
Research Article
Error-Correcting Output Codes in Classification of
Human Induced Pluripotent Stem Cell Colony Images

Henry Joutsijoki,1 Markus Haponen,2 Jyrki Rasku,1

Katriina Aalto-Setälä,3 and Martti Juhola1

1School of Information Sciences, University of Tampere, Kanslerinrinne 1, 33014 Tampere, Finland
2BioMediTech, University of Tampere, Biokatu 12, 33520 Tampere, Finland
3School of Medicine, University of Tampere, Biokatu 12, 33520 Tampere, Finland

Correspondence should be addressed to Henry Joutsijoki; henry.joutsijoki@uta.fi

Received 25 July 2016; Accepted 14 September 2016

Academic Editor: Hong-Lin Su

Copyright © 2016 Henry Joutsijoki et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The purpose of this paper is to examine how well the human induced pluripotent stem cell (hiPSC) colony images can be classified
using error-correcting output codes (ECOC). Our image dataset includes hiPSC colony images from three classes (bad, semigood,
and good) whichmakes our classification task amulticlass problem. ECOC is a general framework tomodelmulticlass classification
problems.We focus on four different coding designs of ECOC and apply to each one of them 𝑘-Nearest Neighbor (𝑘-NN) searching,
näıve Bayes, classification tree, and discriminant analysis variants classifiers.We use Scaled Invariant Feature Transformation (SIFT)
based features in classification. The best accuracy (62.4%) is obtained with ternary complete ECOC coding design and 𝑘-NN
classifier (standardized Euclidean distance measure and inverse weighting).The best result is comparable with our earlier research.
The quality identification of hiPSC colony images is an essential problem to be solved before hiPSCs can be used in practice in
large-scale. ECOC methods examined are promising techniques for solving this challenging problem.

1. Introduction

Human induced pluripotent stem cells (hiPSCs) have gained
a lot of attention during the last decade. All began in 2006
when Takahashi and Yamanaka [1] reported in an article
published in Cell journal that mouse embryonic and adult
fibroblasts can be reprogrammed back to stem cells. These
stem cells were called induced pluripotent stem cells (iPSCs).
Overall, this result was a groundbreaking innovation which
reformed the regenerative medicine totally and pointed to a
newdirection for themodernmedicine. By thismeans patient
specific drug therapy, disease modeling, and tissue repairing,
for example, can be commonplace procedures in near future
since iPSCs are “capable of differentiating all germ layers
(endoderm, mesoderm and ectoderm) and the germline but
not extra embryonic tissues” as Amabile and Meissner stated
in [2].

The actual reprogramming process of somatic cells was
performed by introducing four genes encoding transcription

factors called Oct3/4, Sox2, Klf4, and C-Myc [1, 3]. The
progress of iPSC research did not end by the findings of
the year 2006 article but in the following year Takahashi et
al. [3] reproduced the reprogramming process for human
fibroblasts and the stem cells were called human induced
pluripotent stem cells. The invention of the reprogramming
process itself was a very important issue but it also alleviated
the strong ethical debate that the use of stem cells in medical
treatments had confronted before. Now we were able to use a
patient’s own cells in medical treatments.

Although the necessity of hiPSCs is evident from the
medical perspective, the demand of computer science with
hiPSCs might not be clear at first sight. Currently, the use
of hiPSCs in medicine can be considered still to be at the
theoretical level and there are several challenges which must
be solved before they are used in large-scale in practice.
Some of the problems are biomedical (see, e.g., [4]) but
discussion related to biomedical problems is out of the scope
of this paper. Instead, we focus on problems which can

Hindawi Publishing Corporation
BioMed Research International
Volume 2016, Article ID 3025057, 13 pages
http://dx.doi.org/10.1155/2016/3025057

http://dx.doi.org/10.1155/2016/3025057


2 BioMed Research International

be solved computationally and are encountered in practice
among practitioners and researchers in biomedicine who
examine and deal with hiPSCs in their daily routines. The
nature of these problems is usually practical but the solution
may require highly sophisticated methods from the fields of
machine learning, image analysis, or signal processing, for
instance.

Quality identification of hiPSC colonies (colony is a group
of individual hiPSCs) is one of the daily tasks that personnel
working in biomedicine perform. The workflow of quality
identification that is done in practice can be described in two
stages:

(i) Recognize the colony using the microscope.
(ii) Determine the quality of the colony.

Currently, quality identification of hiPSCs is performed
manually which is impossible to carry out in large-scale
and causes great workload for the personnel of a laboratory.
However, quality identification is an essential process to
do because abnormal hiPSC colonies cannot be used for
any purposes such as disease modeling and patient specific
drug therapy. Thus, we have a clear motivation to automate
the quality identification process. Automation will ease the
workload of the personnel and offers an objective tool for
quality identification.

When considering the workflowmore specifically, we see
that it has a classical pattern recognition structure where
the first part is the recognition phase and the other part
considers classification.The recognition part returns to image
analysis and isolating the colony area from the image after
the colony has been imaged using a camera. Currently, the
recognition of colonies is done manually by human experts.
Determining the quality of the hiPSC colony instead can
be performed using supervised machine learning methods.
We restrict our focus on the machine learning stage and the
image analysis part will be left outside of this paper. Although
the automation of quality identification of hiPSC colonies will
be necessary action in the near future, the need of human
expertise does not disappear. In order to use supervised
machine learning techniques we need properly constructed
image set which is labeled by the human expert. In the
construction of such set the knowledge of human experts will
be required.

The specific goal of our study is to examine how well
hiPSC colony images can be classified using error-correcting
output codes (ECOC). More specifically, we want to inves-
tigate whether or not the use of ECOC can improve the
accuracy compared to our earlier study [5] on the same
dataset. Overall, ECOC [6–8] is a general framework to
model multiclass classification problems by dividing it to a
set of binary classification problems.

Since ECOC is not attached to any specific classification
method, it can be used with various classification methods.
For this paper we restricted our focus on the following
classification methods to be used with ECOC:

(i) 𝑘-Nearest Neighbor (𝑘-NN) searching method
(ii) Discriminant analysis based solutions

(iii) Naı̈ve Bayes
(iv) Classification tree

From the selected classification methods particularly 𝑘-
NN is interesting because it obtained good results in [5].
The aforementioned classification methods are themselves
multiclass classifiers and tested in [5]. However, now we
examine whether or not we can improve our results using
selected classifiers in the context of ECOC. In ECOC there
are numerous ways (in other words, coding designs) to
reduce a multiclass classification problem into a set of binary
classification problems. From the possible coding design
alternatives we chose four approaches to be used:

(i) One-vs-all (OVA)
(ii) One-vs-one (OVO)
(iii) Ordinal (ORD)
(iv) Ternary complete (TER)

The motivation to apply ECOC framework in the context of
the hiPSC colony image classification can be explained by
its good performances in many applications such as cloud
classification [9], text classification [10], face verification [11,
12], face detection [13], and ECG beats classification [14] and
in mapping criminal phenomena [15].

Classification of hiPSC colony images has recently been
studied in [5, 16–18]. The difference between the given
references and our paper is significant. Firstly, Masuda et
al. [18] had a binary classification problem between good
and bad iPSC colonies whereas our problem is a multiclass
problem between good and semigood and bad colony classes.
Secondly, we use different Scaled Invariant Feature Transfor-
mation (SIFT) [19] based features in classification compared
to [18] and [16, 17] in which only intensity histograms
were used as features. Thirdly, although in [5] we used the
same SIFT-based features and image dataset as in this study,
in none of the earlier studies has ECOC framework been
studied before and, hence, our research fulfills the missing
gap. Fourthly, we have a significantly larger image dataset
compared to [16–18].

