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Abstract

Although Chronic Graft-versus-Host Disease (CGVHD) is the primary non-relapse complication
of allogeneic transplantation, understanding of its pathogenesis is limited. To identify the main
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operant pathways across the spectrum of CGVHD, we analyzed gene expression in circulating
monocytes, chosen as /n situ systemic reporter cells. Microarrays identified two interrelated
pathways: (1) Interferon-inducible genes and (2) innate receptors for cellular damage.
Corroborating these with multiplex RNA quantitation, we found that multiple IFN-inducible genes
(affecting lymphocyte trafficking, differentiation and antigen presentation) were concurrently
upregulated in CGVHD monocytes compared to normal and nonCGVHD controls. IFN-inducible
chemokines were elevated in both lichenoid and sclerotic CGHVD plasma and linked to CXCR3+
lymphocyte trafficking. Furthermore, the IFN-inducible genes CXCL10and TNFSF13B (BAFF)
levels were correlated at both the gene and plasma levels, implicating IFN-induction as a factor in
elevated BAFF levels in CGVHD. In the second pathway, DAMP/PAMP receptor genes capable of
inducing Type I IFN were upregulated. Type | IFN-inducible MxA was expressed in proportion to
CGVHD activity in skin, mucosa and glands, and expression of TLR and RIG-1 receptor genes
correlated with upregulation of Type | IFN-inducible genes in monocytes. Finally, in serial
analyses following transplant, IFN-inducible and damage-response genes were upregulated in
monocytes at CGVHD onset and declined upon therapy and resolution in both lichenoid and
sclerotic CGVHD patients. This interlocking analysis of IFN-inducible genes, plasma analytes and
tissue immunohistochemistry strongly supports a unifying hypothesis of induction of IFN by
innate response to cellular damage as a mechanism for initiation and persistence of CGVHD.

Keywords
Graft versus host disease; transplantation; human; cytokines

Introduction

Chronic Graft Versus Host Disease (CGVHD) remains the principal source of non-relapse
mortality and morbidity, affecting 40 — 70% of long-term survivors of allogeneic
hematopoietic stem cell transplantation (allo-HSCT) (1). CGVHD encompasses a broad
spectrum of inflammatory and fibrotic pathologies in multiple organs (2), and no common
pathway has been implicated across the range of CGVHD manifestations. A deeper
understanding of the pathogenesis of CGVHD is needed to support improved diagnosis, to
design and evaluate targeted immunomodulatory therapies and to improve clinical response.

Based upon our prior immunohistochemical studies on lichenoid infiltrates in oral CGVHD,
we proposed a role for Type | IFN production by pDC in the induction of chemokines that
recruited cytotoxic T-bet+ Th1/Tcl effector cells into oral tissues (3). These studies have
been substantiated by immunohistochemistry showing infiltration by T-bet+ Th1/Tcl cells
and expression of IFN-inducible chemokines (CXCL9, CXCL10) in cutaneous CGVHD,
and by the presence of elevated plasma levels of these chemokines at onset of CGVHD (4—
11)}. Yet these studies do not identify mechanisms initiating IFN production, nor has this
model been examined across the broad spectrum of CGVHD, ranging from newly developed
inflammatory disease to severe, established CGVHD with sclerotic features.

We chose to use peripheral blood monocytes as ‘reporter’ cells for the dominant cytokine
pathways within the multiple target tissues of CGVHD. Monocytes are relatively
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undifferentiated cells with high plasticity, that have been found to rapidly upregulate discrete
profiles of genes in response to different cytokines such as IFN, IL-4/IL-13, TGFP or
glucocorticosteroids(12). Monocytes circulate throughout CGVHD patients, being exposed
to the operant cytokine conditions in multiple locations. Monocyte-derived lineages are
highly relevant to CGVHD, because the circulating monocytes emigrate into tissues,
differentiating into scavenger macrophages, antigen presenting cells and regulators of
fibrosis in CGVHD (4, 13). Since these recruited monocytes are constantly replenished from
the marrow, their transcriptome provides a snapshot of prevailing cytokine conditions over a
narrow window of time, yet this information can be tracked serially through multiple time
points in CGVHD development.

We focused upon identifying pathways rather than individual highly upregulated genes, as
pathways rely upon altered expression of multiple genes, and are less subject to individual
variation in a diverse patient population. Blood and tissues were collected from the well-
characterized patients in the NCI natural history study of CGVHD, because this study
includes a high proportion of patients with severe sclerotic CGVHD as well as a broad range
of early and late CGVHD manifestations. Pathways identified in CGVHD monocytes by
microarray were verified using multiplex RNA assays in normal controls, nonCGVHD and
CGHVD patients and were tracked at serial timepoints after during CGVHD onset and
therapy. We corroborated these findings through plasma ELISA, FACS analysis of peripheral
blood and immunohistochemistry of affected tissues. The results from these comprehensive
analyses support a single common pathway model of CGVHD pathogenesis in which Type |
and Type Il Interferon (IFN), induced by innate immune processes, plays a central role in the
initiation and persistence of CGVHD across the diverse range of inflammatory and fibrotic
presentations.

