ob-
tained maps of pairs of annotated putative regulatory re-
gion interactions.

From the same data set of Rao et al., 2014 (27) we ex-
tracted all the formed genomic loops, excluding the contact-
ing domains and we studied the participation of our puta-
tive regulatory regions in the 3D loops. As the starting posi-
tion of a looping domain we set the end of the upstream con-
tacting domain and as the end position of the looping do-
main we set the start of the downstream contacting domain.
Next, we intersected all the putative regulatory regions that
did not intersect with any contacting domain in order to ob-
tain those located in the genomic loops. The putative regu-
latory regions not located in contacting or looping domains
were marked as “Out”.

RESULTS
A regulatory map of the genome

We developed a fast parallel platform-independent compu-
tational tool called tfNet for detecting regulatory regions on
a genome wide scale from a collection of TFBSs. tfNet of-
fers a range of features to the users to adapt the results to
their specific research interests. The resulting set of regions
is provided in BED file format and it may be reused by other

computational tools and visualized in genome browsers.
tfNet also identifies and reports networks of significant TF—
TF interactions for the detected putative regulatory regions.
The interactions are reported in three types of networks
based on the TF binding proximity. The co-occurring net-
works refer to TFs located within the same regulatory re-
gions. The neighbouring networks indicate TFs appearing
in sequences. The overlapping networks that the tool re-
ports are a reflection of the potential competition for the
same binding site (antagonism) or formation of protein—
protein complexes that result in one direct and one indirect
DNA binding (tethering). Clearly, these networks may be
sensitive to technical biases or resolution of ChIP-seq data.

We detected whole-genome regulatory maps for five hu-
man cell lines (GM12878, HI-hESC, HepG2, K562 and
HeLa-S3). The total number of the obtained putative regu-
latory regions appeared to be correlated to the total number
of TFBSs available for each cell line (Supplementary Table
S3; Supplementary Figures S3 and S4). For cell lines with
a large number of ChIP-seq-ed TFs (GM 12878, H1-hESC,
HepG?2 and K562) our algorithm resulted in a larger num-
ber of putative regulatory regions (Figure 1A and B). On
average 76% of the putative regulatory regions intersected
with DNasel peaks (Supplementary Figure S3). This was in
agreement with previous findings (14) and suggested that a
large number of the putative regulatory regions that were lo-
cated within open chromatin domains are potentially func-
tional.

In order to confirm the robustness of the algorithm and
the generated maps, we recursively detected regions from
randomly generated TFBS data sets. We observed that the
regulatory regions detected using the experimentally de-
rived data contained more TFBSs than those generated us-
ing the randomized data. Similarly, the number of the reg-
ulatory regions and their genome coverage were orders of
magnitude lower than those obtained from the synthetic
data (Supplementary Figure S4). We also investigated the
overlap between the obtained putative regulatory regions
with a set of manually curated TFBSs that is used as a ChIP-
seq benchmark data set (28). On average more than 86% of
the true positive benchmark peaks overlapped with the pu-
tative regulatory regions (Supplementary Table S4).

We experimentally validated the regulatory function of a
selected subset of regions using the luciferase assays (Sup-
plementary Note S3). The selected regions contained SNPs
associated to liver diseases within the TFBSs. The lumi-
nescence ratios obtained for the four experimental samples
were significantly higher (Mann—Whitney U test P-value
< 0.05) for plasmids containing the putative regulatory re-
gions than the controls, indicating that they are active reg-
ulatory elements (Figure 1D; Supplementary Table S5).