The paper is organized as follows. Section 2 describes
briefly the ECOC framework and the classification methods
used. In Section 3 a detailed description of experiments is
given. The section consists of information about the dataset,
data acquisition, feature extraction, classification procedure,
and performance measures selected. Section 4 presents the
results and, finally, Section 5 is for discussion and Section 6 is
for conclusions.

2. Methods

2.1. Classification Methods. We chose four classification
methods to be used in this paper. These are 𝑘-NN method
[20–22], linear and quadratic discriminant analysis variants
[21–23], naı̈ve Bayes [24, 25], and classification tree (more
specifically CART algorithm) [22, 26].There are issues which
must be taken into account when the methods are used
in practice. With 𝑘-NN the three main parameters are



BioMed Research International 3

to be considered: the value of 𝑘, distance measure, and
distance weighting function.We selected seven distancemea-
sures (Chebyshev, cityblock, correlation, cosine, Euclidean,
standardized Euclidean, and Spearman distance measures)
which were also successfully tested in [5, 16]. For distance
weighting functions we chose equal, inverse, and squared
inverse weighting [5, 16] and 𝑘 values from 1 to 23were tested.
Only odd values were tested to prevent the possibility of a tie
in the case of individual binary classifier.

Discriminant analysis based classification methods
require the computing of covariance matrix. In linear dis-
criminant analysis (LDA) we assume that all covariance
matrices are equal [22, 23] whereas in quadratic discriminant
analysis (QDA) the covariance matrix is evaluated for each
class separately and theymay differ from each other.There are
different ways to use covariance matrix together with LDA
and QDA in classification. We can use only diagonal entries
of the estimated covariance matrix and the approach returns
to naı̈ve Bayes classification and can be called “diagLinear”
or “diagQuadratic” [27]. A commonly encountered problem
with the LDA and QDA based classification methods is
the singularity of covariance matrix. In order to solve
the problem of singularity we can use pseudoinverses. By
this means obtained classifier is called “pseudoLinear” or
“pseudoQuadratic” [27].

Näıve Bayes (NB) classifier is a well-known classification
method. The basic formulation of NB classifier is simple and
in many applications it works well. However, we can extend
the use of NB classifier by using kernel smoothing density
estimation [21, 27]. We applied altogether four different
kernels (Gaussian, box, Epanechnikov, and triangle) in kernel
smoothing density estimation.

2.2. Error-Correcting Output Codes. Error-correcting output
codes are general classification framework which includes
two stages: encoding and decoding [28–30]. Encoding phase
consists of designing coding matrix CM where columns
represent binary classifiers and rows indicate codewords for
classes. Designing of a coding matrix can be made using
binary coding and ternary coding [28]. In binary coding the
elements of a coding matrix are CM𝑖𝑗 ∈ {−1, 1} or CM𝑖𝑗 ∈
{0, 1}, respectively, 𝑖 = 1, 2, . . . ,𝑀 and 𝑗 = 1, 2, . . . , 𝑁𝑐,
where 𝑀 is the number of classes and 𝑁𝑐 is the number of
binary classifiers. In the columns the division of values of
−1 and 1 or 0 and 1, respectively, shows which classes are
grouped together in each classifier. In ternary coding [6, 28],
the elements of the coding matrix belong to the set {−1, 0, 1}.
In this approach values −1 and 1 have the same purpose as
in binary coding but now 0 means that this specific class is
excluded from the training of an individual binary classifier.

There are numerous strategies of how to construct the
coding matrix. We chose four of the possible alternatives.
The first approach is one-vs-all (OVA) [28] which uses binary
coding and each one of the binary classifiers separates one
class from the rest. Hence, the number of binary classifiers
is only O(𝑀) where 𝑀 is the number of classes. OVA is a
very simple approach but from the computational perspective
it is inefficient since the whole training set is needed in the
case of each binary classifier. The coding matrix for OVA

Table 1: The coding matrix for one-vs-all (OVA) coding design in
the three-class classification problem. In the coding matrix rows
represent codewords for each class𝐶𝑖, 𝑖 = 1, 2, 3. Columns represent
individual classifiers 𝑓𝑖, 𝑖 = 1, 2, 3, and how classes are divided into
positive and negative classes.

𝑓1 𝑓2 𝑓3
𝐶1 1 −1 −1
𝐶2 −1 1 −1
𝐶3 −1 −1 1

Table 2:The codingmatrix for the one-vs-one (OVO) coding design
in the three-class classification problem.

𝑓1 𝑓2 𝑓3
𝐶1 1 1 0

𝐶2 −1 0 1

𝐶3 0 −1 −1

Table 3: The coding matrix for ordinal (ORD) coding design in the
three-class classification problem.

𝑓1 𝑓2
𝐶1 −1 −1
𝐶2 1 −1
𝐶3 1 1

Table 4: The coding matrix for ternary complete (TER) coding
design in the three-class classification problem.

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6
𝐶1 −1 −1 0 1 −1 −1

𝐶2 1 −1 −1 −1 0 1

𝐶3 0 1 1 1 1 1

in the three-class classification problem can be found from
Table 1.

The second coding design is one-vs-one (OVO) [29]
which is another commonly used multiclass modeling
method (Table 2). OVO coding design has several differences
compared to OVA. Firstly, OVO applies ternary coding.
Secondly, the individual binary classifiers are trained only
with training data from classes 𝑖 and 𝑗 (𝑖 < 𝑗 and 𝑖, 𝑗 ∈
{1, 2, . . . ,𝑀}). Thirdly, the total number of binary classifiers
is O(𝑀2). The coding matrix for OVO used in this paper can
be seen from Table 2.

The third coding design is ordinal (ORD) [27] which has
similarities with OVA. The number of binary classifiers is
𝑀−1, that is,O(𝑀). Furthermore, every binary classifier uses
the whole training data. In ORD approach the first binary
classifier is trained to separate the first class from the rest
whereas the second classifier separates the first two classes
from the rest and so on until all𝑀− 1 binary classifiers have
been trained. Table 3 presents the coding matrix for ORD in
the three-class classification task.

The fourth coding design is called ternary complete
(TER) [27] and it uses ternary coding. Table 4 shows the
coding matrix in the three-class classification problem and



4 BioMed Research International

the total number of classifiers in TER approach is (3𝑀 −
2(𝑀+1) + 1)/2 ∈ O(3𝑀). Compared to the aforementioned
coding designs in the ternary complete design the number
of classifiers is significantly higher and the training phase is
more time-consuming in practice.

Besides OVA, OVO, ORD, and TER coding designs, there
are also other choices which have been suggested in literature.
Binary complete [14, 27] approach is analogous to TER
approach but uses only binary coding. In binary complete
coding design we construct all possible binary combinations
without excluding any class. Hence, the number of individual
binary learners is 2(𝑀−1) − 1 ∈ O(2𝑀) [14, 27]. However,
the binary complete coding design is the same as OVA when
the number of classes is three. Other known methods for
designing a coding matrix are sparse randommethod [6, 29],
dense random strategy [6], or discriminant error-correcting
output codes [30]. For instance, sparse random and dense
random strategies are more convenient for classification
problems where the number of classes is high.

