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A Method for Predicting Collagen
Fiber Realignment in Non-Planar
Tissue Surfaces as Applied to
Glenohumeral Capsule During
Clinically Relevant Deformation
Previously developed experimental methods to characterize micro-structural tissue
changes under planar mechanical loading may not be applicable for clinically relevant
cases. Such limitation stems from the fact that soft tissues, represented by two-
dimensional surfaces, generally do not undergo planar deformations in vivo. To address
the problem, a method was developed to directly predict changes in the collagen fiber dis-
tribution of nonplanar tissue surfaces following 3D deformation. Assuming that the colla-
gen fiber distribution was known in the un-deformed configuration via experimental
methods, changes in the fiber distribution were predicted using 3D deformation. As this
method was solely based on kinematics and did not require solving the stress balance
equations, the computational efforts were much reduced. In other words, with the
assumption of affine deformation, the deformed collagen fiber distribution was calculated
using only the deformation gradient tensor (obtained via an in-plane convective curvilin-
ear coordinate system) and the associated un-deformed collagen fiber distribution. The
new method was then applied to the glenohumeral capsule during simulated clinical
exams. To quantify deformation, positional markers were attached to the capsule and
their 3D coordinates were recorded in the reference position and three clinically relevant
joint positions. Our results showed that at 60 deg of external rotation, the glenoid side of
the posterior axillary pouch had significant changes in fiber distribution in comparison to
the other sub-regions. The larger degree of collagen fiber alignment on the glenoid side
suggests that this region is more prone to injury. It also compares well with previous ex-
perimental and clinical studies indicating maximum principle strains to be greater on the
glenoid compared to the humeral side. An advantage of the new method is that it can also
be easily applied to map experimentally measured collagen fiber distribution (obtained
via methods that require flattening of tissue) to their in vivo nonplanar configuration.
Thus, the new method could be applied to many other nonplanar fibrous tissues such as
the ocular shell, heart valves, and blood vessels. [DOI: 10.1115/1.4026105]

1 Introduction

Biological soft tissues are composed of highly complex under-
lying micro-structural components. Micro-structural properties of
the tissue contribute to its overall mechanical behavior. For
instance, the relative organization of the extracellular proteins
(e.g., collagen and/or elastin) leads to the tissue-level mechanical
anisotropy [1–3]. Consequently, to better understand the in vivo
mechanical responses of the soft tissue, detailed knowledge of its
micro-structure is essential.

Due to its importance in understanding tissue damage and/or
remodeling [4–9], the effect of tissue-level deformation on the
micro-scale extracellular matrix (ECM) collagen fiber realignment
has been studied extensively. For example, it has been shown via
experimental measurements that collagen fiber alignment changes
following both uniaxial [10–13] and biaxial [14–16] extension.
Although quantification of collagen fiber distribution is possible
via numerous optical and image-based techniques [10,12,17–19],
currently available methods that involve measurements under
mechanical loads (e.g., small angle light scattering [13,14],

polarized light imaging [10,20,16], and second harmonic genera-
tion microscopy [12,15]) require a planar tissue setup. While such
tissues are relatively thin and could be treated as 2D surfaces,
their clinically-relevant deformations are generally not planar
[13,21]. Therefore, direct measurement of collagen fiber realign-
ment under such deformations are rendered impossible via 2D pla-
nar mechanical testing devices.

An alternative method to predict fiber-level changes following
macro-scale deformation is using theoretical models [22–25].
Assuming that ECM fibers affinely follow the macro-scale defor-
mation, many investigators have developed finite element models
to predict tissue fibers realignment due to mechanical loading
[24,25]. Although not all soft tissue deformations are purely affine
[13,26,27], the assumption provides a practical method to charac-
terize micro-structural changes analytically.