Genome-wide association studies have associated thou-
sands of SNPs to hundreds of complex traits and com-
mon diseases (29). The majority of these SNPs map to non-
protein coding sequences (30). Using our map of putative
regulatory regions defined in GM 12878, K562 and HepG?2,
we found a significant enrichment of GWAS SNPs (P-value
< 1073 T-test from Monte Carlo simulations). Since our
identified regulatory maps are cell type specific we could
search for enrichment of particular traits or diseases. The
regulatory regions in GM 12878 showed a significant enrich-
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Figure 1. (A) Annotation of the putative regulatory regions for each of the five cell lines according to their proximity to GENCODEv23 genes (26).
(B) Annotation of putative regulatory regions according to the merged annotations from the ChromHMM data set (cf. Materials and Methods). The
regions that did not intersect with any of the ChromHMM annotations are marked as “Unannotated”. We lack ChromHMM annotations for HeLa-
S3. (C) Pair-wise comparison of gene expression differences among ChromHMM heterochromatic, insulator and promoter putative regulatory regions
located in physical promoters (Supplementary Note S4). The Y-axis represents the number of physical gene promoters intersecting with heterochromatic,
insulator or promoter putative regulatory regions in three different cell lines. The P-value shows the statistically significant difference (Wilcoxon rank-sum
test) between gene expression levels in heterochromatin, insulator and promoters according to ChromHMM. “ns” denotes that there was no statistical
significance between the gene expression levels. (D) Biological validation of a subset of the proposed regulatory regions by tfNet. The information in the
X-axis contains the GWAS reference SNP IDs (rs) for the SNPs located within the regulatory regions and the ChromHMM annotation. The Y-axis shows
the relative luciferase activity for each tested region. P-values are calculated between the control and each corresponding tested region (Mann—Whitney U
test). “ns” denotes that there was no statistical significance between the tested region and the control.

ment of lymphoma-related SNPs (P-value < 1073). While
the regulatory regions in K562 showed a significant enrich-
ment of blood-related traits (P-value < 1073) and finally
liver-related traits were significantly enriched in the regu-
latory regions of HepG2 (P-value =2 x 1073).

To show the utility of tfNet on diverse ChIP-seq exper-
iments we collected binding sites for 117 TFs of the LoVo
cell line in colorectal cancer. We also generated the bind-
ing sites for 34 TFs from 135 ChIP-seq experiments curated
from 29 independent studies of different prostate cancer cell
lines (Supplementary Note S2; Supplementary Table S6).
In both cases tfNet mapped ~120K putative regulatory re-
gions and revealed several TF-TF interactions (Supplemen-
tary Figures S5 and S6).

Additionally, we used tfNet to generate regulatory maps
of M. musculus and D. melanogaster (Supplementary Table
S7). For M. musculus we ran tfNet for five different cell types
(C2C12, CHI12.LX, ES-E14, MEL and myocyte). We dis-

covered a large number of putative regulatory regions and
statistically significant TF-TF interactions within the iden-
tified regions (Supplementary Figure S7A; Supplementary
Figure S8). For D. melanogaster we constructed regulatory
regions for various developmental stages (Supplementary
Note S2). We detected a large number of putative regula-
tory regions and several strong TF-TF interactions for each
developmental stage (Supplementary Figure S7B; Supple-
mentary Figure S9). Moreover, by combining TFBSs of all
developmental stages for D. melanogaster we constructed a
full map of putative regulatory regions and detected a large
number of statistically significant TF interactions (Supple-
mentary Figure S7B; Supplementary Figure S10). This map
recovered ~83% of the known D. melanogaster cis regula-
tory modules (31) (Supplementary Figure S7C). These case-
studies, additionally to showing that our hypothesis was
valid, proved that the approach is species-independent in
generating putative regulatory-region landscapes.



9114 Nucleic Acids Research, 2016, Vol. 44, No. 19

Annotation of the putative regulatory regions

As it was expected, we observed a significant and similar
number of putative regulatory regions harbouring promot-
ers (£1.5 kb from gene TSS) among cell lines (~19%), while
the number of putative regulatory regions located in the ex-
onic components was lower (~10%). Introns and intergenic
regions, that are distal regulatory candidates, appeared to
contain the largest number of putative regulatory regions
(~39% and ~32%, respectively) (Figure 1A).