After the coding matrix has been built and individual
classifiers have been trained, the next phase is to classify test
examples. Each test example will be given for all classifiers
which will predict an output for the example. When all
outputs have been collected together, we have constructed
a codeword for the test example. Then, we need to find out
which one of the classes’ codewords is the closest one to the
test example’s codeword. This stage is called decoding. There
are numerous techniques for decoding and Escalera et al.
[28, 31] presented an extensive review on this issue. The most
common ways for decoding are to use Hamming decoding
[31], inverse Hamming decoding [32], and Euclidean decod-
ing [30] according to Escalera et al. [28]. In this paper we used
Hamming loss function for binary learners and loss-weighted
decoding [31] for aggregating the individual losses. Detailed
formulas for Hamming and loss-weighted decodings can be
found from [28, 31].

3. Experiments

3.1. Dataset Description. Our dataset includes altogether 173
hiPSC colony images from three classes: bad, semigood, and
good. From these classes semigood class can be considered
as a transition phase from good to bad. More specifically, we
have 41 images belonging to class bad, 74 images in class good,
and the rest of the images (58) in semigood class. Images
cannot be connected to any specific patient. Three example
images from each class can be seen from Figure 1.

The study was approved by the ethical committee of
PirkanmaaHospital District (R08070). iPSC lines were estab-
lished using the same approach as given in [1] and cell lines
were characterized for their karyotypes and pluripotency as
described in [33]. Categorization of the iPSC colony images
was performed as follows [5, 16, 17]:

(i) Good colonies have rounded shape, translucent even
color, and defined edges.

(ii) Semigood colonies have clear edges but include
changes in color and structure.

(iii) Bad colonies have partially lost edge structure, vac-
uole could sometimes be seen, and areas of three-
dimensional structures were observed.

3.2. Data Acquisition. Image data acquisition followed the
guidelines given in [5, 16, 17]. We used hiPSCs and colonies
were photographed between 5 and 7 d of their weekly growth
cycle since within this time frame better visualization of the
colonies can be obtained. The following setup was used in
observation and image acquisition:

(i) Nikon Eclipse TS100 inverted routine microscope
with an attached heating plate

(ii) Imperx IGV-B1620M-KC000 camera which was
attached to the microscope and connected to a laptop

(iii) Laptop that included JAI Camera Control Tool soft-
ware

(iv) Images with resolution of 1608 × 1208 (width ×
height)

Imaging process may include problems related to lighting
and sharpness of an image, for instance. These problems,
however, were minimized since only one expert performed
the actual imaging process. Hence, the variability of lighting
and sharpness of an image was minimized and the settings
were fixed to during imaging sessions. Since the images
were taken during several sessions, it may have caused
small differences in the images. The position of growing
hiPSC colonies was mostly in the center of the image but
sometimes a growing colony was near the edge of the well
which produced some distortion in the lighting. Finally, the
imaged hiPSC colonies were classified to one of the three
aforementioned classes.

3.3. Feature Extraction. In this study we used Scaled Invari-
ant Feature Transformation (SIFT) [19] based features. We
applied basic SIFT algorithm and not the dense SIFT [34,
35] variation. SIFT algorithm is a well-known algorithm
and a detailed presentation about it can be found from
[19]. We performed the extraction of SIFT descriptors and
frames using VLFeat 0.9.18 with default settings [36]. SIFT
feature extraction from an image produces descriptors and
their corresponding frames. Descriptors are presented as
vectors of 128 dimensions. We used in feature extraction a
technique presented in [5]. This technique has two phases
and is done for every image separately. The first stage is to
extract SIFT descriptors from an image. The other stage is
to evaluate a mean descriptor from the descriptors gained in
the first stage. Thus, every image is represented by a mean
SIFT descriptor and it can be used in classification. This
“mean SIFT descriptor” approach improved classification
results in [5] compared to [16, 17] and this inspired us to
use the same approach again in this paper. When mean
SIFT descriptors were obtained, the dataset to be used in
classification was size (excluding column of class labels) of
173 × 128 (rows × columns). Before the actual classification
we performed simple preprocessing by standardizing the
columns of dataset to have a mean of zero and unit variance.



BioMed Research International 5

Figure 1: Example images on iPSC colonies from classes bad, semigood, and good. Images on the first row are from the class bad, the second
row images are from the class semigood, and the third row indicates colonies from the class good. Images are scaled to have width and height
of 1.5 in.

After standardization we scaled the columns (features) to
[−1, 1] interval.

3.4. Classification Procedure. Classification was performed
using either leave-one-out (LOO) or nested leave-one-out
technique (NLOO). LOO was used when there were not any
parameters to be estimated in terms of classification method.
This was the case when discriminant-based classification
methods, classification tree, and naı̈ve Bayes classifier were
used with different ECOC coding designs.

In the case of 𝑘-Nearest Neighbor method there are
several parameters and these were explained in Section 2.1.
In addition, in Section 2.1 parameter values tested were
presented. From the parameters 𝑘 value must be estimated
and this was performed using NLOO technique. NLOO
includes two for loops where the outer loop is for model
evaluation and the inner loop is for model selection. The
following classification procedure is repeated with respect to
all examples in the dataset:

(1) In outer loop exclude one example from the dataset
and forma test set on this example.This example is left
for model evaluation. The rest of the examples form
training set.

(2) Perform LOO procedure for the training set and
repeat it with each 𝑘 value.

(3) Evaluate the accuracy of the training set for each
𝑘 value tested. Select the 𝑘 value which gained the
highest accuracy.

(4) Train 𝑘-NN binary classifiers by utilizing the whole
training set and optimal 𝑘 value and predict the class
label for the test example (obtained in step (1)).

A consequence of NLOO is that for each training set the opti-
mal 𝑘 value may vary. In addition, from the computational
perspective,NLOO is themost time-consuming classification
procedure. However, with NLOO we can maximize the size
of the training set which is an asset when dealing with rather
small datasets as ours.The hardware used in classificationwas
a desktop computer having Intel i7-3960X 3.5GHz processor
and 32GB RAM. All the experiments were made using
Matlab 2015b and Statistics and Machine Learning Toolbox,
Image Processing Toolbox, and Parallel Computing Toolbox
with Win7 operating system.

3.5. Performance Measures. We have chosen three perfor-
mance measures which are true positive rate (TPR) (also
known as sensitivity), true positive (TP), and accuracy
(ACC). True positive rate describes the proportion of cor-
rectly classified examples from a specific class. True positive
presents the number of correctly classified examples from a
specific class. Accuracy describes the proportion of correctly



6 BioMed Research International

Table 5: The results of discriminant analysis variants and classification tree method when different ECOC coding designs have been used.
Different coding designs are abbreviated as follows: one-vs-all (OVA), one-vs-one (OVO), ordinal (ORD), and ternary complete (TER).
Quadratic discriminant analysis could not be evaluated due to nonpositive definiteness of covariance matrix. True positive rates can be found
from the parenthesis next to true positive result and accuracy from the last column of the table.