If the clinically relevant macro-scale deformation is available
via in vivo or in vitro measurements, with the assumption of affine
deformation, fiber-level changes could be predicted only via
kinematics. Since there is no need for solving the stress balance
equations, the computational efforts are much reduced. In addi-
tion, simplifying the experimentally measured distribution func-
tions into some analytic or parametric form (e.g., in the format of
an orientation tensor [2,24]) is not required.

The objective of this work was to develop a method to directly
predict changes in the collagen fiber distribution in nonplanar
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tissue surfaces when their clinically relevant deformation is avail-
able via experimental measurement. The new method was applied
to the glenohumeral capsule as it deformed in vitro at clinically
relevant joint positions. The glenohumeral capsule is a collage-
nous tissue that stabilizes the glenohumeral joint during extreme
abduction and external rotation. Injury to the anteroinferior gleno-
humeral capsule is a common result of anterior dislocation [28].
Characterization of the micro-structural changes in the capsule
during joint movements, could provide a better understanding of
the injury mechanism and develop improved diagnostic and surgi-
cal procedures.

2 Methodology

The new methodology assumes that tissue strain can be calcu-
lated using 3D positional data of strain markers obtained experi-
mentally. The strain values were then used to predict changes in
the fiber distribution functions using the assumption of affine de-
formation on curved surfaces. Calculation of strain and fiber dis-
tribution changes and experimental data acquisition for the
glenohumeral capsule in clinically relevant positions are then
presented.

2.1 Strain Calculation. Assuming that the experimental de-
formation of the tissue were measured by recording a set of posi-
tional data from fiducial markers, the strain tensor was calculated
via a method similar to that described previously by Filas et al.
[29]. Briefly, surface triangular meshes were created from the
marker positional data using the Delaunay triangulation function
in MATLAB (Mathworks Inc., Natick, MA). From the marker track-
ing system, the 3D position of each marker was represented by bR
and br vectors in a global Cartesian coordinate system for un-
deformed and deformed configuration, respectively. At each point
on the surface of a triangular element, the position vectors were
defined via bi-linear interpolation of the nodal positions

R ¼
X3

p¼1

Up n; gð ÞbRp (1)

r ¼
X3

p¼1

Up n; gð Þbrp (2)

where Up n; gð Þ’s were the bi-linear basis functions, n and g were
the computational coordinates (n 2 0; 1½ � and g 2 0; 1½ �), bRp’s
were nodal position vectors in un-deformed configuration X0, andbrp’s were nodal position vectors in deformed configuration X1

(Fig. 1). A local coordinate system ðX1;X2;X3Þ was then defined
at each point on the un-deformed surface which was convected to
a curvilinear coordinate system ðx1; x2; x3Þ on the deformed sur-
face. With the assumption that X3 was a single value function of
X1 and X2 (i.e., X3 ¼ X3ðX1;X2Þ), and xa ¼ xaðX1;X2Þ, the covari-
ant base vectors in the surface of the element were calculated

Ga ¼ R;a ¼ ea þ X3ðX1;X2Þ;ae3 (3)

ga ¼ r;a ¼ xbðX1;X2Þ;aeb þ x3ðX1;X2Þ;ae3 (4)

with a and b being the dummy indices, ea being the orthogonal
unit vector, Ga being the covariant base vector in the un-deformed
configuration and ga being the covariant base vector in the
deformed configuration. The detailed methods for obtaining the
derivatives of position vectors used in Eqs. (3) and (4) are
presented in the Appendix. To take advantage of 3� 3 matrix
algebra, two out-of-plane unit vectors were defined as the third co-
variant base vectors G3 and g3 for the un-deformed and deformed
configurations, respectively:

G3 ¼
G1 �G2

G1 �G2k k (5)

g3 ¼
g1 � g2

g1 � g2k k (6)

The contravariant base vectors in un-deformed configuration were
calculated as the following:

G1 ¼ G2 �G3ffiffiffiffi
G
p ; G2 ¼ G3 �G1ffiffiffiffi

G
p ; G3 ¼ G1 �G2ffiffiffiffi

G
p (7)

where the scaling factor
ffiffiffiffi
G
p

was defined by

ffiffiffiffi
G
p
¼ G1 � ðG2 �G3Þ (8)

