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ABSTRACT Gilthead sea bream (Sparus aurata) is a species of paramount importance to the Mediterranean
aquaculture industry, with an annual production exceeding 140,000 metric tons. Pasteurellosis due to the Gram-
negative bacterium Photobacterium damselae subsp. piscicida (Phdp) causes significant mortality, especially
during larval and juvenile stages, and poses a serious threat to bream production. Selective breeding for improved
resistance to pasteurellosis is a promising avenue for disease control, and the use of genetic markers to predict
breeding values can improve the accuracy of selection, and allow accurate calculation of estimated breeding
values of nonchallenged animals. In the current study, a population of 825 sea bream juveniles, originating from a
factorial cross between 67 broodfish (32 sires, 35 dams), were challenged by 30 min immersion with 1 · 105 CFU
virulent Phdp. Mortalities and survivors were recorded and sampled for genotyping by sequencing. The restric-
tion-site associated DNA sequencing approach, 2b-RAD, was used to generate genome-wide single nucleotide
polymorphism (SNP) genotypes for all samples. A high-density linkage map containing 12,085 SNPs grouped into
24 linkage groups (consistent with the karyotype) was constructed. The heritability of surviving days (censored
data) was 0.22 (95% highest density interval: 0.11–0.36) and 0.28 (95% highest density interval: 0.17–0.4) using the
pedigree and the genomic relationship matrix respectively. A genome-wide association study did not reveal
individual SNPs significantly associated with resistance at a genome-wide significance level. Genomic prediction
approaches were tested to investigate the potential of the SNPs obtained by 2b-RAD for estimating breeding
values for resistance. The accuracy of the genomic prediction models (r = 0.38–0.46) outperformed the traditional
BLUP approach based on pedigree records (r = 0.30). Overall results suggest that major quantitative trait loci
affecting resistance to pasteurellosis were not present in this population, but highlight the effectiveness of 2b-RAD
genotyping by sequencing for genomic selection in a mass spawning fish species.
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Infectiousdiseasesareamajor threat to theprofitability, sustainability, and
welfare status of farmed fish production (Yáñez et al. 2014). Gilthead sea
bream (Sparus aurata) is one of the most important farmed fish in
Mediterranean countries, with an annual production of�146,000metric
tons (Federation of European Aquaculture Producers 2014). Pasteurel-
losis due to Photobacterium damselae subsp. piscicida (Phdp) is one
of the primary disease problems faced by the sea bream aquaculture
industry. High levels of mortality (�90–100%) are frequently ob-
served, especially in periods where water temperature rises above
18�, with larvae and juveniles being most susceptible (Noya et al.
1995; Magarinos et al. 2001).

Selection for improved genetic resistance in aquaculture breeding
schemes is a valuable tool to help prevent or reduce disease outbreaks,
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especially where effective therapeutic agents or vaccines are lacking
(Bishop and Woolliams 2014). Moderate to high heritabilities have
been estimated for resistance to many common diseases, indicating
that rapid genetic progress can be made through selective breeding
(Ødegård et al. 2011). In addition, recent technological advances in
genome-wide sequencing and genotyping technology offer the poten-
tial of deriving more accurate estimated breeding values (EBVs) for
individual selection candidates, as compared to the classical breeding
approach where breeding values are typically estimated at a family level
(Goddard and Hayes 2009). The application of genomic data to breed-
ing is particularly valuable for disease resistance, which is typically
expensive or impossible to measure on the selection candidates them-
selves. While marker-assisted selection for major disease resistance loci
has been well documented in Atlantic salmon (Salmo salar) breeding
programs (Houston et al. 2008, 2010; Moen et al. 2009), few successful
examples exist for other farmed finfish species. Genomic prediction
uses genome-wide markers to estimate breeding values, and can deliver
significant improvements in selection accuracy compared to traditional
pedigree-based approaches, even for traits with a polygenic architecture
(Odegård et al. 2014; Tsai et al. 2015, 2016; Vallejo et al. 2016).