Materials and Methods

Patient population

CGVHD patients were evaluated between 2004 and 2013 at the NIH Clinical Center, as part
of a single-visit, cross-sectional NCI protocol “Natural History Study of Clinical and
Biological Factors Determining Outcomes in Chronic Graft-\ersus-Host Disease”
(clinicaltrials.gov identifier: NCT00092235). A comprehensive evaluation was performed,
including detailed history and clinical assessment according to the NIH Consensus Criteria
(Table I); patients with late AGVHD were excluded. (2). Cutaneous CGVHD was further
characterized by the percentage of the total body surface area (BSA) with erythema, dermal
sclerosis, or deep sclerosis. Additionally, patients who never developed CGVHD
(nonCGVHD) following reduced intensity allo-HSCT regimens utilizing mobilized T-replete
PBSC (clinicaltrials.gov; NCT00520130 and NCT00074490) served as controls. Patients
who developed CGVHD in these protocols were assessed at serial time points. Patients and
normal healthy volunteers were all enrolled on IRB-approved NCI/CCR studies permitting
sample acquisition and storage for research studies on transplantation; all human subjects
provided written informed consent.
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Assessment of patient blood and tissues

Concurrent with clinical assessment of CGVHD, peripheral blood and biopsies of skin, oral
mucosa and labial minor salivary gland were obtained. Tissues were confirmed to have
CGVHD by pathology and were assessed for MxA as previously described (3). Heparinized
plasma, stored at —80°, was assessed for BAFF (R & D Systems) following manufacturer’s
recommended procedures; levels of CXCL10, CXCL9, IFNa, IL-15 and IL-1p were
determined in coded plasma samples by Aushon Technologies. Using cryopreserved PBMC,
expression of CXCR3 (Becton Dickinson) on gated CD3+CD4+ and CD3+CD8+ T-cells
were determined on a Gallios flow cytometer (Beckman Coulter, Inc) using FlowJo 9.6.4
(TreeStar, Inc) as previously described (6).

Gene expression

Statistics

Monocytes from cryopreserved PBMC of normal and CGVHD patients were enriched by
gating on FSCNi SSChi cD3~ CcD44M cells using an Influx Cell Sorter (Becton Dickinson
Immunocytometry Systems); sorted monocytes were >95% CD14*. 300ng of total RNA per
sample was used for Human Gene 1.0 ST Array analysis (Affymetrix) according
manufacture’s instruction. We used both BRBArrayTools (http://linus.nci.nih.gov/BRB-
ArrayTools.html) and Partek Genomic Suite 6.4 (Partek Inc.) for data visualization,
identification of differentially expressed transcripts (p-value<0.05). The Ingenuity Pathway
Analysis tool (Ingenuity System Inc.) was used for analysis of functional pathways. The data
discussed in this publication have been deposited in NCBI's Gene Expression Omnibus(14),
and are accessible through GEO Series accession number GSE6074 (http://
www.nchi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60674). A custom nCounter® Gene
Expression CodeSet (NanoString Technologies, Inc.), including 5 housekeeping genes
(BZ2M, GAPDH, PPIB, SDHA, TBP) was generated consisting of two sequence-specific
probes for each gene (a biotin-labeled capture probe and a fluorochrome-coded detection
probe) (15), 200 ng of monocyte RNA, CodeSet and buffer were hybridized overnight on
steptavidin-coated cartridges in an automated nCounter Prep Station, and then digitally
counted in the nCounter Digital Analyzer. Data was analyzed on nSolver Analysis software,
version 1.1. Heatmaps of Nanostring data were generated using GeneCluster 3.0 and
Treeview 1.1.6r4.

Nonparametric tests (Mann-Whitney U Test and Spearman Rank Correlation) were used on
continuous variables. Multiple t test comparisons of log2 transformed gene copy data were
performed in GraphPad Prism using the method of Benjamini and Hochberg with a False
Discovery Rate was set at 5%. Values for B cells (cells/ul), BAFF (pg/ml), and IP-10 (pg/ml)
were normalized for multiple regression analysis by log transformation (with values of 1
substituted for <1 B cell/ul) (Statview). All tests performed were 2-sided and considered
significant at the .05 level.
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Microarray pathway analyses identify involvement of IFN-inducible and damage-response

pathways

For the initial microarray, we compared monocytes collected from 10 normal healthy
controls (ND) and 26 CGVHD patients chosen based upon severe lichen planus-like
CGVHD of the skin or oral mucosa, or widespread sclerotic CGVHD affecting dermal or
deep fascia. Overall, CGVVHD patients were moderately to severely affected, according to
NIH consensus criteria, with multiple organ involvement (see Table 1) (2). Five were within
3 months of the initial CGVHD diagnosis; the remainder were patients with established,
treatment-refractory CGVHD. All had received immunosuppressive regimens; only two
were not currently on systemic therapy (Table I).

Supervised hierarchical cluster analysis of monocyte gene expression data (Human Gene
Chip Exon 1.0ST. array) identified 1146 genes that were differentially expressed (t-test and
FDR <0.05) in 26 CGVHD and 10 healthy subjects, including 532 that were up-regulated in
CGVHD (Supplemental Figure S1A). Ingenuity Pathway Analysis identified several
significantly upregulated canonical pathways in CGVHD (Supplemental Figure S1B); their
common elements were the up-regulation of genes inducible by Type | and Type Il IFN, or
genes involved in the innate immune response to pathogen and damage associated molecular
patterns (PAMP, DAMP), that in turn induce IFN or inflammasome activity. Overall, the
highest probability upstream regulators of the gene expression changes were IFNa and
IFNy (p<.0001 and p<.001) (Figure S1B). GSEA analysis substantiated these findings,
demonstrating that 50-85% of the genes involved in both Type | and Type Il IFN responses,
and in TLR and inflammasome pathways were upregulated in CGVHD monocytes
(Supplemental Figure S1C). Because most of these genes are upregulated by both Type I and
Il Interferon (16, 17), we will refer to these genes as IFN-inducible.