After obtaining the three components of each base vector from
Eqs. (4), (6), and (7), the deformation gradient tensor F and the
left Cauchy-Green strain tensor B were calculated

F ¼ gI �GI (9)

B ¼ FFT (10)

2.2 Fiber Affine Deformation. Consistent with its planar
definition [30], the 2D collagen fiber distribution (density) func-
tion R0 Hð Þ was defined as the angle histogram normalized so that
the area under the curve was unity

ð
R0ðHÞdH ¼ 1 (11)

The angle H on the surface of each triangular element was meas-
ured from the un-deformed covariant base vector G1. The choice
of the vector from which H is measured is completely arbitrary.
Using G1 is, however, advantageous as the experimental fiber
structure is generally available via a 2D planar measurement
method [17,18]. In particular, when the planar configuration is
considered as the reference frame for strain measurement, X1 and
X2 lie in the same plane and X3 would be zero. Therefore, G1 will
be same as e1 according to Eq. (3).

Fig. 1 Schematic of a triangular element deformed from un-
deformed configuration X0 to deformed configuration X1 via
deformation tensor 1

0F. The covariant surface base vectors G1

and G2 as well as g1 and g2 are not necessarily orthogonal but
they are expressed in terms of their components in an orthogo-
nal coordinate system (i.e., (e1;e2; e3)) to take advantage of 333
matrix algebra.
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The collagen fibers were assumed to deform affinely with the
macro-scale deformation. Since the total number of fibers are
unchanged following deformation, it was concluded thatð

R0ðHÞdH ¼
ð

R1ðhÞdh ¼ 1 (12)

where R0 Hð Þ was the fiber density function in un-deformed con-
figuration X0, R1 hð Þ was the density function in deformed config-
uration X1, and h was measured from the convected covariant
base vector g1. From Eq. (12), it was concluded that

R0ðHÞ
R1ðhÞ

¼ dh
dH

(13)

As shown in Fig. 2(a), dH could be calculated from un-deformed
differential areal vector dA and position vectors dR as follows:

dH ¼ dS

dRk k ; dS ¼ dAk k
t

; dAk k ¼ dA � dR

dRk k (14)

where t was the surface thickness and dS was the differential arc
length. Equation (14) resulted in

dH ¼ dA � dR

t dRk k2
(15)

Similarly in the deformed configuration

dh ¼ da � dr

t drk k2
(16)

From Nanson’s relation

da ¼ JF�TdA (17)

where

J ¼ detðFÞ (18)

and by definition, the stretch kðhÞ along the unit vector nðhÞ in the
deformed configuration was

kðhÞ ¼ drk k
dRk k ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B�1nðhÞ
� �T

nðhÞ
q (19)

Combining Eqs. (13), (15), (16), (17), and (19), gave

R1 hð Þ ¼ R0 Hð Þ
B�1nðhÞ
� �T

nðhÞ
J

(20)

As shown in Fig. 2(b), H was related to h via the deformation of a
normal vector N in the undeformed configuration into n

NðhÞ ¼ kðhÞ F�TnðhÞ
� �

(21)

After calculating N from Eq. (21), H was obtained from

tanðHÞ ¼
N2 G2k k sin dG1;G2

� �
N1 G1k k þ N2 G2k k cos dG1;G2

� � (22)

where Na’s were contravariant components of N in un-deformed
configuration X0 and ð dG1;G2Þ was the angle between the base
vectors G1 and G2. To implement Eq. (20), h was discretized by
one degree. With the assumption that F and B were known from
kinematics, for each h, the corresponding un-deformed angle H
was calculated from Eq. (22). Since R0 Hð Þ was a known function,
calculation of R1 hð Þ from Eq. (20) was then possible.