Previous studies into the genetic resistance to pasteurellosis in sea
bream have detected resistance quantitative trait loci (QTL) using
microsatellite markers (Antonello et al. 2009; Massault et al. 2010).
However, these studies were restricted by the low resolution of micro-
satellite markers, as compared to the high-density single nucleotide
polymorphism (SNP) genotypes offered by SNP arrays (e.g., Houston
et al. 2014) or genotyping-by-sequencing approaches (Davey et al.
2011). Restriction-site associated DNA (RAD) sequencing is a reduced
representation high-throughput sequencing technique for the concur-
rent detection and genotyping of SNP markers in multiplexed samples
with a unique nucleotide barcode (Baird et al. 2008). RAD sequencing
and similar genotyping-by-sequencing techniques rely on digestion of
the genomic DNA with a restriction enzyme, and subsequent high-
depth sequencing of the flanking regions. These techniques have been
applied in several studies of aquaculture species to generate high-density
linkage maps (e.g., Palaiokostas et al. 2013a,b; Gonen et al. 2014;
Palaiokostas et al. 2015) and perform genome-wide association studies
(GWAS) in a cost-efficient manner (Campbell et al. 2014). A flexible
and easily streamlined variation of RAD sequencing, named 2b-RAD
sequencing, utilizes type IIB restriction enzymes to cleave genomicDNA
upstream and downstream of the target site (Wang et al. 2012). In
theory, 2b-RAD samples all the endonuclease recognition sites for se-
quencing, circumventing potential biases that may result from the size
selection step in the original RAD protocol (Puritz et al. 2014). 2b-RAD
data have also been applied for genetics studies in aquaculture species,
for example to test genomic prediction in a limited number of Yesso
scallop (Patinopecten yessoensis) families (Dou et al. 2016).

In this study, we used 2b-RAD sequencing to identify and genotype
genome-wide SNPs in juvenile sea bream challengedwith virulent Phdp
bacteria, and recorded for survival time. A high-density SNP linkage
mapwas constructed and aGWASwas performed to test the association
between individual loci and resistance topasteurellosis. Finally, genomic
prediction of resistance was tested using several genomic selection
models and marker densities to evaluate its potential in selection for
improved resistance to pasteurellosis in sea bream.

MATERIALS AND METHODS

Sample collection and preparation
The experimental population used in the present experimentwas part of
a larger group of juvenile sea bream that were subjected to an exper-

imental challengewithPhdp toestimateheritabilityofdisease resistance,
as reported in Antonello et al. (2009). Fish were provided by the fish farm
Valle Ca’ Zuliani (Monfalcone, Italy). All broodstock fish were originally
sampled from wild populations. Fertilized eggs were collected on the
same day (year 2006), from natural mass spawning events occurring in
four different broodstock tanks; therefore all fish had approximately the
same age. Each broodstock tank contained 50–60 fish with a sex ratio 3:1
females to males. Approximately 10,000 eggs were collected, pooled, and
kept in a separate tank without any size sorting until 110 d old.

All fish were then transferred to the Istituto Zooprofilattico Sper-
imentale delle Venezie (Legnaro, Italy) for the experimental challenge.
Fishwere divided into two aerated tanks (A andB), eachwith 800 liter of
recirculating seawater (salinity 35 ppt). Water temperature was main-
tained at 19�. After 1 wk of acclimation, fish were experimentally in-
fected with a highly virulent strain of Phdp (strain 249/ittio 99), as
described in Antonello et al. (2009). Mortality was monitored daily
for 19 d (Supplemental Material, Table S1). Mortality levels were nearly
identical for both tanks, and only fish from tank A were included in the
current study. Fish used in the challenge originated from 67 broodfish
(32 sires, 35 dams). As already described in Antonello et al. (2009) and
Massault et al. (2011), parentage analysis was carried out using a panel
of nine microsatellite loci (Table S2).

2b-RAD library preparation and sequencing
A total of 892 2b-RAD libraries (67 parents and 825 juveniles) were
constructed by following the protocol reported by Wang et al. (2012),
with some modifications (Pecoraro et al. 2016). Template DNA for
each individual (500 ng) was digested in 6 ml reaction volume using
1 U AlfI (Thermo Fisher Scientific) at 37� for 1 hr, followed by enzyme
heat inactivation at 65� for 20min. The ligation reaction was performed
by combining 5 ml of digested DNA with 20 ml of a ligation master
mix containing 0.4 mM each of two library-specific adaptors with fully
degenerate cohesive ends (59 -NN- 39), 0.2mMadenosine 59-triphosphate
(New England Biolabs), and 1000 U T4 DNA ligase (CABRU, Arcore,
Italy). Ligation was carried out at 16� for 3 hr, with subsequent heat
inactivation for 10 min at 65�.