In the next step we investigated the types of putative reg-
ulatory regions retrieved for the cell lines where chromatin-
state annotation using hidden Markov model combina-
tions of chromatin modification patterns (ChromHMM)
annotations were available. The majority of the regions
(99.8%) where annotated by ChromHMM annotations, of
these 13.8% were labelled with more than one annotation;
marked as “Mixed” (Figure 1B). These findings indicated
that the putative regulatory regions show distinct histone
modification mark patterns suggesting a robust region an-
notation. As expected, enhancers and promoters appeared
to be among the overrepresented regulatory region annota-
tions. Together they covered a significant part of the total
number of the regulatory regions (44%) where clusters of
TFBSs appeared (Figure 1B). Both genomic regions’ anno-
tations have been extensively studied and characterized for
being marked by specific genomic signals and by participat-
ing in a wide range of genomic interactions. Additionally,
heterochromatin, insulators, repetitive and repressed anno-
tations appeared to cover on average 32% of the putative
regulatory regions. Interestingly, transcribed regions, previ-
ously noted to be marked by specific histone modifications
(14) and depleted from DNasel accessibility, were observed
to host a substantial number (10%) of putative regulatory
regions (Figure 1B).

Heterochromatic elements from ChromHMM annota-
tions are associated to nuclear lamina and lack histone
chromatin marks (14). The number of TF marks that we
observed in such elements was comparable to that of en-
hancers and promoters (Figure 1B), which may indicate reg-
ulatory activity of the heterochromatic regions.

Investigating physical promoters, +1.5 kb from TSSs of
genes, revealed at least 40- and 51-fold higher abundancy
of ChromHMM promoters compared to heterochromatic
or insulator putative regulatory regions, respectively (Fig-
ure 1C). Genes with ChromHMM promoter domains were
expressed at least 12- and 4-fold higher than those with het-
erochromatic (P-value < 10~%) and insulator domains (P-
value < 1073), respectively. Generally, the average expres-
sion of genes with proximal ChromHMM heterochromatic
regions was very low (RPKM ~3.9). Additionally to that,
the putative regulatory regions that did not show any sig-
nificant relative luciferase activity was a heterochromatic
region (Figure 1D). These findings suggest that regulatory
elements harbouring complexes of TFs in heterochromatic
regions may act over large distances as activators and/or
silencers.

Frequent TFs and TF-TF interactions in heterochromatic
regulatory regions

We investigated TFs that were abundant in heterochromatic
regions and focused on the most significant TF interactions
appearing at the weighted TF networks (Figure 2A—H; Sup-
plementary Figures S11-S15). These networks demonstrate
TF interactions occurring in heterochromatic putative reg-
ulatory regions and rely on the absolute distances between
TFBSs, hence the quality of the ChIP-seq data may affect
the information they present. In order to avoid potential bi-
ases towards active regulatory regions and to explore the
cell-line-specific TF-TF interactions, we regenerated the re-
sults after excluding DNasel hypersensitive sites from the
region detection pipeline.

CTCEF has recently been extensively linked to pioneering
the three dimensional conformation of the genome (27,32).
It has also been characterized as a TF with unique prop-
erties that bridges the gap between the nuclear architecture
and the genomic expression through coupling with the co-
hesin complex (33,34). Here, we observed that CTCF and a
major component of the cohesin complex RAD21 were the
most frequent TFs that occurred in the heterochromatic pu-
tative regulatory regions (Table 1). CTCF, RAD21 and ad-
ditionally SMC3 were among the TFs interacting strongly
in GM 12878, HepG2 and K562 (Figure 2A; Supplementary
Figures S11 and S13).

There is a plethora of statistically significant interactions
between CTCF, RAD21 and SMC3 in all the networks and
cell lines (Figure 2A; Supplementary Figures S11-S15). Al-
though the stoichiometric ratio of the CTCF-cohesin inter-
actions is fixed across cell types, the SMC3 binding sites in
some of the interactions were depleted in GM 12878 and
K562. This observation indicated that differences in data
quality and resolution across different cell types affect the
observed interaction patterns, since the cohesin complex
cannot be formed in absence of SMC3 (35). The presence of
significant CTCF-cohesin interactions in heterochromatic
putative regulatory regions across different cell types indi-
cated functionality of these regions.