Based upon identification of multiple significantly upregulated genes in IFN-signaling and
DAMP/PAMP pathways (Figure 1A, Table I1), we developed a custom probe set for
multiplex RNA analysis (nCounter Nanostring) to assess RNA from the original CGVHD
and ND microarray cohort and from sorted cryopreserved monocytes from 43 additional
CGVHD patients assessed in the NIH natural history protocol (69 total), 9 additional normal
controls (19 total), and 14 nonCGVHD patients evaluated in the natural history study (Table
1). Expression of the panel of IFN-inducible genes was consistently up-regulated in CGVHD
monocytes compared to those of normal donors, while expression in nonCGVHD patient
monocytes was intermediate and not significantly different from that in normal controls
(Figure 1B, Table I1). Some highly inducible genes varied broadly over a multi-log range
(for example, CXCL 10, GBPI1, STATI), whereas constitutively expressed genes, such as
TNFSF13B, had a much narrower range of expression. Nonetheless, those patients with high
expression of one had high expression of the other genes, consistent with expression
controlled by a common factor (Figure 1C). Importantly, expression of IFN-inducible genes
was comparably upregulated both in patients with extensive lichenoid (erythematous)
CGVHD and in those with widespread skin sclerosis, including both patients in the original
microarray analysis and in the broader Nanostring cohort. (Figure 1D,E). The upregulated
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genes not only encompassed expected IFN-inducible anti-viral and antibacterial functions,
but also included many mediating functions relevant to CGVHD including IFN signal
transduction, antigen uptake and presentation, cellular cytotoxicity, chemokine regulation of
lymphocyte trafficking, and cytokine regulation of lymphocyte differentiation (Table 11). We
therefore assessed systemic evidence of the IFN-inducible gene signature in established
CGVHD.

Correlative studies of CGVHD plasma link IFN-inducible genes to lymphocyte trafficking
and B cell activation

A key element in CGVHD pathogenesis is the trafficking of T cells into target tissues.
Corroborating the upregulation of IFN-inducible chemokine genes in CGVHD monocytes,
we found elevated levels of CXCL9 and CXCL10 levels in CGVHD plasma, as compared to
levels in normal control or nonCGVHD plasma, including significant increases in both
severe sclerotic and lichenoid CGVHD patient subsets of the study cohort (Figure 2A).
Expression of CXCL9 and CXCL10 in lichenoid oral and cutaneous CGVHD tissues, as
detected by immunohistochemistry, has implicated these chemokines in recruitment of
CXCR3+ Th1/Tc1 cells into the infiltrate (3, 5, 6, 8). Chemokine-mediated recruitment of
CXCR3+ Th1 cells into extensive areas of skin should be accompanied by corresponding
depletion of these cells in the blood. We determined that expression of CXCR3 on
circulating T-cells was significantly reduced in patients with extensive body surface area
(BSAN) of either lichenoid or sclerotic cutaneous CGVHD, as compared with those with
less skin involvement or normal controls (Figure 2B). These results support a role for IFN-
induced chemokines in regulating lymphocyte trafficking in cutaneous CGVHD.

BAFF (TNFSF13B) has been recognized not only as a useful plasma biomarker for CGVHD
(Figure 2C), but also one that may contribute to the activated state of CGVHD B-cells (18—
21). Expression of TNVFSF13B, the gene for B cell activation factor (BAFF), was elevated
above normal constitutive levels in CGVHD monocytes, in parallel with other IFN-inducible
genes (Figure 1B,C) (22). When plasma levels of BAFF and CXCL10 were compared in 125
CGVHD patients, BAFF levels were positively correlated with CXCL10 (Figure 2D); again
this was evident in both sclerotic as well as lichenoid CGVHD patients (Figure 2E). Plasma
levels of BAFF vary dependent on levels of peripheral B-cells expressing the BAFF receptor
(23, 24), hence, rising at transplant (due to lymphodepletion) and falling upon B cell
repopulation (25). Yet many CGVHD patients have high levels of BAFF despite recovery of
normal or elevated B-cell numbers (Figure 2F, G). Tested in a multiple regression model
incorporating B cells, CXCL10 levels, time from transplant and degree of immune
suppression, only CXCL10 levels (p<.0001) and B-cell numbers (p<.0001) were found to
have a significant effect on BAFF plasma levels, contributing to a strong final adjusted R
value (.656) and adjusted R2 (.430) (Supplemental Figure S2). This analysis implicates IFN-
induction in the elevated plasma BAFF levels in CGVHD, and supports an indirect role of
IFN-inducible factors in B cell dysregulation in CGVHD.
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Expression of innate immune receptor genes inducing Type | Interferon production is
upregulated in CGVHD

CGVHD monocyte transcriptome profiling also identified upregulation of many genes
involved in the innate immune response to cellular damage (DAMP) and pathogens (PAMP
(26-28)). Irrespective of lichenoid infiltrates or sclerotic manifestations of CGVHD,
increases were found in receptors for nucleic acids (A/MZ2, DDX58, TLR7, TLR4,
CLECH4E), annexin (FPRLZ/ALYX) and phagocytosis (FCRG1A, MSR) (Table I, Figure
1A, 3A, B, C). Uptake of material from damaged cells can trigger formation of
inflammasomes, resulting in Caspase 1-mediated release of IL-1p (29, 30). AIMZ, IF/16,
and NLRC4 (the first two inducible by IFN), were all upregulated in CGVHD monocytes
(Figures 3A, C, Table Il). Triggering of TLR (7LR7), CLR (CLEC4E) and RIG-1 (DDX58)
pathways can increase inflammation through production of IFNa (via /RF7) and IL-6 (via
NFxb). Whereas /RF7 levels were not upregulated overall in CGVHD natural history patient
monocytes in the microarray, in those with levels of /RF7above median, IFN-inducible
genes were more strongly expressed, including those specifically induced by Type I IFN,
again in both sclerotic and lichenoid patients (red genes, Figure 1D, 3D) (16). Moreover,
higher expression of RIG-1 helicase (DDX58) or TLR7, both in DAMP pathways inducing
IRF7(26), correlated with higher expression of Type | IFN-inducible genes (Figure 3E).