Method/class Bad Good Semigood ACC
OVA-LDA 17 (41.5%) 34 (45.9%) 16 (27.6%) 38.7%
OVO-LDA 22 (53.7%) 27 (36.5%) 20 (34.5%) 39.9%
ORD-LDA 17 (41.5%) 24 (32.4%) 18 (31.0%) 34.1%
TER-LDA 16 (39.0%) 32 (43.2%) 20 (34.5%) 39.3%
OVA-diagLinear 19 (46.3%) 59 (79.7%) 11 (19.0%) 51.4%
OVO-diagLinear 16 (39.0%) 58 (78.4%) 16 (27.6%) 52.0%
ORD-diagLinear 19 (46.3%) 39 (52.7%) 15 (25.9%) 42.2%
TER-diagLinear 17 (41.5%) 58 (78.4%) 15 (25.9%) 52.0%
OVA-pseudoQuadratic 41 (100.0%) 0 (0.0%) 0 (0.0%) 23.7%
OVO-pseudoQuadratic 9 (22.0%) 35 (47.3%) 28 (48.3%) 41.6%
ORD-pseudoQuadratic 41 (100.0%) 0 (0.0%) 0 (0.0%) 23.7%
TER-pseudoQuadratic 9 (22.0%) 31 (41.9%) 31 (53.4%) 41.0%
OVA-classification tree 17 (41.5%) 39 (52.7%) 15 (25.9%) 41.0%
OVO-classification tree 19 (46.3%) 50 (67.6%) 30 (51.7%) 57.2%
ORD-classification tree 13 (31.7%) 48 (64.9%) 17 (29.3%) 45.1%
TER-classification tree 16 (39.0%) 48 (64.9%) 23 (39.7%) 50.3%

classified examples from all classes together. From these
performance measures accuracy and true positive rate can
be given also in percentages. Formulas for the performance
measures can be found, for example, from [23]. Other
performance measures were not chosen since majority of the
performance measures are designed for binary classification
problems (e.g., ROC, AUC, and 𝐹1-score) and for our pur-
poses the aforementioned three performance measures are
adequate.

4. Results

Table 5 shows the results of discriminant analysis variants and
classification tree. Overall, it can be seen that the results are
largely dispersed. Accuracies spread from less than 25% to
over 57%. Only with diagLinear and classification tree above
50% accuracy was obtained. The best choice according to
Table 5was classification treewithOVOcoding design having
57.2% accuracy and outperforming results in [16, 17]. Also,
with the ternary complete coding design classification tree
obtained above 50% accuracy. If we examine more closely
classification tree results, we notice that none of the classes
was classified with very high TPRs. The best one was class
“good” where close to 68% for TPR was obtained. In classes
“bad” and “semigood” TPRs were mostly in balance between
each other. We must also remember that class “good” is the
most frequent in the dataset which may have influenced the
results. However,most of the TPRswere left below 50%which
indicates how small differences are between classes and the
misclassification may happen very easily.

The rest of the classification methods in Table 5 could not
compete with classification tree results. Linear discriminant
analysis (LDA) with all coding designs stayed below 40%
in accuracies and most of the TPRs. This is a poor result
and indicates that the classes are not easily separable. For

diagLinear instead the results were improved radically par-
tially. A general insight to the results shows that accuracy
and TP(R)s for class “good” gained better results compared
to LDA results whereas for classes “bad” and “semigood” the
results stayed pretty much at the same level as in LDA case. A
noticeable detail is that with OVA coding design diagLinear
obtained the highest TP(R) combination (59 (79.7%)) for
class “good.” A runner-up accuracy (52.0%) of Table 5 was
also obtained with diagLinear.

The last discriminant-based classification method was
called “pseudoQuadratic.” The results of pseudoQuadratic
were dichotomous in terms of coding designs. For OVA and
ORD coding designs class bad was classified perfectly but
other classes were misclassified totally. In the case of OVO
and TER coding designs accuracies were around 41.0% and
none of the classes were misclassified totally. Furthermore,
the highest TP(R) (31 (53.4%)) was obtained for class “semi-
good” when TER coding design was used.

Table 6 presents the results of näıve Bayes (NB) variants
when different ECOC coding designs were used. If we
consider results column-wise, we see that classes “bad” and
“semigood” were the most difficult to recognize. In both
classes the best TPRs were below 42.0%. More specifically,
the highest TP(R)s for classes “bad” and “semigood” were
17 (41.5%) and 19 (32.8%). However, class “good” was well
recognized since the topmost TP(R)was 65 (87.8%).Obtained
TP(R)s are very good results but we need to keep inmind that
NB is a classifier which relies heavily on probabilities and for
class good a priori probability is the highest one among all
classes. This certainly may have an effect on the results. For
accuracies, 53.8%was achieved usingOVA coding design and
basic NB classifier with normal distribution assumption. We
also tested four different kernels in kernel smoothing density
estimation but these did not bring any improvement.



BioMed Research International 7

Table 6:The results of näıve Bayes variants together with different ECOC coding designs. Different coding designs are abbreviated as follows:
one-vs-all (OVA), one-vs-one (OVO), ordinal (ORD), and ternary complete (TER). True positive rates can be found from the parenthesis
next to true positive result and accuracy from the last column of the table.

Method/class Bad Good Semigood ACC
OVA-näıve Bayes (normal distribution
assumption) 17 (41.5%) 62 (83.8%) 14 (24.1%) 53.8%

OVO-näıve Bayes (normal distribution
assumption) 16 (39.0%) 61 (82.4%) 14 (24.1%) 52.6%

ORD-näıve Bayes (normal distribution
assumption) 16 (39.0%) 49 (66.2%) 19 (32.8%) 48.6%

TER-naı̈ve Bayes (normal distribution
assumption) 16 (39.0%) 61 (82.4%) 14 (24.1%) 52.6%

OVA-näıve Bayes (kernel smoothing density
estimation and triangle kernel) 13 (31.7%) 59 (79.7%) 9 (15.5%) 46.8%

OVO-näıve Bayes (kernel smoothing
density estimation and triangle kernel) 13 (31.7%) 59 (79.7%) 12 (20.7%) 48.6%

ORD-näıve Bayes (kernel smoothing density
estimation and triangle kernel) 13 (31.7%) 58 (78.4%) 10 (17.2%) 46.8%

TER-naı̈ve Bayes (kernel smoothing density
estimation and triangle kernel) 13 (31.7%) 59 (79.7%) 12 (20.7%) 48.6%

OVA-näıve Bayes (kernel smoothing density
estimation and Epanechnikov kernel) 15 (36.6%) 60 (81.1%) 10 (17.2%) 49.1%

OVO-näıve Bayes (kernel smoothing density
estimation and Epanechnikov kernel) 13 (31.7%) 60 (81.1%) 11 (19.0%) 48.6%

ORD-näıve Bayes (kernel smoothing density
estimation and Epanechnikov kernel) 13 (31.7%) 59 (79.7%) 10 (17.2%) 47.4%

TER-naı̈ve Bayes (kernel smoothing density
estimation and Epanechnikov kernel) 15 (36.6%) 59 (79.7%) 11 (19.0%) 49.1%

OVA-näıve Bayes (kernel smoothing density
estimation and box kernel) 13 (31.7%) 64 (86.5%) 9 (15.5%) 49.7%

OVO-näıve Bayes (kernel smoothing
density estimation and box kernel) 12 (29.3%) 65 (87.8%) 11 (19.0%) 50.9%

ORD-näıve Bayes (kernel smoothing density
estimation and box kernel) 13 (31.7%) 63 (85.1%) 9 (15.5%) 49.1%