Sample-specific barcodes were designed through a Barcode Gener-
ator program (http://comailab.genomecenter.ucdavis.edu/index.php/
Barcode_generator). PCR reactions (50 ml) were prepared containing
12 ml of ligated DNA product, 0.2 mM of each primer, 0.3 mM dNTP,
5· Phusion HF buffer, and 2 U Phusion high-fidelity DNA polymerase
(New England Biolabs). Each library was PCR amplified using the
following conditions: 13 cycles of 95� for 5 sec, 60� for 20 sec, and
72� for 5 sec.

Adaptor and primer sequences were those reported in Wang et al.
(2012). PCR products were purified using the SPRIselect purification
kit (Beckman Coulter, Pasadena, CA) and quantified through a Qubit
2.0 Fluorometer (Invitrogen). The quality of all amplicon libraries was
checked at 1.8% agarose gel. Additionally, the quality of 10% of randomly
selected libraries was also assessed by running them on an Agilent
2100 Bioanalyzer.

Individual librarieswerepooled intoequimolaramountsbyadopting
two different multiplexing strategies for parents (24 libraries per pool)
andoffspring (48 librariesperpool).Thequalityof eachpoolwasverified
onAgilent 2100Bioanalyzer. Finally, pooled librarieswere sequencedon
anIlluminaHiSeq2500platform(Illumina,SanDiego,CA)using50base
single-end sequencing (v3 chemistry).

Genotyping RAD alleles
Quality and adapters trimming of sequenced reads were performed by
running a customized script (Pauletto et al. 2016; Pecoraro et al. 2016),
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obtaining 34-bp long fragments. SNP calling was performed using
STACKS v1.23 (Catchen et al. 2013).

For each family/cross, individual genotypes were constructed using
components of the STACKS pipeline as follows: (i) for each individual,
ustacks programwas employed for building loci from all quality control
(QC)-passed reads using parameters -m 10 -M 2 -N 3 for parents and
-m 5 -M 2 -N 3 for offspring, (ii) a catalog of loci unique for all
families/crosses was constructed by using all parents’ reads on cstacks
program, then (iii) each set of parents/offspring per cross was matched
separately against such a catalog (sstacks program), followed by geno-
type assignment by setting the following parameters on the genotypes
program: -c–min_hom_sequations 7–max_het_sequations 0.05.

Unique tags created by STACKS were mapped against a draft
assembly of S. aurata genome (L. Bargelloni, personal communication).
Mapping analysis was carried out bymeans of CLCGenomicWorkbench
7.5, with stringent criteria (length fraction = 0.9, similarity fraction = 0.9,
nonspecific match handling = ignore).

Linkage map construction
Linkage map construction was performed using Lep-Map v2 (Rastas
et al. 2013). QCwas performed for each full sibling family by excluding
SNPs with minor allele frequency ,0.05 and those deviating from
expected Mendelian segregation (P , 0.001). Linkage groups were
formed using a minimum LOD threshold value of 8 in the Separate-
Chromosomesmodule, allowing a maximum distance between consec-
utive SNPs of 50 cM. Marker order within each linkage group was
performed using the OrderMarkers module, where the likelihood of
marker order is computed by using a hidden Markov model (Rastas
et al. 2013). Map distances were calculated in centimorgans, using the
Kosambi mapping function.

Trait definition and heritability estimation
Heritability of surviving days was estimated with the R/BGLR software
(Pérez and de Los Campos 2014), using both the pedigree-based and
the genomic relationship matrix.

The animal model was applied:

y ¼ mþ Zuþ e;

where y is the vector of recorded phenotypes (days to death; animals
surviving at the end of the experiment treated as missing values
sampled from corresponding truncated normal distribution with
the resulting values being $20), m is the vector of the intercept, Z

is the incidence matrix relating phenotypes with the random animal
effects, u is the vector of animal effects �N(0, Asg

2) with either A
corresponding to the pedigree-based relationship matrix or G corre-
sponding to the genomic relationship matrix, and sg

2 corresponding
to the additive genetic variance. Finally, e is the vector of residuals.
The Gmatrix was estimated according to VanRaden (2008) using the
kin function of the R/synbreed package (Wimmer et al. 2012; File S1).
The additive genetic variance was estimated by applying Markov
Chain Monte Carlo (MCMC) algorithm, using a prior that followed
an inverse scaled x2 distribution (df¼ 5). TheMCMC used 10-Million
iterations, first 10% of which were discarded, and values were stored
every 1000 iterations thereafter. Convergence of the resulting posterior
distribution was assessed both visually (inspecting the resultingMCMC
plots) and analytically with Geweke’s diagnostic using R/boa v1.1.7
(Smith 2007).

