Table 4. Predictive ability for Dent, using a training set size of 200 genotypes.
Model | U | SU | CD | S | R | SE |
---|---|---|---|---|---|---|
Silking, Dent, 200 genotypes | ||||||
QTL | 0.461 | 0.471 | 0.396 | 0.409 | 0.367 | 0.008 |
GBLUP | 0.822 | 0.820 | 0.818 | 0.698 | 0.744 | 0.007 |
QGBLUP | 0.842 | 0.829 | 0.822 | 0.696 | 0.729 | 0.008 |
RKHS | 0.818 | 0.814 | 0.805 | 0.621 | 0.678 | 0.007 |
Tasseling, Dent, 200 genotypes | ||||||
QTL | 0.580 | 0.597 | 0.530 | 0.438 | 0.452 | 0.009 |
GBLUP | 0.823 | 0.823 | 0.829 | 0.712 | 0.752 | 0.009 |
QGBLUP | 0.839 | 0.832 | 0.826 | 0.707 | 0.741 | 0.009 |
RKHS | 0.823 | 0.821 | 0.817 | 0.628 | 0.687 | 0.009 |
Yield, Dent, 200 genotypes | ||||||
QTL | 0.416 | 0.395 | 0.403 | 0.241 | 0.300 | 0.009 |
GBLUP | 0.649 | 0.677 | 0.674 | 0.567 | 0.650 | 0.007 |
QGBLUP | 0.649 | 0.677 | 0.678 | 0.524 | 0.617 | 0.009 |
RKHS | 0.621 | 0.646 | 0.655 | 0.523 | 0.603 | 0.007 |
For the description of the training set construction methods U, SU, CD, S, and R see Table 1. SE indicates the mean standard error across methods.