R0 Hð Þ has been generally defined by analytical periodic func-
tions [25,15]. In the case of glenohumeral capsule, for simplicity,
a periodic version of the normal distribution was employed to
specify R0 Hð Þ. The method explained above, however, could be
implemented for any form of R0 Hð Þ.

To better visualize the orientation data, the main fiber direction
l and an orientation index OI from R0 Hð Þ were defined. With the
assumption that R0 Hð Þ was defined by a normal distribution, l
was simply chosen to be its mean. OI was defined as the angle
that contains one half of the total area under R0 Hð Þ [31]

ðlþ OI=2ð Þ

l� OI=2ð Þ
R0 Hð ÞdH ¼ 0:5 (23)

To obtain a more intuitive definition for the fiber orientation (as
suggested by Joyce et al. [31]), the normalized orientation index
NOI was calculated

NOI ¼ p=2ð Þ � OI

p=2ð Þ

� �
100% (24)

The larger values of NOI were associated with more aligned colla-
gen fibers and the smaller values were associated with more scat-
tered collagen fibers.

To validate the mathematical framework of the strain and fiber
affine deformation calculations, the methodology was applied to
multiple computationally generated sets of data points with known
deformations. For example, a random distribution of points on a
unit spherical surface subjected to various deformed scenarios
were simulated. In addition, the methodology was employed to
predict changes in the fiber orientation of a cylindrical shell with
NOI of 25% in the un-deformed configuration subjected to the
stretch values of 1.25, 1.5, 1.75, 3.5, and 4 in the axial direction.

2.3 In Vitro Deformation of the Glenohumeral Capsule.
Six cadaveric shoulders (71 6 8 yrs.) were dissected down to the
glenohumeral capsule (Figs. 3(a) and 3(b)). A 7� 11 grid of
strain markers was then fixed to the anteroinferior capsule
(Fig. 3(b)). The humerus and scapula were fixed in epoxy putty
and each joint was mounted to a robotic/universal force-moment
sensor (UFS) testing system that was used to apply external loads
and torques to the humerus [32]. The 3D positions of the strain
markers were recorded in the reference strain configuration, which
was determined via inflation, using a three-camera motion

Fig. 2 (a) Schematic of the volume differential element used to
calculate dH, with t being the surface thickness, G1 being the
covariant surface base vectors, N being the unit vector at angle
H, dR being the differential position vector, dS being the differ-
ential arc length, and dA being the differential area vector. (b)
The angle H in the un-deformed configuration was related to h
in the deformed configuration using the deformation of a nor-
mal vector N to n as described by Eqs. (21) and (22).
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tracking system (Spicatek, accuracy: 0.05 mm) [33]. Simulated
clinical exams were then performed on each shoulder at 60 deg
abduction, and 0 deg, 30 deg, and 60 deg of external rotation by
applying a 25 N anterior load to the humerus while maintaining a
22 N compressive load to center the humeral head on the glenoid
[13,33–35]. The 3D positions of the strain markers were recorded
at these three joint positions with the loading conditions applied.
Because the markers on the posterior band side were not detecta-
ble during the entire range of motion, they were excluded from
the final strain calculation (Fig. 3(b)).

Previous work has shown that the average NOI in planar tissue
samples from the axillary pouch under a small preload is 40%
[13,36]. Therefore, based on this value, the standard deviation of

the Gaussian distribution was computed and used to define the un-
deformed fiber distribution R0ðhÞ. The un-deformed main fiber
orientation l was assigned randomly for each element using the
rand function in MATLAB (The Mathworks Inc., Natick, MA). The
deformed fiber orientations were then calculated using the new
methodology.