Heritability for thenumber of survivingdayswas estimatedusing the
following formula:

h2 ¼ s2
g

s2
g þ s2

e
;

where s2
g estimated additive genetic variance and s2

e the residual
variance.

GWAS
To test the association between individual SNPs and resistance to
pasteurellosis (measured as surviving days), a GWAS was performed
using R/rrBLUP (Endelman 2011). Themixedmodel applied was based
on Yu et al. (2006) and had the following format:

y ¼ Xaþ Zuþ e;

where y is the vector of the phenotypes (surviving days or overall
survival), a is the vector of unknown marker effects, u is the vector of
animal random effects �N(0, Gs2

g), and e is the vector of residuals.
The matrixG represents the genomic relationship matrix as described
above, and s2

g is the additive genetic variance estimated using REML.
X and Z are incidence matrices relating y to a and u, respectively.
According to the above model, additive SNP effects are treated
as fixed effects, with the inclusion of the random animal effect to
decrease spurious associations due to (genomic) relationships be-
tween the animals (Yu et al. 2006). The genome-wide significance
threshold for the estimated additive SNP effects was calculated using

Figure 1 Distribution of surviv-
ing days across disease chal-
lenge. Frequency of mortalities
per day during 19 d of chal-
lenge. Survivors were assigned
a value of 20.
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a Bonferroni correction (0.05/N), where N represents the number of
QC-filtered SNPs across the entire genome.

Genomic prediction
Agenomic prediction approachwas conducted to quantify the accuracy of
the breeding values estimated using the SNP markers to predict the
phenotypic trait values (surviving days). SNPs with.15% missing geno-
types were removed in order to minimize impact of imputed genotypes,
since used software cannot handle missing genotypes. Missing values of
the remaining SNPs were imputed using R/synbreed (Wimmer et al.
2012). Genomic breeding values were estimated using rrBLUP, BayesA,
BayesB (Meuwissen et al. 2001), and BayesC (Habier et al. 2011) models
using the R/BGLR (Pérez and de Los Campos 2014) software. The above
models differ in regard to the prior distribution of the marker effects.
Briefly, rrBLUP induces homogenous shrinkage across markers by using
the Gaussian distribution, while in BayesA the usage of a scaled-t distri-
bution induces marker size effect shrinkage, allowing for variable marker
effect sizes. Models BayesB and BayesC also perform variable selection,
with the difference between the two being the usage of a scaled-t or a
Gaussian prior density, respectively (Meuwissen et al. 2001; de losCampos
et al. 2013). To compare the accuracy of genomic EBVs (GEBVs) to the
pedigree-based EBVs, pedigree-based BLUP (PBLUP; Henderson 1975)
was applied to calculate breeding values using the same software.

The general form of the fitted models was the following:

y ¼ hþ e;

where y is the vector of phenotypic records, h is the linear predictor,
and e is the vector of residuals.

The linear predictor, h, in the case of rrBLUP, BayesA, BayesB, and
BayesC, had the following general form:

h ¼ 1mþ X1b1;

where m is the intercept, X1 is the design matrix relating the pheno-
types to the markers, and b1 is the vector of marker effects with

corresponding priors depending on the model used. Marker coding
followed the format where the heterozygotes were coded as 1 and the
two alternate homozygotes as 0 and 2.

The linear predictor, h, in the case of pedigree BLUP, had the
following form:

h ¼ 1mþ u;

where u is the animal random effect vector �N(0, As2
g) with the

matrix A representing the pedigree estimated relationship matrix.
The parameters of the above models were estimated through MCMC
(110,000 iterations; burn-in: 10,000; thin: 100).

