Skip to main content
. 2016 Sep 22;6(11):3733–3747. doi: 10.1534/g3.116.035410

Table 4. Predictive ability for Dent, using a training set size of 200 genotypes.

Model U SU CD S R SE
Silking, Dent, 200 genotypes
 QTL 0.461 0.471 0.396 0.409 0.367 0.008
 GBLUP 0.822 0.820 0.818 0.698 0.744 0.007
 QGBLUP 0.842 0.829 0.822 0.696 0.729 0.008
 RKHS 0.818 0.814 0.805 0.621 0.678 0.007
Tasseling, Dent, 200 genotypes
 QTL 0.580 0.597 0.530 0.438 0.452 0.009
 GBLUP 0.823 0.823 0.829 0.712 0.752 0.009
 QGBLUP 0.839 0.832 0.826 0.707 0.741 0.009
 RKHS 0.823 0.821 0.817 0.628 0.687 0.009
Yield, Dent, 200 genotypes
 QTL 0.416 0.395 0.403 0.241 0.300 0.009
 GBLUP 0.649 0.677 0.674 0.567 0.650 0.007
 QGBLUP 0.649 0.677 0.678 0.524 0.617 0.009
 RKHS 0.621 0.646 0.655 0.523 0.603 0.007

For the description of the training set construction methods U, SU, CD, S, and R see Table 1. SE indicates the mean standard error across methods.