TER-naı̈ve Bayes (kernel smoothing density
estimation and box kernel) 13 (31.7%) 64 (86.5%) 10 (17.2%) 50.3%

OVA-näıve Bayes (kernel smoothing density
estimation and Gaussian kernel) 13 (31.7%) 64 (86.5%) 9 (15.5%) 49.7%

OVO-näıve Bayes (kernel smoothing
density estimation and Gaussian kernel) 18 (43.9%) 59 (79.7%) 14 (24.1%) 52.6%

ORD-näıve Bayes (kernel smoothing density
estimation and Gaussian kernel) 13 (31.7%) 63 (85.1%) 9 (15.5%) 49.1%

TER-naı̈ve Bayes (kernel smoothing density
estimation and Gaussian kernel) 13 (31.7%) 64 (86.5%) 10 (17.2%) 50.3%

The last four tables (Tables 7–10) concern the results
of 𝑘-Nearest Neighbor searching (𝑘-NN) method. We have
separated the results of every coding design into its own table
to ease the analysis. Table 7 presents the interesting results
of the OVA coding design with the 𝑘-NN variations. The
highest accuracy (61.8%) is better than in previous result
tables and when examining accuracies we notice that three
methods obtained above 60.0% accuracy whereas in Tables
5 and 6 none of the methods gained above 60.0% accuracy.
Class “good” is again the best identified class and TP(R)s
of 62 (83.8%) were achieved. This is a very good result and
indicates that class good can be separated well from the rest

of the classes. In the case of class “bad” TP(R) combination
28 (68.3%) was gained and it was also an improvement
compared to naı̈ve Bayes results in Table 6 andmajority of the
results in Table 5. For class “semigood” situation was slightly
different since the best TP(R) combination (27 (46.6%)) was
not so good as with other classes. Nevertheless, the best result
in this class was still better than the majority of the results of
class “semigood” in Tables 5 and 6.

Table 8 depicts the results of 𝑘-NN classifiers with OVO
coding design. There are several similarities in the results
compared to Table 7. Firstly, class “good” was again the best
recognized class within the dataset having 64 (86.5%) TP(R)s.



8 BioMed Research International

Table 7: The results of 𝑘-Nearest Neighbors searching method variants with one-vs-all coding design. True positive rates can be found from
the parenthesis next to true positive result and accuracy from the last column of the table.

Method/class Bad Good Semigood ACC
Chebyshev measure and equal weights 27 (65.9%) 45 (60.8%) 22 (37.9%) 54.3%
Chebyshev measure and inverse weights 15 (36.6%) 44 (59.5%) 21 (36.2%) 46.2%
Chebyshev measure and inverse squared
weights 16 (39.0%) 55 (74.3%) 23 (39.7%) 54.3%

Cityblock measure and equal weighting 28 (68.3%) 51 (68.9%) 23 (39.7%) 59.0%
Cityblock measure and inverse weighting 25 (61.0%) 52 (70.3%) 27 (46.6%) 60.1%
Cityblock measure and squared inverse
weighting 24 (58.5%) 50 (67.6%) 27 (46.6%) 58.4%

Correlation measure and equal weighting 19 (46.3%) 59 (79.7%) 18 (31.0%) 55.5%
Correlation measure and inverse weighting 16 (39.0%) 54 (73.0%) 19 (32.8%) 51.4%
Correlation measure and squared inverse
weighting 19 (46.3%) 58 (78.4%) 21 (36.2%) 56.6%

Cosine measure and equal weighting 24 (58.5%) 52 (70.3%) 19 (32.8%) 54.9%
Cosine measure and inverse weighting 20 (48.8%) 59 (79.7%) 20 (34.5%) 57.2%
Cosine measure and squared inverse
weighting 20 (48.8%) 62 (83.8%) 21 (36.2%) 59.5%

Euclidean measure and equal weighting 25 (61.0%) 51 (68.9%) 23 (39.7%) 57.2%
Euclidean measure and inverse weighting 24 (58.5%) 49 (66.2%) 25 (43.1%) 56.6%
Euclidean measure and squared inverse
weighting 21 (51.2%) 48 (64.9%) 24 (41.4%) 53.8%

Standardized Euclidean measure and equal
weighting 28 (68.3%) 54 (73.0%) 25 (43.1%) 61.8%

Standardized Euclidean measure and inverse
weighting 25 (61.0%) 53 (71.6%) 27 (46.6%) 60.7%

Standardized Euclidean measure and
squared inverse weighting 20 (48.8%) 46 (62.2%) 26 (44.8%) 53.2%

Spearman measure and equal weighting 15 (36.6%) 50 (67.6%) 16 (27.6%) 46.8%
Spearman measure and inverse weighting 16 (39.0%) 61 (82.4%) 17 (29.3%) 54.3%
Spearman measure and squared inverse
weighting 18 (43.9%) 59 (79.7%) 19 (32.8%) 55.5%

Secondly, the best accuracy (60.7%) was only around 1%
lower than in Table 7 and it was obtained with the same
distance measure. Thirdly, class “semigood” was the most
difficult class to classify and 29 (50.0%) TP(R)s were gained
at maximum. For class “bad” a significant drop happened in
TP(R)s. Now, the best TP(R) combination was 24 (58.5%)
and it was obtained by three distance measures (cityblock,
Euclidean measure, and standardized Euclidean). The actual
difference in class “bad” compared to Table 7 results was
around 10.0% which can be considered to be significant. The
reason behind the decreasemay lie in theOVO coding design
itself where individual classifiers separate only two classes
from each other whereas in OVA all classes are included in
all classifiers.

Table 9 represents the results of 𝑘-NN classifier and
ordinal (ORD) coding design. Now, the best accuracy was
61.8% similarly as in Table 7. Moreover, for class “good” 64
(86.5%) TP and TPRs were achieved and these were identical
which was the topmost result in Table 8. However, now the
best result was achieved by the same configuration as the
highest accuracy. Cityblock distance measure together with

equal and inverse weightings got the best TP and TPR (23
(56.1%)) which was in line with Table 8 results for class “bad.”
Furthermore, for class “semigood” the same configuration as
in Table 8 achieved the best TP(R) combination (26 (44.8%)).
Hence, we can say that the results of ORD coding design were
a mixture of OVA and OVO results.

The results of 𝑘-NN classifier with ternary complete
coding design can be seen from Table 10. The same dis-
tance measures were the best alternatives as for OVA and
OVO coding designs. Standardized Euclidean with equal and
inverse weightings achieved 25 (61.0%) TP(R). In addition,
standardized Euclidean was the best choice with respect to
accuracies. Accuracy of 62.4% was the best accuracy when
taking into account all accuracies in this paper. Moreover,
it is an improvement over 7% to accuracies obtained in [16,
17] with a smaller hiPSC image dataset. When examining
classes “good” and “semigood” more closely, we notice that
class “good” was again the best recognized class having 61
(82.4%) TP(R). For class “semigood” the same level of result
was gained as in Tables 7–9. This time the highest TP(R)
was obtained by Euclidean measure and inverse weighting



BioMed Research International 9

Table 8:The results of 𝑘-Nearest Neighbors searching method variants with one-vs-one coding design. True positive rates can be found from
the parenthesis and accuracy from the last column of the table.