Assessment of the accuracy of breeding value predictions was
conducted according to the following procedure. The data set was
randomly split into a training set (n = 578 animals) and a validation
set (n = 200). The above was repeated 100 times, with the obtained
prediction accuracies being adjusted for the trait heritability for each
tested model. The GEBVs for each replicate of the validation data set
were estimated as:

GEBV ¼ Xu;

where X is the incidence matrix relating GEBV with SNP genotypes
and u is the vector of estimated SNP effects from the corresponding
training data set.

The accuracy of the estimated GEBV was approximated as:

r ¼ ðGEBV; yÞ=h;
where y is the vector of recorded phenotypes and h is the square root
of the heritability. In all tested scenarios, the heritability estimated
using the genomic relationship matrix was used. Reported accuracies
for each testedmodel refer to themean accuracy of the above-mentioned
100 replicates of validation data sets.

In order to test the predictive ability of varying SNPdensities, the above
procedure was followed using (i) SNPs spaced.1 cM apart (2614 SNPs)
or (ii) SNPs spaced .5 cM apart (705 SNPs) on the linkage map.

Figure 2 The Gilthead sea
bream linkage map. The heat-
map on the right side provides
scale of color coding for the size
of SNP clusters.
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Data availability
Raw reads were deposited in the European Bioinformatics Institute
(EBI) repository under project ID SRP081498. Table S1 contains the
phenotypic data. Table S2 contains the pedigree. Table S3 and Table S4
contain summaries of obtained reads for parental and offspring sam-
ples respectively. Table S5 contains the location of the linkage map
SNPs. Table S6 contains the genotypic data. File S1 contains the R
script used for genomic prediction.

RESULTS

Disease challenge
The challenged population consisted of 75 full sibling families, with a
mean family size of 10, originating from a factorial cross between
67 broodfish (32 sires, 35 dams). The largest full-sib family consisted
of 114 animals, while the smallest had only two animals (three full-sib
families). The overall survival at the end of the pasteurellosis challenge
was 4.7%. Observedmortality levels showed three distinct peaks on day
7 (10.4% loss), day 11 (14% loss), and day 15 (5.7% loss), followed by a
steady reduction in daily mortality rate (Figure 1).

Genotyping RAD alleles
Themean number of raw reads was 8.76million and 4.51million, while
the numberof readspassingQCwas 7.74million (88%) and3.69million
(81%) for parents (Table S3) and offspring (Table S4), respectively. The
STACKS catalog consisted of 202,598 unique 2b-RAD loci, of which
73,876 contained at least one SNP in the parents (EBI repository
SRP081498). To confirm the identity of loci created by STACKS, the
202,598 tags of the catalog were mapped against an S. aurata draft
reference genome assembly (L. Bargelloni, unpublished data). A high
percentage of 2b-RAD loci were successfully mapped, with 93.5% of
tags showing a unique match to the reference genome. In order to
maximize the number of informative SNPs and minimize the amount
of missing or erroneous data, RAD-tags that were retrieved in at least

75% of the samples, and that carried only one or two SNPs were
retained. A total of 48 animals with missing data.30% were excluded
from subsequent analysis. A total of 21,974 putative SNPs were finally
used for construction of the genetic map from 777 disease challenged
offspring (genotypic missing data ,30%) and their corresponding
67 parents.

Linkage map
The linkage map consisted of 12,085 SNPs that were grouped into
24 linkagegroups, inaccordancewithgiltheadseabreamkaryotype,with
a total map length of 3899 cM (Figure 2, Table 1, and Table S5). The
remaining SNPs (9889) either failed to pass QC filters, or were not
placed on the resulting linkage groups during mapping, and these were
discarded. The female and male maps were comparable with total
lengths of 3822 and 4010 cM, respectively. The number of SNPs per
chromosome ranged from 366 to 607 (mean = 503; SD = 53), while
linkage group length ranged from 115 to 202 cM (mean = 162; SD =
26). The correlation between number of SNPs and corresponding chro-
mosome map length was 0.74 (n = 24 linkage groups).

Heritability estimation and GWAS
The heritability of surviving days (censored data) was 0.22 (95%highest
density interval: 0.11–0.36) and 0.28 (95% highest density interval:
0.17–0.4) using the pedigree and the genomic relationship matrix,
respectively, of the 777 disease challenged offspring. No SNPs sur-
passed the Bonferroni-corrected genome-wide significance threshold
(P = 4.1 · 1026; a = 0.05; Table S6). The SNPs with the lowest P values
(P, 1023) were located in linkage groups 1–3, 10, 17, 20, and 21 (Fig-
ure 3).