Because understanding the fiber distribution and fiber realign-
ment could help predict risk factors associated with injury in spe-
cific regions of the tissue, it was essential to make comparative
analysis between such clinically relevant sub-regions. In particu-
lar, the anteroinferior capsule was divided into six sub-regions
(Fig. 3(b)): (1) posterior axillary pouch glenoid side, (2) posterior
axillary pouch humeral side, (3) anterior axillary pouch glenoid
side, (4) anterior axillary pouch humeral side, (5) anterior band
glenoid side, and (6) anterior band humeral side. The NOI values
for each element, in each deformed configuration, were then aver-
aged in each capsule sub-region for every specimen individually.
As the average NOI values were not normally distributed, Fried-
man tests with Wilcoxon Signed Ranks post hoc tests were used
to compare between capsule sub-regions and between joint posi-
tions. Significance was set at a ¼ 0.05 for all comparisons.

3 Results

For any specific tissue specimen, changes in the fiber distribu-
tion function at each deformation step were obtained within less
than 4 min of computer run time when the simulations were con-
ducted using a Macintosh laptop (2.66 GHz Intel Core 2 Duo
processor and 4 GB memory). Because the tissue surface was not
folded on itself at any of the un-deformed or deformed configura-
tions, the implementation of the method was straightforward and
it did not require any major run-time trouble shooting. The trian-
gulation scheme created a few fictitious out-of-plane elements
that were deleted manually.

When a randomly distributed set of the data points on a unit
sphere (Fig. 4(a)) were used to validate the strain calculation
methodology, the model results agreed well with the imposed

Fig. 3 Experimental Setup. Anterior (a) and inferior (b) views
of a typical shoulder specimen. A 7 3 11 grid of strain markers
were positioned on the tissue. The anteroinferior capsule was
divided into six sub-regions: posterior axillary pouch glenoid
side (PPG), posterior axillary pouch humeral side (PPH), ante-
rior axillary pouch glenoid side (APG), anterior axillary pouch
humeral side (APH), anterior band glenoid side (ABG), and an-
terior band humeral side (ABH). Note that the markers on the
posterior band side were excluded from the final strain
calculation.

Fig. 4 (a) Data points were generated on the surface of a unit sphere using MATLAB rand
function. (b). Areal stretch after extension in x- and y-directions (x 5 2X , y 5 3Y , z 5 Z ). Arrows
show the direction of the major principal strain. (c) Main fiber direction l (arrows) and normal-
ized orientation index NOI (contour plots) in un-deformed configuration. (d) Main fiber direction
l and normalized orientation index NOI following axial extension (kx 5 1:5).

031003-4 / Vol. 136, MARCH 2014 Transactions of the ASME



deformations. Not all of the cases examined are presented here
but the calculated strains of a typical case in which x ¼ 2X,
y ¼ 3Y, and z ¼ 3Z are shown in Fig. 4(b). At the north pole of
the sphere where the surface was subjected to biaxial stretch
(kx ¼ 2 and ky ¼ 3), the areal stretch was around 6, whereas on
the equator depending on the location, the areal stretch values
varied between 2 and 3. Similarly, when the affine deformations
of fibers on a cylindrical shell were predicted for various cases of
axial or radial deformations, the reorientation of the fibers
agreed with the direction of major principal strain. The angle
between the main fiber direction l and a unit vector along the
cylinder axis decreased from 40:3 6 18:5 deg (mean 6 standard
deviation) at the un-deformed configuration to 30:6 6 15:9 deg,
23:0 6 10:8 deg, 17:2 6 7:0 deg, 6:5 6 2:3 deg, and 5:5 6 1:9 deg
for the axial stretch values of 1.25, 1.5 (Fig. 4(d)), 1.75, 3.5,
and 4, respectively. The value of NOI changed from 25%
to 26:2 6 3:0%, 29:9 6 4:8%, 34:4 6 6:2%, 61:7 6 7:1%, and
66:5 6 6:3% for axial stretch values of 1.25, 1.5 (Fig. 4(d)), 1.75,
3.5, and 4, respectively.

