Table 2. Comparison of alignment algorithms for Pool-Seq data: summary across data sets.
Algorithm | Poly. | -sim. | -real | Rank-sum |
---|---|---|---|---|
novoalign(l) | 2 | 3 | 1 | 6 |
novoalign(g) | 5 | 2 | 2 | 9 |
clc4(l) | 3 | 5 | 8 | 16 |
bwa mema | 12 | 1 | 4 | 17 |
bwa bwaswa | 7 | 9 | 3 | 19 |
gsnapa | 1 | 7 | 11 | 19 |
clc4(g) | 4 | 6 | 10 | 20 |
bwa alna | 6 | 8 | 7 | 21 |
segemehla | 11 | 4 | 13 | 28 |
bowtie2(l)a | 10 | 13 | 5 | 28 |
bowtie2(g)a | 13 | 11 | 6 | 30 |
ngm(g)a | 9 | 12 | 9 | 30 |
ngm(l)a | 8 | 10 | 12 | 30 |
mrfasta | 14 | 14 | 14 | 42 |
Ranks of the algorithm in the previous evaluations are shown: overall suitability (poly: Figure 2), allele frequency differences using simulated data (-sim.: Figure 2), and allele frequency differences using real data (-real: Figure 2). Algorithms are sorted according to performance with best the performing algorithm shown at the top (minimizing the rank-sum).
Freely available algorithm.