Furthermore, expression of proteins specifically induced by Type | IFN was elevated in
commonly affected CGVHD tissues, with expression increasing in proportion to the degree
of clinical activity. In lichenoid and sclerotic skin, oral mucosa and salivary glands, the Type
I IFN-inducible protein MxA was expressed in both infiltrating myeloid cells and epidermal
keratinocytes (Figures 3F-I) (3). MxA levels in the keratinocytes in both lichenoid and
sclerotic skin biopsies were significantly increased compared to levels in skin from patients
lacking skin involvement (Figure 3J). Similarly, MxA expression was higher in severely
affected oral mucosa than in mildly affected or unaffected tissue (Figure 3K). In plasma,
increases of IFNa correlated with increases in IL-15, an IFN-inducible cytokine supporting
differentiation of CD8 Tcl effectors (Figure 3L), which is also present with the same
distribution as MxA in CGVHD affected oral mucosa (3). These data demonstrate that Type
I IFN is widely produced in CGVHD tissues, concurrent with increases in Type I-IFN
specific gene products. Finally, in addition to inducing IFNa.,, DAMP stimulation of TLR7
and RIG-1 will also induce production of TNFa and IL-6 via NFxB. Plasma levels of the
IFN-inducible chemokine CXCL10 and NFxB-inducible IL-6 were correlated, consistent
with concurrent activation of both pathways in individual CGVHD patients (Figure 3M).
These results support the presence of innate immune activation that could support
production of inflammatory mediators such as IFNa and IL-6.

Upregulation of IFN-inducible genes occurs at onset of CGVHD

Because the NIH CGVHD natural history protocol is a single-visit cross-sectional study, we
then examined sorted monocytes from 18 NCI allo-HSCT patients at serial time points in the
development and treatment of CGVHD using the Nanostring panel; results on six of these
are shown, with gene upregulation expressed as fold changes from the mean levels found in
normal controls (Figure 4A, patients a — f). Assessed IFN-inducible genes included those
rapidly up-regulated by IFN (first row), those supporting antigen processing and
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presentation (second row), those specifically up-regulated by Type I IFN (third row) and
those encoding endosomal and cytosolic DAMP receptors for nucleic acids (fourth row).
(16, 17). All were at low levels prior to CGVHD onset, but were upregulated in parallel on
the day of CGVHD diagnosis. Expression declined upon subsequent therapy, concurrent
with declines in CGVHD symptoms, and remained low upon CGVHD resolution and
discontinuation of therapy. In patient E, localized edema and lichenoid infiltrates in limbs at
12 months were succeeded by sclerotic changes at 18 months, with elevated levels of IFN-
inducible and damage response genes present at both lichenoid and sclerotic phases of
cutaneous CGVHD. Gene expression at diagnosis was comparable to that in established
severe CGVHD and significantly higher than in nonCGVHD (Figure 4B). Thus serial data
from patients followed at clinically relevant time points is consistent with elevation in IFN-
inducible and DAMP receptor genes observed in CGVHD natural history patients, rising
with onset of lichenoid or sclerotic disease and declining with effective therapy.

Patient F demonstrates the confounding effects of high dose corticosteroids. At 6 months,
IFN-inducible genes were first upregulated, concurrent with diagnosis of moderate oral
CGVHD. High dose systemic prednisone therapy (80mg/day — marked as GC) was initiated
at the onset of a severe erythematous rash, 10 days prior to collection of the 9 month blood
sample. All IFN-inducible genes were very low during corticosteroid treatment at 9 months.
Upon rapid improvement in skin erythema, systemic prednisone was tapered off. Following
taper of steroids, at the 12 month time point, the patient was diagnosed with oral, ocular and
gastrointestinal CGVHD, accompanied once again by high levels of IFN-inducible genes;
gene expression declined, once again, upon therapy.

Although high dose glucocorticoid therapy can rapidly resolve inflammatory symptoms and
reduce expression of IFN-inducible genes, many in the CGVHD natural history cohort are
refractory to steroid therapies (Table I). To track the effects of steroids on gene expression,
we assessed expression of three potent anti-inflammatory genes (/L1R2, CD163and /L10)
that are induced by treatment with glucocorticoids (31, 32). These genes were found to be
elevated only in patients receiving glucocorticoids; levels were comparable to normal
controls in patients on other immune-suppressants, but increased in a dose-dependent
manner from low maintenance glucocorticoid levels up to high therapeutic doses (Figure
5A,B). We therefore ascribe elevation in /LIR2, CD163and /L 10to the effect of systemic
glucocorticoid therapies. In patient F, treated with Prednisone 80mg/day for 10 days, the
levels of /LIRZ, IL-10and CD163 were elevated 121-, 27- and 4-fold above normal levels
respectively. Reciprocal expression of IFN- and glucocorticoid-induced genes in Patient F
demonstrates that CGVHD gene pathways can be suppressed under first line therapy with
high prednisone doses.

