Skip to main content
. 2016 Sep 9;6(11):3507–3515. doi: 10.1534/g3.116.034488

Table 2. Comparison of alignment algorithms for Pool-Seq data: summary across data sets.

Algorithm Poly. FST-sim. FST-real Rank-sum
novoalign(l) 2 3 1 6
novoalign(g) 5 2 2 9
clc4(l) 3 5 8 16
bwa mema 12 1 4 17
bwa bwaswa 7 9 3 19
gsnapa 1 7 11 19
clc4(g) 4 6 10 20
bwa alna 6 8 7 21
segemehla 11 4 13 28
bowtie2(l)a 10 13 5 28
bowtie2(g)a 13 11 6 30
ngm(g)a 9 12 9 30
ngm(l)a 8 10 12 30
mrfasta 14 14 14 42

Ranks of the algorithm in the previous evaluations are shown: overall suitability (poly: Figure 2), allele frequency differences using simulated data (FST-sim.: Figure 2), and allele frequency differences using real data (FST-real: Figure 2). Algorithms are sorted according to performance with best the performing algorithm shown at the top (minimizing the rank-sum).

a

Freely available algorithm.