In HI-hESC the zinc finger protein ZNF143 was en-
riched in heterochromatic regions when compared to the
other cell lines (Table 1). The plethora of binding sites of
ZNF143 suggested another dimension, additional to its al-
ready known functionality in cell cycle regulation (36), pro-
liferation (37) and apoptosis (38) in embryonic stem cells.
Additionally, its binding sites overlapped significantly with
NRSF and SIXS5 (Figure 2B; Supplementary Figures S12B
and S14). The homologous nuclear proteins MAFF and
MAFK showed high occupancy of the heterochromatic pu-
tative regulatory regions in HI1-hESC, HepG2 and K562
(Table 1) and very strong interactions, confirming the pre-
vious studies uncovering their cooperative action (Figure
2C, Supplementary Figure S11) (39-41). Specifically, we de-
tected strong interactions in HepG2 and K562 for the over-
lapping model (Figure 2C; Supplementary Figures S12B
and S15) pointing out antagonism or tethering. Addition-
ally, the TFBSs of MAFK appeared to overlap significantly
with those of BACHI1 in HI-hESC, a finding that agrees
with their role in transcription activation and repression
(Figure 2C; Supplementary Figures S12B and S15) (42).
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Figure 2. Heatmap networks modelling the significant TF-TF interactions in putative regulatory regions of heterochromatin annotation. The colour
intensity in each cell represents the TF-TF interaction significance for each network type in the corresponding cell line. The shown interactions are
between (A) CTCF-RAD21-SMC3, (B) NRSF-SIX5-ZNF143, (C) BACHI-MAFF-MAFK, (D) CJUN-FOSLI-JUND, (E) USF1-USF2, (F) ARF2-

BATF-NFIC-RUNX3, (G) HNF4A-HNF4G and (H) FOXA1-FOXA2.

JUND is a member of the AP-1 transcription factor com-
plex that is considered to act both as an onco-suppressor
and as an oncogenic driver (43). We also saw it to be
one of the most frequent TFs in heterochromatic regions,
mainly in HepG2 and K562 cells (Table 1). The molecular
function of JUND has not been accurately defined. How-
ever, current research suggests that it negatively affects cell
proliferation (44). These findings were in agreement with
our results, since we did not observe JUND in GM 12878
and H1-hESC, while we did observe it in the other two
cell lines originating from cancers. Even more convincing
were the results of significant interactions that occurred be-
tween JUND and two other members of the AP-1 complex,
FOSLI and ¢-JUN. JUND overlapped significantly with c-
JUN in HepG2 and K562 (Figure 2D; Supplementary Fig-
ures S12B and S15), and it co-occurred significantly with
FOSLI1 in K562 (Figure 2D; Supplementary Figures S11
and S13). Additionally, we observed that USF1 and USF2
despite binding infrequently to the heterochromatic regions
(Table 1), except from HI1-hESC they appeared to cooperate
significantly (Figure 2D; Supplementary Figures S11 and

S13). USF1 and USF2 have been previously associated with
familial combined hyperlipidaemia (45), the metabolic syn-
drome (46) and to higher risk of cardiovascular disease (47).
In our study, they appeared to overlap significantly in the
heterochromatic regions of all cell lines (Figure 2E; Supple-
mentary Figures S12B and S14). The extent of the overlap
between these two TFs suggested antagonism or tethering
between USF1 and USF2. This offers a complementary evi-
dence in support of our previous findings that have detected
USF1 and USF?2 at protein coding gene promoters (48).

BATF occurred repeatedly in the heterochromatic re-
gions of GM 12878 (Table 1). BATF is a TF known to co-
operate with RUNX3 in regulation of vital CD8+ effector
T cells (49). Here, we observed that BATF had a plethora
of binding sites and cooperated with NFIC in heterochro-
matin regions, even though the latter was not among the
five most frequent TFs in the heterochromatin of GM12878.
Moreover, NFIC appeared to be significantly correlated
with RUNX3 and even more significantly with ATF2 (Fig-
ure 2F; Supplementary Figures S13-S15).
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Table 1. Abundance of TFBSs participating in putative regulatory regions of heterochromatic annotation for four examined cell lines and for each TF
network model (co-occurring, overlapping and neighbouring). The percentages and the colour code demonstrate the ratio of the TFBSs participating in