Method/class Bad Good Semigood ACC
Chebyshev measure and equal weights 23 (56.1%) 46 (62.2%) 21 (36.2%) 52.0%
Chebyshev measure and inverse weights 23 (56.1%) 46 (62.2%) 21 (36.2%) 52.0%
Chebyshev measure and inverse squared
weights 18 (43.9%) 47 (63.5%) 21 (36.2%) 49.7%

Cityblock measure and equal weighting 24 (58.5%) 54 (73.0%) 24 (41.4%) 59.0%
Cityblock measure and inverse weighting 24 (58.5%) 54 (73.0%) 23 (39.7%) 58.4%
Cityblock measure and squared inverse
weighting 21 (51.2%) 52 (70.3%) 20 (34.5%) 53.8%

Correlation measure and equal weighting 17 (41.5%) 54 (73.0%) 18 (31.0%) 51.4%
Correlation measure and inverse weighting 15 (36.6%) 56 (75.7%) 16 (27.6%) 50.3%
Correlation measure and squared inverse
weighting 20 (48.8%) 60 (81.1%) 22 (37.9%) 59.0%

Cosine measure and equal weighting 17 (41.5%) 56 (75.7%) 15 (25.9%) 50.9%
Cosine measure and inverse weighting 18 (43.9%) 64 (86.5%) 18 (31.0%) 57.8%
Cosine measure and squared inverse
weighting 17 (41.5%) 60 (81.1%) 21 (36.2%) 56.6%

Euclidean measure and equal weighting 23 (56.1%) 52 (70.3%) 24 (41.4%) 57.2%
Euclidean measure and inverse weighting 23 (56.1%) 52 (70.3%) 24 (41.4%) 57.2%
Euclidean measure and squared inverse
weighting 24 (58.5%) 51 (68.9%) 28 (48.3%) 59.5%

Standardized Euclidean measure and equal
weighting 23 (56.1%) 58 (78.4%) 23 (39.7%) 60.1%

Standardized Euclidean measure and inverse
weighting 23 (56.1%) 58 (78.4%) 23 (39.7%) 60.1%

Standardized Euclidean measure and
squared inverse weighting 24 (58.5%) 52 (70.3%) 29 (50.0%) 60.7%

Spearman measure and equal weighting 16 (39.0%) 59 (79.7%) 17 (29.3%) 53.2%
Spearman measure and inverse weighting 18 (43.9%) 61 (82.4%) 19 (32.8%) 56.6%
Spearman measure and squared inverse
weighting 18 (43.9%) 62 (83.8%) 21 (36.2%) 58.4%

being 28 (48.3%). Overall, class “semigood” was difficult to
classify and one reason behind it may be that “semigood”
class includes greater variety between colonies. Some of the
colonies might be closer to good colonies and some other
colonies may be closer to bad colonies.

5. Discussion

Error-correcting output codes are a state-of-the-art technique
when modeling multiclass classification problems. ECOC
has been used in many applications and showed good
performance. ECOCwas developed originally to be usedwith
binary coding but was extended to ternary coding which
certainly has increased the interest towards ECOC among
both practitioners and researchers.

The use of ECOC is a novel approach in the context of
classification of hiPSC colony images. By thorough examina-
tion of different coding designs and classificationmethods we
obtained promising results. The highest accuracy was 62.4%
and it was a clear improvement compared to our earlier
studies in [16, 17]. Moreover, accuracy (62.4%) gained is the

same as we obtained in [5] using 𝑘-NN without ECOC. We
also achieved improvement on classification tree and näıve
Bayes results using ECOC framework compared to [5] where
these classification methods were used without ECOC. This
gives positive attitude towards ECOC and its application in
hiPSC colony image classification. Despite the improvement
more work has to be made before the accuracy is at such level
that the methods developed can be used in practice in large-
scale. Challenges with the hiPSC colony images are diverse
and the choice of classification method is the final link in a
long chain of processes.

When talking about hiPSC colony images everything
begins in the image analysis related issues which is now
done manually by human experts: how do we find the colony
area from the image automatically or what kind of cleaning
method would be the best one for removing the disturbing
artefacts from the image. These tasks are problematic since
the edges of colonies are not necessarily clearly seen and
hiPSC colony images are sensitive to any image processing
techniques. In addition, colonies are surrounded by feeder
cells and sometimes these can penetrate the colony.These two



10 BioMed Research International

Table 9: The results of 𝑘-Nearest Neighbors searching method variants ordinal coding design. True positive rates can be found from the
parenthesis next to true positive result and accuracy from the last column of the table.

Method/class Bad Good Semigood ACC
Chebyshev measure and equal weights 21 (51.2%) 56 (75.7%) 25 (43.1%) 59.0%
Chebyshev measure and inverse weights 21 (51.2%) 56 (75.7%) 25 (43.1%) 59.0%
Chebyshev measure and squared inverse
weights 21 (51.2%) 55 (74.3%) 19 (32.8%) 54.9%

Cityblock measure and equal weighting 23 (56.1%) 58 (78.4%) 23 (39.7%) 60.1%
Cityblock measure and inverse weighting 23 (56.1%) 58 (78.4%) 23 (39.7%) 60.1%
Cityblock measure and squared inverse
weighting 23 (56.1%) 56 (75.7%) 24 (41.4%) 59.5%

Correlation measure and equal weighting 16 (39.0%) 45 (60.8%) 15 (25.9%) 43.9%
Correlation measure and inverse weighting 16 (39.0%) 45 (60.8%) 15 (25.9%) 43.9%
Correlation measure and squared inverse
weighting 16 (39.0%) 46 (62.2%) 16 (27.6%) 45.1%

Cosine measure and equal weighting 14 (34.1%) 60 (81.1%) 15 (25.9%) 51.4%
Cosine measure and inverse weighting 16 (39.0%) 63 (85.1%) 16 (27.6%) 54.9%
Cosine measure and squared inverse
weighting 16 (39.0%) 55 (74.3%) 16 (27.6%) 50.3%

Euclidean measure and equal weighting 16 (39.0%) 55 (74.3%) 19 (32.8%) 52.0%
Euclidean measure and inverse weighting 16 (39.0%) 54 (73.0%) 20 (34.5%) 52.0%
Euclidean measure and squared inverse
weighting 18 (43.9%) 54 (73.0%) 18 (31.0%) 52.0%

Standardized Euclidean measure and equal
weighting 21 (51.2%) 64 (86.5%) 22 (37.9%) 61.8%

Standardized Euclidean measure and inverse
weighting 21 (51.2%) 63 (85.1%) 22 (37.9%) 61.3%

Standardized Euclidean measure and
squared inverse weighting 22 (53.7%) 55 (74.3%) 26 (44.8%) 59.5%

Spearman measure and equal weighting 14 (34.1%) 57 (77.0%) 14 (24.1%) 49.1%
Spearman measure and inverse weighting 13 (31.7%) 63 (85.1%) 14 (24.1%) 52.0%
Spearman measure and squared inverse
weighting 13 (31.7%) 62 (83.8%) 14 (24.1%) 51.4%

things have an effect on feature extraction. For instance, we
used SIFT feature extraction method which finds location,
scale, and rotation invariant descriptors from the “keypoints”
of images. Due to feeder cells some of the descriptors may
be recognized from feeder cells whereas our interest is in the
colonies. Since we described the image as a mean vector of
SIFT descriptors, feeder cells and other possible artefactsmay
have influence on the mean vector and, thus, on classification
results.