Continued expression of these IFN and DAMP response genes despite high doses of steroids
(and high expression of glucocorticoid-inducible genes) may reflect the steroid-refractory
nature of severe CGVHD in many patients. Inclusion of glucocorticoid-induced genes in the
Nanostring panel can discriminate the effects of glucocorticoid therapy from those of
CGVHD (Figure 5B). Many established CGVHD patients, at the right in Figure 5B,
particularly those with sclerotic skin (bottom row organ score), are little different in gene
expression from normal controls or nonCGVHD patients (blue or green bands). Those
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patients not receiving glucocorticoids (in the center) have significantly elevated expression
of multiple IFN-induced and DAMP-responsive genes. On the left, patients on steroids are
clearly identifiable by upregulation of the three steroid-inducible genes: /L1R2, CD163and
/L10. Some of these patients had reduced expression of the IFN signature, as was seen in
newly treated patient F (Figure 5A), but others were refractory to steroid treatment. This
disparity was independent of the wide range of organ involvement noted at the bottom of the
graphic.

Discussion

In this study we determined that monocytes from CGVHD patients expressed many well-
characterized Type | and Type Il IFN-inducible genes at levels significantly elevated over
those in healthy controls and nonCGVHD patients. These genes were expressed in a
correlated manner, consistent with a common pathway, and were upregulated to comparable
degrees in CGVHD patients with either lichenoid or sclerotic manifestations. In patients
followed longitudinally, these genes were upregulated upon onset of CGVHD and declined
upon treatment and resolution. Gene expression data was corroborated by plasma ELISA
and flow cytometry that implicated IFN-inducible chemokines in T cell trafficking into
tissues. Elevation of CXCL10 correlated with elevated plasma levels of BAFF, a cytokine
associated with B-cell dysregulation in CGVHD. Indeed, the pathways defined in the
monocyte transcriptome provide a mechanistic basis for the elevated expression of CXCL9,
CXCL10 and BAFF, all currently considered as promising plasma biomarkers for CGVHD
onset (5, 7, 9, 11, 20). Indeed, ROC analysis suggests that several of the IFN-inducible genes
may similarly provide a useful gene expression index (Supplemental Figure S3).

Furthermore, we have demonstrated the concurrent upregulation of multiple receptors for
pathogen and cell damage-derived molecules, both upon onset of CGVHD and in
established CGVHD. Through their capacity to induce IFN and other inflammatory
mediators, these receptors may both initiate and sustain CGVHD. TLR7 receptors triggered
by endosomal uptake of complexes of nuclear debris and anti-nuclear autoantibodies (which
develop in many CGVHD patients (33, 34)) can initiate Type | IFN production through
IRF7. Uptake of debris into phagolysosomes can result in leakage of nucleic acids that
trigger cytosolic RIG-1 receptors (DDX58). We have demonstrated correlations between
expression levels of damage receptors (DDX58, TLR?7) and expression of Type | IFN-
inducible genes, as well as demonstrating IFNa-inducible MxA production in the tissues
most commonly affected by CGVHD (Figure 3E-K).

The evidence of IFN-inducible pathways presented here supports a new perspective on
human CGVHD initiation and persistence (Figure 6). We propose that molecules released by
damaged cells initiate the inflammatory process by activating tissue-resident macrophages
and DC and triggering local production of Type I IFN and IL-6 (Figure 3E-L). Type | IFN
released in tissues induces local chemokine production by myeloid and epidermal cells;
these in turn mediate recruitment of CXCR3* Th1/Tcl cells. IFNy from Th1/Tcl cells, in
synergy with Type | IFN (16), upregulates expression of antigen processing and presentation
components, receptors for cellular damage, chemokines supporting T cell recruitment, and
cytokines increasing B cell activation (Table I1). Meanwhile, the local release of Type | and
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I1 IFN in tissues would trigger specific gene upregulation in circulating monocytes, creating
the changes in ‘reporter’ populations that we assessed.

Our evidence of increases in the levels of inflammasome-associated genes (A/MZ2, IF116,
CASP1, NLRC4) supports speculation of broader T lineage involvement (Figure 3A-C).
Activation of inflammasomes can increase availability of IL-1f. The combination of IL-6
and IL-1pB, both induced by response to damaged cells, have been found to be the critical
cytokine combination supporting differentiation of pathogenic human Th17 cells (35-37).
The potency of inflammasome activation has been demonstrated in AGVHD, wherein
blockade of NLRP3 generation of IL-1p reduced Th17 differentiation and AGVHD (29, 30,
38). We would speculate that inflammasome-mediated induction of increased IL-1p in
CGVHD may similarly contribute to the differentiation of the Th17 cells that have now been
identified in CGVHD tissues, just as Type | IFN can skew lineage commitment toward
Th1/Tcl (4, 39, 40). The combined presence of Th1/Tcl and Thi17 cells in turn would
exacerbate tissue damage, sustaining innate immune activation.