heterochromatin compared to the total number of input TFBSs

(iell co-occurring neighbouring overlapping
Line
CTCF 6.38% 3993 RAD21 4.12% 1760 | BATF 6.78% 2199
E RAD21 9.22% 3939 CTCF 2.79% 1747 | RUNX3 3.30% 2186
o NFIC 12.97% 3344 NFIC 5.25% 1355 | RAD21 4.38% 1873
g BCL11A  16.64% 2971 ATF2 4.32% 957 BCL11A  9.60% 1715
ATF2 10.97% 2428 SMC3 2.99% 911 NFIC 6.10% 1572
CTCF 6.25% 4496 CTCF 2.68% 1928 | CTCF 3.50% 2516
Q RAD21 5.87% 4496 RAD21 2.52% 1928 | RAD21 3.29% 2516
.'?:." ZNF143  5.30% 1625 USF2 5.90% 410 ZNF143  5.04% 1546
T USF1 5.96% 1552 USF1 1.57% 409 USF1 5.22% 1359
USF2 20.55% 1428 SIX5 10.52% 360 USF2 16.82% 1169
MAFF 53.47% | 20117 | CTCF 4.37% 2739 | MAFF 38.55% 14504
ai MAFK 31.46% 20117 | RAD21 4.87% 2706 | MAFK 22.68% 14504
% FOXA1 11.96% 6567 FOXA1 4.87% 2675 | JUND 8.78% 3839
= JUND 14.86% 6499 FOXA2 5.17% 2114 | CJUN 23.76% 3008
RAD21 10.60% 5896 JUND 4.35% 1904 | RAD21 5.23% 2910
MAFF 21.90% 5488 KAP1 32.84% 1342 | MAFF 20.32% 5093
~ MAFK 26.75% 5166 JUND 2.93% 1290 | MAFK 26.17% 5054
e CBX3 19.65% 3969 CBX3 5.77% 1165 | CBX3 11.40% 2303
= KAP1 3755 TRIM28  7.67% 914 ZNF143  6.51% 1890
TRIM28  24.62% 2933 SETDB1  13.38% 768 TRIM28  14.84% 1768

The homodimers HNF4a and HNF4y (50) that have
been reported to coordinate gene expression (51) appeared
to have a significant overlap of binding sites in HepG2 (Fig-
ure 2G; Supplementary Figures S13-S15). In the same cell
line, FOXA1 and FOXAZ2 that are known for their extensive
homology in their DNA binding domain (52), participated
significantly in the heterochromatin domains (Figure 2H;
Supplementary Figures S13-S15). They are known for con-
trolling liver tissue development, regulation of liver specific
genes (53,54) and have been proposed to share DNA bind-
ing motifs. In both cases the statistical significance of the
overlap of the binding sites suggested antagonism or teth-
ering for the aforementioned pairs of TFs (Figure 2G-H;
Supplementary Figures S13-S15).

Here we observed that the two most informative networks
were the overlapping (Supplementary Figure S12B) and the
co-occurring (Supplementary Figure S11). The neighbour-
ing network (Supplementary Figure S12A) appeared to be
depleted of interactions. Hence, in addition to a general in-
tuition of the TF interactions the generated networks can
offer detailed information about the detected TF interac-
tions.

Interactions between regulatory regions in three-dimensional
space

Finally, we investigated the involvement of the putative reg-
ulatory regions in the three dimensional genome architec-
ture employing annotated interactions from the recently
published results of Rao et al., 2014 (27). We examined the
participation of the identified putative regulatory regions
in the contacting domains that constitute the basis for the
loop formation and the looping domains (as defined by Rao
et al., 2014 (27)). The identified regions covered 84%, 91%
and 93% of the contacting domains for GM 12878, K562
and HeLa-S3, respectively (Supplementary Figure S16) and
the majority of the chromatin loops contained putative reg-
ulatory regions in both the upstream and the downstream
domains suggesting a strong regulatory effect on the forma-
tion of the three dimensional genome structure. On average
only 10% of the total number of the contacting domains did
not contain any of the regions (Figure 3 red ribbon).