In the tissue experiments, the position of the strain markers
changed significantly between each external rotation position
examined (Figs. 5(a)–5(d)). At each joint position, the NOI values
were larger on the glenoid compared to the humeral side of the
anteroinferior capsule for larger values of the external rotation.
For example, most of the triangular elements that shared nodes on
the glenoid edge of the typical sample shown in Fig. 5 had NOI
values larger than 50% at 60 deg of abduction and 60 deg of exter-
nal rotation. The NOI values in each capsule sub-region generally
had an increasing trend with higher values of external rotation
(Fig. 6). For example, in the glenoid side of the posterior axillary
pouch, NOI value increased by 7.5% 6 9:4% (mean 6 SD), 11.5%
6 9:9%, and 21.7% 6 11:3% with 0 deg, 30 deg, and 60 deg of
external rotation, respectively. In the humeral side of the posterior
axillary pouch, NOI value were 2.7% 6 6:7%, 8.2% 6 4:6%, and
18.6% 6 15:2% higher after 0 deg, 30 deg, and 60 deg of external
rotation, respectively. Friedman tests revealed differences in the
NOI values at 0 deg, 30 deg and 60 deg of external rotation only
on the glenoid side of the posterior axillary pouch (p ¼ 0.01).
More specifically, this capsule sub-region exhibited a significantly
larger NOI at 60 deg of external rotation compared to both 0 deg
(p¼ 0.03) and 30 deg of external rotation (p ¼ 0.03). It should be
noted that the humeral side of the axillary pouch and the anterior
band of the inferior glenohumeral ligament experienced very little
change with joint position.

Differences between capsule sub-regions were only significant
at 60 deg of external rotation (p ¼ 0.02). At this joint position, the
glenoid side of the posterior axillary pouch exhibited NOI values
of that were significantly larger than those in all other regions
except the glenoid side of the anterior band and axillary pouch
of the inferior glenohumeral ligament (all shown with asterisks
in Fig. 6). With the exception of the posterior axillary pouch,
the increase in the NOI was much larger in the glenoid side in
comparison to the humeral side at 60 deg of external rotation
(16.7% 6 14:5% and 10.6% 6 8:0% increase on the glenoid side
versus 13.1% 6 9:6% and 3.1% 6 6:7% change on the humeral
side for the anterior band and anterior axillary pouch of the infe-
rior glenohumeral ligament, respectively).

4 Discussion

Using the method presented in this study, changes in the col-
lagen fiber distribution of curved tissue surfaces could be pre-
dicted whenever the deformation is known experimentally.
Therefore, tissues with curved surfaces such as blood vessels
[37], heart valves [38], ocular globe [39], fetal membrane [40],
and glenohumeral capsule can be analyzed. Because both colla-
gen micro-structure and in vivo (or in vitro) deformations have
been quantified in many of these tissues via experimental
methods, implementation of the presented method is highly
relevant.

Two major advantages of this method are its reduced computa-
tional effort and its robustness in using any mathematical format
of the fiber distribution function. To minimize computational
costs, continuous fiber distribution functions have been generally
integrated over spherical volume elements and repressed as a few
parameters in an orientation tensor (e.g., Gasser et al. [24]).
Because the deformation of the tissue is known via experimental
measurements a prior, solving the stress balance equations is not
required for the quantification of the deformation tensor. There-
fore, the computational efforts are much reduced even though
instead of using only a few parameters of the orientation tensor,
the full continuous distribution function is employed. Further,
although for simplicity a normal distribution was chosen to repre-
sent fiber density functions, the presented model is independent of
the mathematical form of the distribution function. In particular,
in many cases, multiple families of collagen fibers are present in
the tissues (e.g., in the human cornea [41] or artery [42,43]).
Although mathematical functions such as a generalized form of
Von Mises distribution [15] are available to approximate such
experimental measurements, the method presented in this study
could predict the changes in the fiber distribution following defor-
mation directly from the experimental forms of the undeformed
distribution functions. Therefore, the extra step of fitting the data
to known mathematical functions are not necessary in the current
model. Although this methodology was primary developed for
nonplanar surfaces, it is applicable to the planar cases, too. In fact,
simplifying the equations for planar cases would lead to expres-
sions similar to those previously used with experimental data
[11,14].