Murine studies of AGVHD have provided convincing evidence that transplant regimen-
induced tissue damage and exposure to gut microbial antigens can initiate T cell activation
and tissue infiltration, through involvement of inflammasomes and IFN-inducible pathways
(29, 30, 38, 41). Recent work on well-established murine models of sclerotic CGVHD
(B10.D2->BALB/c) using IFNy—/- and anti-IFNAR blockade have similarly demonstrated
a requirement an early requirement for Type | and Type Il IFN signaling (42, 43). Tissue
infiltrates of predominately Th1/Tcl effectors were followed by an increased presence of
cells with mixed IFN and Th17 production (43-45). Indeed the persistence of Teffectors and
full development of sclerotic CGVHD in a comparable model (DBA/2->BALB/c) was
dependent not only upon initial Thl and Th17 cells, but upon B cells, as well, for APC
function and autoantibody deposition in skin(45). Analysis of autoantibodies in plasma from
the NIH CGVHD natural history cohort demonstrated more than half the patients developed
one or more autoantibodies against molecules released by damaged cells (antibodies against
nuclei, DNA, RNA, mitochondria, neutrophil cytoplasm (ANCA))(34). These studies
support a model of a serial recruitment of multiple T and B effector lineages to produce the
full manifestations of CGVHD.

Clinical analyses of CGVHD risk factors suggest that activation of the innate immune
system by cellular damage after allo-HSCT may be a continuing factor that contributes to
the initiation and persistence of GVHD. Total body irradiation is a risk factor in the later
development of sclerotic CGVHD (46). AGVHD and CMV infection, both sources of cell
destruction and induction of Type | and Type Il IFN, are established cofactors in the
development of CGVHD (47, 48). Indeed, localized areas of minor tissue damage after allo-
HSCT - mild pressure from waistbands and bra straps, repeated blood draws, targeted
irradiation and localized skin lesions from varicella — have all been associated with localized
sclerotic CGVHD (49). Effects of earlier immune activation by these factors may not be
apparent clinically. Two thirds of the established CGVHD patients included in this study had
quiescent or de novo onset (Table I); only one third had progressive CGVHD, developing
out of AGVHD seguing into CGVHD.
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The limitation of the reporter-monocyte approach is that the gene expression profiles
primarily reflect the early steps of monocyte differentiation. These relatively undifferentiated
monocytes do not represent the complex populations of myeloid-derived cells in CGVHD
affected tissue. Plasmacytoid and myeloid dendritic cells, and specialized scavenger and
CX3CR1+ inflammatory macrophages are key elements of CGVHD infiltrates in tissues (4,
13). The precursors of these cells are often depleted in the circulation of CGVHD patients
(see dendritic cells in Supplemental Figure S4 A,B) (13). Alterations in gene patterns that
occur during terminal differentiation of myeloid infiltrates in tissues may not be present in
circulating monocytes. TGF@, PDGF and IL-4/IL-13 have all been proposed to play a role in
the fibrosis affecting skin and other organs in CGVHD (50, 51). These pathways were not
upregulated in microarray or Nanostring assays on monocytes, even within severely sclerotic
patients, nor were Th2-recruiting chemokines increased in plasma (Supplemental Figures S4
C,D,E). These results cannot, however, exclude later involvement of these pathways in
tissues. Further examination of changes in gene expression in the tissues is needed.

The objective of this study was to identify the common pathways that contribute to the full
spectrum of manifestations of CGVHD. We have demonstrated a pattern of overexpression
of IFN-inducible factors and DAMP receptors, in both erythematous and sclerotic patients,
that aligns this model with current transcriptome analyses of systemic autoimmune
disorders, including both systemic lupus erythematosus and systemic sclerosis (52, 53).
IFNa treatment exacerbates disease in lupus-prone murine models (54, 55), and produces
lupus-like rashes and anti-nuclear antibodies in man (56). Similarly, use of IFNa after
transplant to treat patients relapsing with chronic myelogenous leukemia has been reported
to produce severe CGVHD (57, 58). The commonalities between CGVHD and systemic
autoimmune disorders are particularly relevant to the development of new approaches to
CGVHD therapy. Recent clinical trials of SLE patients utilizing monoclonal antibodies
against Type | IFN have demonstrated a marked decline in leukocyte transcripts of IFN-
inducible genes, as well as plasma levels of CXCL10 and BAFF levels, concurrent with
improvements in SLE symptoms (SLEDAI scale) (59, 60). Use of an anti Type | IFN
receptor (IFNAR) has reduced Th1 activation and collagen production in preliminary trials
in Systemic Sclerosis (SSc), and similar use of anti-IFNAR blockade has prevented skin and
vascular changes in a sclerotic CGVHD murine model of SSc (42, 61). Furthermore,
blockade of STAT1 signaling through JAK1/2 inhibitors (which block both IFN and IL-6
signaling) has shown much promise in both murine GVHD and clinical trials in AGVHD
and CGVHD (62-64). Demonstration of the involvement of IFN-dependent pathways in the
initiation and persistence of CGVHD may therefore lead both to new treatment modalities
and preventive strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Microarray and nanostring analysis of monocytes from CGVHD patients and healthy normal

controls. A. Unsupervised hierarchical-cluster heatmap of normal donor and CGVHD
patients including 63 genes associated with response to DAMP or with induction by IFN
(see Table I1). B. Expression of IFN-inducible genes in monocytes sorted from 19 normal
controls (blue), 14 nonCGVHD (green) and 69 CGVHD patients (red). Nanostring gene
probe count data normalized by log2 transformation. Box and whisker plots indicate median
values by central bar, 25t and 75t quartiles by box and full range from minimum to
maximum copies by whiskers. Multiple t Test values shown for comparisons of normal and
CGHVD and for nonCGVHD and CGVHD. The gray band indicates 3 S.E. above the
negative control in the Nanostring analysis. C. Scatter plots of Nanostring-assessed
expression of GBPI1, STAT1and TNFSF13B as compared with CXCL 10, demonstrating
correlated regulation in expression of these genes in monocytes from CGVHD (red),
nonCGVHD (green) and normal controls (blue). D. Polar plot of median fold change in
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Microarray gene expression (as compared to the median in normal controls (dotted black
line) in all CGVHD patients (purple line), in patients with either severe oral CGVHD or
moderate to severe lichenoid cutaneous CGVHD ((n=13) fuschia line) or in patients with
widespread (>30% body surface area) deep and dermal sclerosis ((n=13) orange line). Genes
specifically induced by Type | IFN are noted in red. E. Box and whisker plot of Nanostring
analyses comparing monocyte gene expression in 19 normal (blue), 7 patients with severe
lichenoid cutaneous CGVHD on more than 20% of body surface area (BSA) and no
sclerotic change (fuschia) and 29 patients with deep and dermal sclerotic involvement of 20—
91% BSA (orange) and less than 6% erythema. Both CGVHD patient subsets were
significantly different from ND but not from each other.
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Figure2.
IFN-inducible chemokines and cytokines in CGVHD plasma. A. Box and whisker plots