Next we constructed the coordinates of the chromatin
loops from the coordinates of their boundaries (contact-
ing domains). Within the loops we observed a large par-
ticipation of the putative regulatory regions. The proposed
putative regulatory regions were present by 68%, 58% and
36% in the looping domains of GM 12878, K562 and HeLa-
S3, respectively (Supplementary Figure S17). On average
~65% of all the putative regulatory regions associated with
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Figure 3. Participation of the putative regulatory regions (including DNasel) in interacting domains for (A) GM 12878 and (B) K562 (27,57). Region
annotations are shown outside the circles. The percentages show the participation of regulatory regions of each annotation. The numbers between the
inner and the outer circle represent the amount of putative regulatory regions of a specific annotation interacting with other annotated regions. Putative
regulatory regions participating in multiple interactions have been counted multiple times while the numbers in pink stand for the actual amount of
putative regulatory regions detected by tfNet. The colour code for the putative regulatory region annotations is the same as in Figure 1B. The thickness of
the ribbons shows the number of interacting regions of each annotation. The arks of the innermost circle denote the edges of the corresponding ribbon.
(C) Enrichment of GWAS SNPs in putative regulatory regions of interacting domains. In the first track, the blue-box clusters represent ChIP-seq peaks
constituting regulatory regions located in the chromatin interacting domains. The lines show the three-dimensional interactions between the upstream
and the two downstream domains (Supplementary Table S8). The GWAS SNPs enriched in the regulatory regions are shown in the second track. The
red bars are harboured by regions within the interacting domains while those in blue harboured by the nearby regions. In the third track enrichment of
histone modification and DNasel signals are shown. In the final track the ENSEMBL genes close to the looping domains are shown. The arrows show the

transcription direction.
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gene activation and transcription were enriched in the loops
while insulators showed a lower level of enrichment (~44%).
On the other hand, more than half of the overall putative
heterochromatic regulatory regions (~65%) were detected
within such loops indicating a regulatory role. Taking to-
gether these results and the current findings of Heidari et
al., 2014 (55) we hypothesized that the putative regulatory
regions located within genomic loops participate in the reg-
ulation of genes within these loops. For the unannotated
cell line, HeLLa-S3, we lacked annotation information hence
we could not derive any conclusion (Supplementary Figure
S17B).

Insulators, defined by CTCF marks, contributed most to
the loop formation. This is in agreement with the suggestion
that CTCF and the two major components of the cohesin
complex, RAD21 and SMC3, anchor the majority of the in-
teracting domains (27,55). More importantly, a large num-
ber of the domain interactions occurred between insulators
which is in agreement with the property of CTCF to bridge
distal genomic regions (Figure 3A and B). Furthermore, our
results suggested a large number of distal interactions be-
tween promoters, enhancers and putative regulatory regions
of multiple annotations (Mixed) (Figure 3A and B). This
implies the involvement of other types of genomic loci in
forming genomic loops in addition to insulators. The major-
ity of the HeLa-S3 interactions were between distal regions
(intronic and intergenic). Moreover, putative regulatory re-
gions located within physical gene promoters appeared to
also participate in the distal interactions mechanism. This,
in addition to the observed interactions between promot-
ers and distal regions suggested cooperative gene regulation
(Supplementary Figure S18).

Rao et al., 2014 showed that the promoter—enhancer in-
teractions constitute a major part of the interacting do-
mains (Figure 3A and B). Here, we also observed that the
participation of putative regulatory regions annotated as
heterochromatic was poor (Figure 3A and B). Nevertheless,
75% and 56% of the heterochromatic putative regulatory re-
gions were present within the looping domains of GM 12878
and K562, respectively (Supplementary Figure S17). Taken
together this evidence demonstrated that heterochromatin
is not as silent and inactive as originally assumed by classi-
cal biology. Our data indicated that regulatory regions lack-
ing histone modification signals may play an important role
in the gene expression regulation. Yet a large number of reg-
ulatory regions remains to be characterized, as well as the
genes they act on.

The role of GWAS SNPs in the 3D genome conformation

The majority of the SNPs identified through GWAS are lo-
cated in non-coding regions which have made their char-
acterization challenging. Integration of regulatory regions
with genomic interactions allows us to characterize these
SNPs by mapping the regulatory regions where the SNPs
are harboured by contacting domains. In total, we mapped
46 GWAS SNPs to putative regulatory regions harboured
by contacting domains. Figure 3C shows enrichment of
blood-related GWAS SNPs in putative regulatory regions
of K562. Specifically, four GWAS SNPs were enriched in
putative regulatory regions in chromosome 11. These regu-

latory regions except for harbouring SNPs and containing
large clusters of TFs were also part of the chromatin three-
dimensional formation of two genomic loops (Figure 3C).
Additionally, we detected five other SNPs that were located
within putative regulatory regions and genomic loops. One
of these SNPs, rs174548, has been recently reported to par-
ticipate in the regulation of cis/trans-18:2 by FADSI and
FADS2 genes (56).