Genomic prediction
Genomic prediction was tested as ameans of obtaining breeding values,
and compared to prediction using a pedigree-based approach (File S1).
The prediction was conducted using genotype information from 11,239
SNP markers (passed QC filters set for genomic prediction) for the
777 disease challenged animals that were randomly split in training
(n = 578) and validation (n = 200) datasets. The application of all the
genomic prediction models resulted in higher accuracies than those
achieved using PBLUP. Prediction accuracy with PBLUP was 0.3 vs.
0.38–0.46 for the genomic prediction models, with highest accuracy
being observed using the BayesAmethod (Table 2). Prediction accuracy
droppedwhenmore sparse SNPmarker datasets were usedwith the last
scenario (utilizing SNPs . 5 cM apart), giving similar accuracies with
the ones obtained using PBLUP. In the scenario of utilizing only SNPs
located .1 cM apart on the linkage map (2614 SNPs), accuracies
ranged between 0.3 and 0.36, with the highest accuracy obtained using
rrBLUP. For the dataset utilizing only SNPs located .5 cM apart

n Table 1 Consensus linkage map

Linkage Group No. Markers Length (cM)

1 607 202
2 602 192
3 558 183
4 560 206
5 554 182
6 536 167
7 530 159
8 522 171
9 521 138

10 518 197
11 508 147
12 499 142
13 500 200
14 489 156
15 485 162
16 484 121
17 480 163
18 470 164
19 471 154
20 461 157
21 455 134
22 454 130
23 452 157
24 366 115
Total 12,085 3899

n Table 2 Genomic prediction accuracies for surviving days

Model Accuracya
Accuracy Accuracy

SNPs 1 cM apartb SNPs 5 cM apartc

PBLUP 0.30 6 0.03 — —

rrBLUP 0.44 6 0.04 0.36 6 0.03 0.31 6 0.04
BayesA 0.46 6 0.03 0.35 6 0.03 0.31 6 0.04
BayesB 0.38 6 0.03 0.30 6 0.04 0.29 6 0.03
BayesC 0.44 6 0.04 0.35 6 0.04 0.29 6 0.03

All data are presented as 6 SEM.
a
Analysis included 12,085 SNPs.

b
Analysis included 2614 SNPs.

c
Analysis included 705 SNPs.
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(705 SNPs), accuracies ranged between 0.29 and 0.31, with highest
accuracies obtained using rrBLUP and BayesA.

DISCUSSION
Gilthead sea bream (S. aurata) is a farmed species of paramount im-
portance forMediterranean aquaculture.While vaccines can offer some
protection against pasteurellosis, the low immune competence ob-
served in larval and juvenile stages renders this protection temporary
(Antonello et al. 2009). Breeding for improved genetic resistance offers
an additional and complementary tool to combat losses due to this
disease. While traditional family-based selective breeding is applied
in sea bream, it cannot utilize within-family genetic variation in the
trait. Applying genomic information into selective breeding schemes
raises the possibility of selecting directly for favorable alleles at major
QTL (marker-assisted selection), or incorporating all markers in the
prediction of breeding values (genomic selection). As such, genomics-
enabled breeding can expedite the rate of genetic gain, and can poten-
tially reduce the need for yearly trait recording. However, to enable
these benefits, substantial genomic resources are typically required (e.g.,
a high-density SNP genotyping platform), which is currently lacking in
sea bream. This is likely to change in the near future as the reference
genome sequence and associated genomic tools/data become available.
In the meantime, RAD sequencing and similar techniques can readily
be applied to generate genome-wide SNP marker datasets, even in the
absence of such genomic resources (Baird et al. 2008).