comparing levels of the chemokines CXCL9 and CXCL10 in 10 normal controls (blue), 20
nonCGVHD (green) and 146 CGVHD (red) patients (including 36 CGVHD patients
assessed by Nanostring), as well as the subsets of these CGVHD patients with lichenoid
(n=21) or sclerotic (n=46) CGVHD. Kruskal-Wallis non-parametric ANOVA demonstrated
significant differences in the groups. Multiple paired comparisons corrected by Dunn’s test
found that All CGVHD and Lich and Scl CGVHD patient subsets differed significantly from
ND. B. Box and whisker plots comparing the level of CXCR3 expression in CD4 and CD8 T
cells in 9 normal controls (blue), 15 patients with lichenoid or sclerotic cutaneous CGVHD
involving <25% Body Surface Area (BSAI°) (orange) and 53 patients with >25% (BSAN).
These patients included 23 examined by Nanostring. Expression gates were determined
using full minus one controls. C-G. Plasma levels of BAFF (TNFSF13B) in CGVHD
patients. C. Plasma levels of BAFF in 20 normal controls (blue), 21 nonCGVHD (green) and
125 CGVHD (red) patients (including 36 in the Nanostring assays). D. Graph of plasma
levels of CXCL10 and BAFF in 125 CGVHD (red) patients and 13 nonCGVHD patients
(green). E. Same graph identifying patients with >20% lichenoid BSA (fuschia) or >20%
BSA with sclerotic CGVHD (orange). F. Graph of B cell number and plasma level of BAFF
in 125 CGVHD (red) patients and 13 nonCGVHD patients (green). G. Graph of plasma
BAFF levels of BAFF in 72 CGVHD (red) patients with B-cell numbers greater than 100/pl.
Spearman correlates reflect BAFF levels in only the CGVHD patients.
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Figure 3.
Monocyte expression of innate immune receptors for DAMP and of Type | IFN induced

genes. A. Polar plot of median fold change in microarray-assessed gene expression (as
compared to the median in normal controls (dotted black line)) of innate immune receptors
for DAMP in all CGVHD patients (purple line), in patients with either severe oral CGVHD
or moderate to severe lichenoid cutaneous CGVHD (fuschia line) or in patients with
widespread (>30% body surface area) deep and dermal sclerosis (orange line). B-C. Box
and whisker plot comparing Nanostring-analyzed expression of several DAMP responsive
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genes in monocytes sorted from 19 normal controls (blue), 14 nonCGVHD (green) and 69
CGVHD patients (red). C. Box and whisker plots from a 12 severe CGVHD patients from
the main cohort, retested with additional DAMP receptors. D. Polar plot of median fold
change in gene expression of IFN-inducible genes in CGVHD microarray patients whose
IRF7 expression was greater than the median (brown line) versus those with less than the
median (green line). Type | IFN-specific genes marked in red. E. Scatter plots of Nanostring-
assessed expression of OASL, IFIT1, and XAF1 as compared with DDX58 and TLR?7,
demonstrating correlated expression of DAMP receptors and Type | IFN-inducible genes in
CGVHD monocytes (red). (F-1) Fluorescence immunohistochemistry of the Type I-IFN
induced protein MxA, showing expression in biopsies collected from affected (F) lichenoid
skin, (G) scleratic skin, (H) oral mucosa and (1) minor salivary gland. Tissues were formalin
fixed, paraffin embedded, and following antigen retrieval and staining with MxA and
AlexaFluor 555 secondary antibodies, were imaged on a Leica SP2 confocal microscope.
Dotted lines mark the interface between epidermis and dermis or outline secretory acini. J—
K. Immunofluorescent expression (mean fluorescent intensity) of MxA in epidermal
keratinocytes in CGVHD tissues. J. Comparison of biopsies of skin from CGVHD patients
with no skin involvement, with lichenoid (lich) involvement, or sclerotic (scl) involvement.
Paired biopsies of affected and unaffected skin were collected from each lichenoid or
sclerotic patient. K. Comparison of biopsies of oral mucosa from patients with no oral
CGVHD or only mild symptoms, versus those with severe oral CGVHD. L. Scatter plots
showing correlated increases in IFNa and IL-15 in 49 CGVHD natural history patients, of
which 24 had more than 20% of body surface area affected with Lich-CGVHD or Scl-
CGVH. M. Scatter plots showing correlated increases in IFNa inducible CXCL10 and IL-6
in 49 CGVHD natural history patients, including 23 of the microarray patients, and 12
normal controls. This assay was repeated 3 times with plasma from different cohorts of 40—
50 CGVHD patients.
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Figure 4.
Time courses of IFN-inducible gene expression by Nanostring analysis in monocytes from 7