The results obtained showed that class “good” was the
best recognized class in a dataset. A possible explanation
for the separability of class “good” might be that good
colonies differ morphologically from other classes’ colonies.
These facts may have influenced the feature extraction and,
hence, classification. In Section 3.1 decision criteria for each
colony class were given. For class “good” rounded shape and
defined edges were evident whereas the changes in structure,
color, and edges were seen on other classes. Throughout the
results class “semigood” was the most difficult class to be
classified. A rational reason for the observation can be that
class “semigood” may include more heterogeneous colonies

than other classes. Some of the colonies in class “semigood”
may be closer to class “good” than class “bad” and vice
versa. Hence, from the classification point of view confusion
between pairs semigood-good and semigood-bad may occur
more frequently compared to pair good-bad. Confusion
between classes again has direct effect on the classification
results. By this means in future a possible and a natural
continuation would be that classes “bad” and “semigood”
would bemerged and the classification taskwould be reduced
to binary classification problem. Currently, the reason for
the existence of “semigood” class is biological. From the
biotechnologists’ point of view “semigood” class is reasonable
and gives a way to investigate more closely the change of
quality in hiPSC colonies. However, as stated earlier from
the classification perspective, “semigood” class is difficult and
may easily be confused with other classes.

Classification results include great variety and there is
not one specific coding design which would have been
superior with all classification methods. Every classification
method has its specific character and they behave differ-
ently with different coding designs. However, the highest



BioMed Research International 11

Table 10: The results of 𝑘-Nearest Neighbors searching method variants with ternary complete coding design. True positive rates can be
found from the parenthesis next to true positive result and accuracy from the last column of the table.

Method/class Bad Good Semigood ACC
Chebyshev measure and equal weights 24 (58.5%) 48 (64.9%) 26 (44.8%) 56.6%
Chebyshev measure and inverse weights 22 (53.7%) 46 (62.2%) 24 (41.4%) 53.2%
Chebyshev measure and squared inverse
weights 16 (39.0%) 54 (73.0%) 22 (37.9%) 53.2%

Cityblock measure and equal weighting 24 (58.5%) 54 (73.0%) 24 (41.4%) 59.0%
Cityblock measure and inverse weighting 24 (58.5%) 54 (73.0%) 25 (43.1%) 59.5%
Cityblock measure and squared inverse
weighting 24 (58.5%) 53 (71.6%) 22 (37.9%) 57.2%

Correlation measure and equal weighting 17 (41.5%) 56 (75.7%) 19 (32.8%) 53.2%
Correlation measure and inverse weighting 17 (41.5%) 59 (79.7%) 22 (37.9%) 56.6%
Correlation measure and squared inverse
weighting 19 (46.3%) 57 (77.0%) 22 (37.9%) 56.6%

Cosine measure and equal weighting 17 (41.5%) 59 (79.7%) 17 (29.3%) 53.8%
Cosine measure and inverse weighting 14 (34.1%) 56 (75.7%) 17 (29.3%) 50.3%
Cosine measure and squared inverse
weighting 19 (46.3%) 61 (82.4%) 21 (36.2%) 58.4%

Euclidean measure and equal weighting 23 (56.1%) 52 (70.3%) 22 (37.9%) 56.1%
Euclidean measure and inverse weighting 24 (58.5%) 51 (68.9%) 28 (48.3%) 59.5%
Euclidean measure and squared inverse
weighting 22 (53.7%) 50 (67.6%) 25 (43.1%) 56.1%

Standardized Euclidean measure and equal
weighting 25 (61.0%) 58 (78.4%) 24 (41.4%) 61.8%

Standardized Euclidean measure and inverse
weighting 25 (61.0%) 58 (78.4%) 25 (43.1%) 62.4%

Standardized Euclidean measure and
squared inverse weighting 24 (58.5%) 52 (70.3%) 27 (46.6%) 59.5%

Spearman measure and equal weighting 14 (34.1%) 56 (75.7%) 16 (27.6%) 49.7%
Spearman measure and inverse weighting 18 (43.9%) 61 (82.4%) 16 (27.6%) 54.9%
Spearman measure and squared inverse
weighting 19 (46.3%) 61 (82.4%) 20 (34.5%) 57.8%

accuracy was achieved using ternary complete coding design
and 𝑘-NN classifier. This may indicate that colonies have
local similarities between each other and the use of global
classification methods might not be the best alternative.
Furthermore, ternary complete coding design has the highest
number of classifiers and, thus,might have the best separation
power since it combines both binary and ternary coding
designs. Of course, the downside of ternary complete coding
design is the time complexity due to the high number of
classifiers.

Finding the best methods for hiPSC colony image clas-
sification is an iterative process and here we are concerned
only with the classification section. We have found out that
𝑘-NN classifier seems to be the most appropriate choice
for this application. The next step is to return back to
the image processing and feature extraction stages and
investigate other approaches for this application. Based on
[18] and the results it seems that the feature detectors used
in computer vision such as SIFT or other closely related
techniques are a correct approach for hiPSC colony image
classification.

6. Conclusions

In this paper, we focused on the automated quality identifi-
cation of human induced pluripotent stem cell colonies using
error-correcting output codes and differentmachine learning
methods. More specifically, we examined four ECOC coding
designs and each one of them was tested with four classifica-
tionmethods including their variants. Overall, we performed
120 different test setups and got a wide perspective on how
the selected classification approach works with our dataset.
As features we used SIFT-based solution which improved
the results compared to the earlier studies [16, 17] on this
subject where a smaller dataset was used. The best accuracy
was 62.4% (the same accuracy was achieved in [5] with 𝑘-
NN without ECOC), being a promising result for the future
research.With ECOCwe gained improvement onnäıve Bayes
and classification tree results compared to [5] results. From
the application point of view the use of ECOC multiclass
modeling is novel since there are no studies made on hiPSC
colony classification before where ECOC would have been
used. Our paper addresses an important aspect related to



12 BioMed Research International

hiPSCs. The automation of quality identification of hiPSC
colonies is a fundamental issue to be solved in order to
enable the use of hiPSCs in practice for different purposes
such as disease modeling and tissue repairing. The next
step in our research is to investigate bag-of-features [37]
approach with different classification methods (e.g., ECOC
with SVMs) and textural features extraction methods. In
bag-of-features method special attention will be given to
codebook size selection and code assignment using different
clustering algorithms such as 𝐾-Means algorithm [23] or
DBSCAN [38].

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

The first author is thankful for Ella and Georg Ehrnrooth
Foundation and the Finnish Cultural Foundation Pirkanmaa
Regional Fund for the support.

References

[1] K. Takahashi and S. Yamanaka, “Induction of pluripotent stem
cells from mouse embryonic and adult fibroblast cultures by
defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006.

[2] G. Amabile and A. Meissner, “Induced pluripotent stem cells:
current progress and potential for regenerative medicine,”
Trends in Molecular Medicine, vol. 15, no. 2, pp. 59–68, 2009.

[3] K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of
pluripotent stem cells from adult human fibroblasts by defined
factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007.

[4] S. Yamanaka, “A fresh look at iPS cells,” Cell, vol. 137, no. 1, pp.
13–17, 2009.

[5] H. Joutsijoki, M. Haponen, J. Rasku, K. Aalto-Setälä, and
M. Juhola, “Machine learning approach to automated quality
identification of human induced pluripotent stem cell colony
images,”Computational andMathematicalMethods inMedicine,
vol. 2016, Article ID 3091039, 15 pages, 2016.