High-density SNP linkage maps have been constructed for several
aquaculture species, and are useful for both QTL positioning and
reference genome assembly (Gonen et al. 2014; Palaiokostas et al.
2013a). The most recent linkage map of sea bream consists mainly of
microsatellites (Tsigenopoulos et al. 2014), lacking the necessary resolu-
tion for successful implementation of GWAS and genomic prediction. In
the current study, we present the first high-density linkage map for this
species, consisting of 12,085 SNPs on 24 linkage groups, which is consis-
tent with the karyotype. The genetic map presented here spans 3899 cM,
while the map of Tsigenopoulos et al. (2014) has a total length of 1769.7
cM, which may reflect the larger number of markers used in the current
study. This trend of increase in map distance with increased marker
density was observed with previous sea bass (Dicentrarchus labrax) link-
age maps (Chistiakov et al. 2005, 2008; Palaiokostas et al. 2015).

The estimated heritability of resistance was moderate (0.22 and 0.28
for the different models) compared to those previously reported for
disease resistance traits in various aquaculture species (Ødegård et al.
2011). Nonetheless, successful implementation even in the case of low
heritability traits in breeding programs is still possible, as demonstrated
in livestock (Heringstad et al. 2003). Also, since heritability of mortality
traits are frequency dependent, with maximal values reported at in-
termediate mortality levels (Bishop and Woolliams 2014), the low sur-
vival rate in the current study may have resulted in an underestimate,
and analysis of additional challenge and field data are merited.

The GWAS results pointed to a polygenic or oligogenic genetic
architecture for resistance to pasteurellosis, with no genome-wide
significant QTL identified, with the lowest P values indicative of puta-
tive suggestive QTL on linkage groups 1–3, 10, 17, 20, and 21. Un-
fortunately, the lack of an integrated linkage map for sea bream does
not allow direct comparison of the previously described resistance QTL
(Massault et al. 2010) with the current study. Furthermore no major
QTL were identified in the above study, with the largest QTL for
surviving days explaining �4% of the phenotypic variance. The fact
that genomic prediction using all tested models gave similar prediction
accuracies, a phenomenon often observed in the study of polygenic
traits (Meuwissen et al. 2001; Kizilkaya et al. 2010), seems to support
the hypothesis of polygenic resistance. Nevertheless, since the selected
priors will influence the output of the Bayesian models (Gianola 2013),
interpretation of genetic architecture based on these results should be
treated with caution. Additionally, the moderate sample size in the
current study is likely to limit the statistical power to detect small to
medium effect QTL. Further, the low mortality level precludes effective
estimation of genetic parameters for survival per se, and the genetic
correlation between survival time (days to death) and overall survival is
unknown.

The results from the genomicprediction approachwere encouraging
for practical implementation of selective breeding for genetic resistance
in sea bream, with the genomic prediction models outperforming
traditional BLUP. The advantage of the genomic-based models was
retained also when only SNPs at 1-cM location intervals were used,
which may be useful for reducing genotyping costs and improving cost
effectiveness. However, due to the limited number of families in the
current study, the training and validation sets contain closely related

Figure 3 (A) A Manhattan plot highlighting the association between individual SNPs and surviving days. (B) A QQ plot showing the relationship
between the observed and expected 2log(P) values from the GWAS.
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animals, which will increase the accuracy of prediction. Additional
testing of genomic prediction at varying marker densities on separate
and preferably larger populations would be required to ascertain the
appropriate density for commercial application of genomic selection.
Thebenefit of genomicpredictionover apedigree-basedapproach is likely
because of the ability to capture within-family genetic variation. In mass-
spawning species such as sea bream, in which family size and structure is
difficult to control, this approach is likely to be particularly advantageous.
Overall, the current study demonstrates that SNP markers generated via
2b-RADareeffectiveatcapturingthegeneticvariation inacomplex trait in
a sea bream breeding population. This approach is likely to be useful in
other species with less-developed genomic tools, and provides further
evidence that incorporation of genomic selection is likely to result in
significant improvement in selection accuracy and genetic gain compared
to traditional family selection in aquaculture breeding.

Conclusions
2b-RAD sequencing was applied to investigate genetic resistance to
pasteurellosis in gilthead sea bream. The SNP data generated were
applied to create the first high-density linkage map for sea bream. Only
suggestive QTL were detected, implying that resistance to pasteurellosis
has an oligogenic-polygenic architecture for the studied population.
Genomic prediction using the 2b-RAD genotype data were effective,
with substantial improvement in prediction accuracy over the pedigree-
basedmodel. This highlights the utility of genotyping by sequencing for
genomic prediction of disease resistance in aquaculture species, and its
potential to apply genomic selection in commercial breeding programs.
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