The model was utilized to compare the collagen fiber alignment
in the anteroinferior glenohumeral capsule at three clinically rele-
vant joint positions with the assumption of affine deformation
(i.e., the local fiber kinematics follow global tissue deformation).
A similar initial fiber distribution in all regions resulted in signifi-
cantly more aligned fibers on the glenoid side of the posterior
axillary pouch in positions of external rotation. As increased fiber
alignment indicates larger amounts of fiber rotation, this sub-
region may be more susceptible to injury under larger deforma-
tions compared to other capsule sub-regions. As expected, the
larger degree of fiber alignment on the glenoid side of the ante-
roinferior capsule compares well with other experimental and
clinical studies which have reported maximum principle strains
to be greater on the glenoid compared to the humeral side
[33,35,44,45]. As localized areas of increased fiber alignment
occurred in all sub-regions, this work further exemplifies that the
anatomic description of the glenohumeral capsule as discrete
regions does not correspond to its functional role [33].

The current technique of predicting fiber distribution changes in
the anteroinferior glenohumeral capsule could further address
research questions regarding diagnostic and repair techniques tar-
geted to the specific sub-regions of the capsule. For example, cur-
rent arthroscopic plication procedures to repair the glenohumeral
capsule following dislocation allow for selective tightening of
localized capsule regions. Understanding the fiber distribution in
the capsule as well as fiber realignment under clinically relevant
deformations may help predict specific regions which may be at
risk for injury. In addition, knowing how fiber realignment occurs
in the healthy capsule could help surgeons properly restore dam-
aged regions of the capsule to a normally functioning state follow-
ing dislocation.

A major limitation of the presented method is its two-
dimensional assumption. While the current model can be used in
co-planar fibrous tissues, the 3D fiber distribution functions were
not included. Thus, this model is not applicable when complex 3D
fiber distribution is present. Another potential limitation of this
work was the assumption of affine fiber kinematics. The reliability
of affine versus nonaffine assumptions in various soft and fibrous
tissues has been studied previously [11,26,27]. For example, Lake
et al. [11] have shown that in human supraspinatus tendon factors
such as the orientation of the samples and their locations on the
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tendon were associated with the success of the affine prediction.
Therefore, when using the developed model, one should be cau-
tious of whether the assumption of affine fiber kinematics is rea-
sonable within a certain level of confidence. In the anteroinferior

capsule, the fiber kinematics may or may not be truly affine [13]
but differences in collagen fiber alignment were detected using
the affine assumption. Based on additional experimental analyses,
a structural model, which makes this assumption, could be

Fig. 5 Maximum principle stretch and normalized orientation index NOI in each element for a representative anteroinferior cap-
sule at (a) referential configuration, and (b)–(d) deformed configurations of 60 deg of abduction accompanied by (b) 0 deg, (c)
30 deg, and (d) 60 deg of external rotation. The arrows on each element show the direction of the maximum principle stretch.
The black lines on the NOI contours separate the capsule sub-regions (b).

031003-6 / Vol. 136, MARCH 2014 Transactions of the ASME



implemented in finite element models of the glenohumeral cap-
sule when examining similar loading conditions to those presented
here. This work demonstrates a experimental/computational
approach to determine fiber distributions in 3D soft tissue struc-
tures which can be used in the future to validate fiber distributions
generated by purely computational models [25].