[6] E. L. Allwein, R. E. Schapire, andY. Singer, “Reducingmulticlass
to binary: a unifying approach for margin classifiers,” Journal of
Machine Learning Research, vol. 1, pp. 113–141, 2002.

[7] T. G. Dietterich and G. Bakiri, “Error-correcting output codes:
a general method for improving multiclass inductive learning
programs,” in Proceedings of the 9th National Conference on
Artificial Intelligence, pp. 572–577, Anaheim, Calif, USA, July
1991.

[8] T. G. Dietterich and G. Bakiri, “Solving multiclass learning
problems via error-correcting output codes,” Journal of Artificial
Intelligence Research, vol. 2, pp. 263–286, 1995.

[9] D. W. Aha and R. L. Bankert, “Cloud classification using error-
correcting output codes,” Artificial Intelligence Applications:
Natural Science, Agriculture, and Environmental Science, vol. 11,
pp. 13–28, 1997.

[10] A. Berger, “Error-correcting output coding for text classifica-
tion,” in Proceedings of the IJCAIWorkshop onMachine Learning
for Information Filtering, 1999.

[11] J. Kittler, R. Ghaderi, T. Windeatt, and J. Matas, “Face verifi-
cation using error correcting output codes,” in Proceedings of
the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 1, pp. I755–I760, December 2001.

[12] J. Kittler, R. Ghaderi, T. Windeatt, and J. Matas, “Face veri-
fication via error correcting output codes,” Image and Vision
Computing, vol. 21, no. 13-14, pp. 1163–1169, 2003.

[13] H. Zhang, W. Gao, X. Chen, S. Shan, and D. Zhao, “Robust
multi-view face detection using error correcting output codes,”
in Computer Vision—ECCV 2006: 9th European Conference on
Computer Vision, Graz, Austria, May 7–13, 2006, Proceedings,
Part IV, vol. 3954 of Lecture Notes in Computer Science, pp. 1–
12, Springer, Berlin, Germany, 2006.

[14] E. D. Übeyli, “ECG beats classification using multiclass support
vector machines with error correcting output codes,” Digital
Signal Processing, vol. 17, no. 3, pp. 675–684, 2007.

[15] X. Li, H. Joutsijoki, J. Laurikkala, and M. Juhola, “Crime
vs. demographic factors revisited: application of data mining
methods,”Webology, vol. 12, no. 1, article 132, pp. 1–17, 2015.

[16] H. Joutsijoki, M. Haponen, I. Baldin et al., “Histogram-based
classification of iPSC colony images using machine learning
methods,” inProceedings of the IEEE International Conference on
Systems, Man, and Cybernetics (SMC ’14), pp. 2611–2617, IEEE,
San Diego, Calif, USA, October 2014.

[17] H. Joutsijoki, J. Rasku, M. Haponen et al., “Classification of
iPSC colony images using hierarchical strategies with support
vector machines,” in Proceedings of the 5th IEEE Symposium on
Computational Intelligence andDataMining (CIDM ’14), pp. 86–
92, IEEE, Orlando, Fla, USA, December 2014.

[18] A. Masuda, B. Raytchev, T. Kurita et al., “Automatic detection of
good/bad colonies of iPS cells using local features,” in Proceed-
ings of the 6th International Workshop of Machine Learning in
Medical Imaging, Munich, Germany, October 2015, vol. 9352 of
Lecture Notes in Computer Science, pp. 153–160, Springer, 2015.

[19] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60, no.
2, pp. 91–110, 2004.

[20] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classifi-
cation,” IEEE Transactions on Information Theory, vol. 13, no. 1,
pp. 21–27, 1967.

[21] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning: Data Mining, Inference, and Prediction,
Springer, 2009.

[22] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduc-
tion to Statistical Learning. With Applications in R, vol. 103 of
Springer Texts in Statistics, Springer, New York, NY, USA, 2013.

[23] K. J. Cios, W. Pedrycz, R. W. Swiniarski, and L. A. Kurgan,Data
Mining: A Knowledge Discovery Approach, Springer, New York,
NY, USA, 2007.

[24] D. D. Lewis, “Naive (Bayes) at forty: the independence assump-
tion in information retrieval,” in Proceedings of the 10th Euro-
pean Conference onMachine Learning, vol. 1398 of Lecture Notes
in Artificial Intelligence, pp. 4–15, Springer, Berlin, Germany,
1998.

[25] I. Rish, “An empirical study of the naive Bayes classifier,” in
Proceedings of the International Joint Conference on Artificial
Intelligence 2001 Work-Shop on Empirical Methods in Artificial
Intelligence, 2001.

[26] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
Wiley, New York, NY, USA, 2nd edition, 2001.

[27] Mathworks Documentation Center, 2016, http://se.mathworks
.com/help/.

http://se.mathworks.com/help/
http://se.mathworks.com/help/


BioMed Research International 13

[28] S. Escalera, O. Pujol, and P. Radeva, “On the decoding process
in ternary error-correcting output codes,” IEEE Transactions on
Pattern Analysis andMachine Intelligence, vol. 32, no. 1, pp. 120–
134, 2010.

[29] S. Escalera, O. Pujol, and P. Radeva, “Separability of ternary
codes for sparse designs of error-correcting output codes,”
Pattern Recognition Letters, vol. 30, no. 3, pp. 285–297, 2009.

[30] O. Pujol, P. Radeva, and J. Vitrià, “Discriminant ECOC: a
heuristic method for application dependent design of error
correcting output codes,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 28, no. 6, pp. 1007–1012, 2006.

[31] S. Escalera, O. Pujol, and P. Radeva, “Error-correcting ouput
codes library,” Journal of Machine Learning Research, vol. 11, pp.
661–664, 2010.

[32] T. Windeatt and R. Ghaderi, “Coding and decoding strategies
for multi-class learning problems,” Information Fusion, vol. 4,
no. 1, pp. 11–21, 2003.

[33] A. L. Lahti, V. J. Kujala, H. Chapman et al., “Model for long
QT syndrome type 2 using human iPS cells demonstrates
arrhythmogenic characteristics in cell culture,” Disease Models
& Mechanisms, vol. 5, no. 2, pp. 220–230, 2012.

[34] J. G. Wang, J. Li, W. Y. Yau, and E. Sung, “Boosting dense
SIFT descriptors and shape contexts of face images for gender
recognition,” inProceedings of the IEEEConference onComputer
Vision and Pattern Recognition Workshops, pp. 96–102, 2010.

[35] Y. Liu, S. Liu, and Z. Wang, “Multi-focus image fusion with
dense SIFT,” Information Fusion, vol. 23, pp. 139–155, 2015.

[36] A. Vedaldi and B. Fulkerson, “VLFeat: an open and portable
library of computer vision algorithms,” 2008, http://www.vlfeat
.org/.

[37] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray,
“Visual categorization with bags of keypoints,” in Proceedings
of the ECCV International Workshop on Statistical Learning in
Computer Vision, pp. 1–22, 2004.

[38] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-based
clustering in spatial databases: the algorithm GDBSCAN and
its applications,” Data Mining and Knowledge Discovery, vol. 2,
no. 2, pp. 169–194, 1998.

http://www.vlfeat.org/
http://www.vlfeat.org/