patients developing CGVHD. A. Patients (a — f) had been transplanted at the NCI using a
reduced intensity regimen followed by T-replete PBSC infusions from matched sibling (a, b,
e) or matched unrelated (c, d, f) donors. In each patient the graphs in the top row represents
the time course (in months from transplant) of expression of 6 genes strongly induced by
both Type I and Type Il IFN. The second row shows 3 IFN-inducible genes associated with
antigen processing and presentation. The third row shows 6 genes specifically modulated by
Type | IFN, including the transcription factor /RF7. The bottom graph shows the expression
receptors responding to nucleic acids released from damaged cells, including of cytosolic
(AIM2, DDX58) and endosomal ( TLR7) nucleic acid receptors capable of inducing /RF7
and triggering inflammasome formation. The vertical axes are fold changes in gene
expression, normalized relative to expression in normal controls (dotted lines). GC = period
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of treatment with high dose glucocorticoids. B. A series of 13 severe CGVHD and 14
nonCGVHD patient monocytes were compared for the same genes as in A, expressed as fold
change above normal controls.
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Figure5.
Monocyte expression of genes inducible by glucocorticoids. A. Box and whisker plot

comparing expression of /L10, ILIR2and CD163in monocytes from 19 normal controls
(white), 23 CGVHD patients receiving no glucocorticoids (yellow), 18 CGVHD patients
receiving <20mg/day (orange), and 26 CGVHD patients receiving 20-80mg/day (red). B.
Graphic combining glucocorticoid dose, expression of glucocorticoid and IFN-inducible and
DAMP pathway genes, and CGVHD patient organ involvement. Heatmap of Nanostring
data generated from all normal, nonCGVHD and CGVHD patients by unsupervised
hierarchical clustering of 3 glucocorticoid-induced genes and 18 IFN-induced genes,
including 4 involved in response to DAMP (genes listed on right edge). Superimposed on the
top is a bar graph of prednisone dose/day for each CGVHD (reddish brown) and
nonCGVHD (green) patients (assumed to be zero for normal controls (blue)) and a line of
markers (purple) indicating systemic treatments with non-steroidal immunosuppressants. At
the bottom is a graphic showing involvement of the 8 organ systems assessed by the
CGVHD consensus criteria, graded as not present (white), mild (yellow), moderate (medium
orange) and severe (dark orange). The last row shows the extent of sclerotic involvement in
skin (as in Table I). Gray boxes represent not applicable (vulvar vaginal CGVHD in males).
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Figure 6.
Model of initiation of CGVHD in tissues. Receptors for DAMP molecules (NLR, TLR and

CLR) in pDC are triggered by nucleic acids and other alarmins released by epithelial cells
damaged by conditioning, AGVHD, viral reactivation or local physical stress, stimulating
IFNa production (light gray triangles). IFNa then induces production of chemokines
CXCL9 (dark gray triangles) in myeloid cells and in the epithelial keratinocytes that attract
T-bet+ Th1/Tcl cells. These cells in turn both add IFNy to local IFN levels and differentiate
into cytotoxic effectors that continue the cycle of damage. Both IFNa and IFN+y generated
in the tissues contribute to upregulation of IFN inducible genes in circulating monocytes.
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Patient

Age
Sex (Male/Female)
HSCT Myeloablative/Nonmyeloablative
Donor: Related/ Unrelated/Haplo
Donor Source: BM/PBSC/CB
TBI
Months from Transplant to Evaluation
Months from CGVHD Diagnosis
Onset: (Progressive/Quiescent/De novo)
Lines of Prior Systemic Therapy
Current Systemic Therapy

Prednisone

Tacrolimus

MMF

Sirolimus

ECP

Imatinib

Cyclosporine

None

Other”
Number of Organs Involved
CGVHD Organ Involvement (0/1/2/3)
Vulvo/Vaginal (female only)
Oral
Eye
Liver
Gl
Lung
Joints/Fascia
Skin
%Body Surface Areai (0, <25%, <50%, >50%)
Erythematous
Dermal Sclerotic

Deep Sclerotic

Severity§ (Mild/Moderate/Severe)

Microarray N = 26

Median (Range)
42 (21-63)

29 (6-74)
20 (2-67)

4(2-8)

5 (2-7)

Number of Patients

17/9
16/10
14/12/0
3/23/0
13/13

7/10/9

17

I e N N N

1/412/2
9/13/3/1
2/11/9/3

12/11/3/0
16/6/3/1
6/14/3/3
6/5/13/2
0/2/6/18

2/19/4/1

8/14/212
7171814
0/7/19

Nanostring N = 69"

Median (Range)
46 (21-68)

38 (5-258)
27 (0-240)

4 (0-9)

5 (2-8)

Number of Patients

38/31
39/30
43/26/0
13/55/1
27142

26/20/24

46
24
20
14

A~ © oo o

13/10/4/4

20/37/9/3

12/26/26/5
35/23/10/1
44/18/5/2

17/28/1717
18/16/28/7
9/6/15/39

21/38/8/2
25/32/9/3
27/17/15/10
0/19/50

*
All 26 CGVHD patients assessed by microarray, as well as 43 additional CGVHD patients, were analyzed in the Nanostring cohort

fOther systemic therapies: hydroxychloroquine, montelukast, methotrexate, rituximab
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iSome patients had combinations of erythematous, dermal and deep sclerotic areas of their skin and were included in more than one category

§CGVHD Severity as assessed at time of NIH protocol enrollment
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