Because the experiential fiber structure is generally available
via 2D planar measurement methods [17,18], the newly developed
model could be used in the mapping of such micro-structural data
from the 2D planar configuration to the nonplanar clinically rele-
vant configurations. In particular, the collagen structure of the tis-
sues may be obtained after their in vivo deformations have been
quantified. If the fiducial markers, used for in vivo (or in vitro)
strain tracking, are detectable on the fiber distribution map
obtained from a tissue characterization device (e.g., small angle
light scattering [18]), the deformation from the latter planar con-
figuration into the clinically-relevant shape can be quantified.
Therefore, the method, presented here, could be used for mapping
of the micro-structural information into physiologically-relevant
3D shape of the tissues. Using the same fiducial markers for strain
measurement and micro-structural analysis has another conven-
ient outcome: if there exists any residual strains in the tissue of
interests, it would be detected by the markers following tissue dis-
section and isolation. Thus, deformation both due to rigid body
motion (caused by flattening of the tissue) and due to residual
strains or tissue mounting/manipulation would be incorporated in
the mapping of the micro-structure.
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Nomenclature

a ¼ areal vector in deformed configuration ðm2Þ
A ¼ areal vector in un-deformed (referential) configuration

ðm2Þ

B ¼ left Cauchy-Green strain tensor
ea ¼ orthogonal unit vectors
F ¼ deformation tensor
G ¼ square value of scaling factor in un-deformed (referential)

configuration
ga ¼ covariant base vectors in deformed configuration

Ga ¼ covariant base vectors in un-deformed (referential)
configuration

Ga ¼ contravariant base vectors in un-deformed (referential)
configuration

j ¼ Jacobean of transformation
J ¼ volumetric change
n ¼ unit vector in deformed configuration
N ¼ unit vector in un-deformed (referential) configuration

Na ¼ contravariant components of N
NOI ¼ normalized orientation index

OI ¼ orientation index ðRadÞ
r ¼ position vector in deformed configuration ðmÞ

R ¼ position vector in un-deformed (referential) configuration
ðmÞbrp ¼ position vector of node p in deformed configuration ðmÞbRp ¼ position vector of node p in un-deformed (referential)
configuration ðmÞ

R0 ¼ fiber distribution function in un-deformed (referential)
configuration ðRad�1Þ

R1 ¼ fiber distribution function in deformed configuration
ðRad�1Þ

S ¼ arc length in un-deformed (referential) configuration ðmÞ
t ¼ surface thickness ðmÞ

xa ¼ local convective coordinates in deformed configuration
ðmÞ

Xa ¼ local coordinates in un-deformed (referential)
configuration ðmÞ

a ¼ dummy index
g ¼ computational coordinate
k ¼ stretch

X0 ¼ un-deformed (referential) configuration
X1 ¼ deformed configuration
U ¼ bi-linear basis function
h ¼ in-plane angle in deformed coordinate system ðRadÞ
H ¼ in-plane angle in un-deformed (referential) coordinate

system ðRadÞ
n ¼ computational coordinate

Appendix

To calculate the derivative with respect to Xa (used in Eqs. (3)
and (4)), the components of Eqs. (1) and (2) were employed to
interpolate the values from the nodal positional data

X3
;a ¼

X3

p¼1

Up n; gð Þ;acX3
p (A1)

xb
;a ¼

X3

p¼1

Up n; gð Þ;acXb
p (A2)

The derivative of the bi-linear basis functions (Up; a) used in
equations (A1) and (A2) can be obtained from

U;a ¼
@U
@n

n;a þ
@U
@g

g;a (A3)

The terms n;a and g;a were calculated from the inverse relations

Xaðn; gÞ ¼
X3

p¼1

Up n; gð ÞcXa
p (A4)

Fig. 6 Percent increase in normalized orientation index NOI of
different capsule sub-region following 0 deg, 30 deg, and 60 deg
of external rotation. The asterisks show the significant differen-
ces calculated from the Wilcoxon signed-ranks post hoc tests.
Error bars are standard deviations.
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and

@Xa

@n
¼
X3

p¼1

@U
@n
cXa

p (A5)

@Xa

@g
¼
X3

p¼1

@U
@g
cXa

p (A6)

Thus

n;1 n;2
g;1 g;2

	 

¼ 1

j

@X2

@g
� @X1

@g

� @X2

@n
@X1

@n

2
6664

3
7775 (A7)

where

j ¼ @X1

@n
@X2

@g
� @X1

@g
@X2

@n
(A8)
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