Most of the SNPs detected in this specific region have
been associated to red blood cell fatty acids levels, and
they are also located nearby genomic loci encapsulating the
fatty acid desaturase genes. Based on this finding we inves-
tigated if any of the four SNPs located in putative regula-
tory regions within the interacting domain of K562 was en-
riched in putative regulatory regions of HepG2. We discov-
ered that rs174541 which is located in the intergenic region
downstream the FADS1 and FENI genes, and upstream
the TMEM258 gene, and rs174538 which is located in the
5-prime UTR variant of the TMEM258 gene were present
in HepG?2 regions. The map of histone modifications, the
presence of several TFBSs and the enrichment of GWAS
SNPs near the genes FADS1, FADS2, FADS3, FENI1 and
TEM258 may provide further explanations of the role of
these SNPs. Our data suggested that in addition to their
previously known role (56), these SNPs may also affect the
functionality of their distant interacting domains.

DISCUSSION

In this study we validated our hypothesis that co-localized
clusters of TFs can accurately define putative regula-
tory regions in a genome-wide scale. Additionally, we
demonstrated the species-independency and the cell-line-
specificity of the algorithm. Moreover, we manifested the
adaptability of the tool and its ability to efficiently visualize
the results.

TF-clusters are candidate regulatory regions of various
functionalities, e.g. promoters, enhancers and insulators.
We attempted to annotate the detected putative regulatory
regions based on the physical gene locations and based on
the machine learning annotations provided by ENCODE
(ChromHMM). We observed an extensive overlap with
both ChromHMM annotations and DNasel peaks, sug-
gesting that our findings were indeed functional. We also
observed a significant enrichment of GWAS SNPs. Surpris-
ingly, a large number of putative regulatory regions was
detected in DNA compartments depleted of any histone
modification signal, characterized as heterochromatin by
ChromHMM. The latter suggested a regulatory function of
genomic regions located in “silent” DNA domains.

In addition to the regulatory region detection function-
ality, our algorithm sheds light onto the interactions of the
TFs participating in the formation of the regions. Specif-
ically, we took advantage of the detected TF interactions
and we constructed three types of statistically significant
TF-interaction networks, co-occurring, neighbouring and
overlapping. Studying the networks we identified the bind-
ing preferences of TFs into putative regulatory regions. For
example, we observed that MAFF and MAFK preferred
binding to the same regulatory regions and they did appear
to interact with each other. Furthermore, peaks of HNF4a-



HNF4vy and of FOXA1-FOXA?2 appeared to bind on the
exact same DNA locations, suggesting antagonism or teth-
ering. We were able to identify differences in TF interactions
among cell lines. Provided that there will be enough data,
we believe that this study may be extended towards inves-
tigating the differences in TF interactions among different
tissues or even different species.

Next, we investigated the participation of the detected pu-
tative regulatory regions in the formation of the 3D genomic
loops. We detected a range of putative regulatory regions
located within the looping domains that regulate genes of
similar expression patterns. We were also able to identify the
majority of the regulatory regions that interacted with each
other to construct the loops. Insulators, or CTCF-bound
regions, appeared to be the most frequent regions in this
mechanism. However, the regulatory regions annotated as
heterochromatic did not appear to participate largely in the
formation of looping domains, suggesting an unknown but
promising regulatory functionality.

Finally, we searched for GWAS SNPs located in the pu-
tative regulatory regions participating in the three dimen-
sional genome conformation and we detected 46 SNPs that
were harboured in these regions for K562. The majority of
the investigated SNPs have been reported to affect the levels
of fatty acids in blood cells. Here, we suggest that they are
also closely related to affect the bridging of distal loci.
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Supplementary Data are available at NAR Online.
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