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Cellular and molecular regulation of innate inflammatory
responses

Juan Liu1 and Xuetao Cao1,2

Innate sensing of pathogens by pattern-recognition receptors (PRRs) plays essential roles in the innate
discrimination between self and non-self components, leading to the generation of innate immune defense and
inflammatory responses. The initiation, activation and resolution of innate inflammatory response are mediated by a
complex network of interactions among the numerous cellular and molecular components of immune and non-
immune system. While a controlled and beneficial innate inflammatory response is critical for the elimination of
pathogens and maintenance of tissue homeostasis, dysregulated or sustained inflammation leads to pathological
conditions such as chronic infection, inflammatory autoimmune diseases. In this review, we discuss some of the
recent advances in our understanding of the cellular and molecular mechanisms for the establishment and
regulation of innate immunity and inflammatory responses.
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INTRODUCTION

Innate immune system constitutes the first critical line against
microbial infection by discriminating self and non-self com-
ponents. The innate immune system relies on the host pattern-
recognition receptors (PRRs) expressed by innate immune cells
such as macrophages and dendritic cells (DCs) to rapidly
recognize and respond to signals derived from the invading
pathogens or injured self-cells. PRRs such as Toll-like receptors
(TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors
(RLRs) and nucleotide-binding domain and leucine-rich repeat
containing molecules (NLRs) mediate the initial recognition of
microbial components known as pathogen-associated molecu-
lar patterns (PAMPs).1,2 This recognition triggers a series of
signaling cascades that culminate in activation of transcrip-
tional factors nuclear factor-κB (NF-κB), interferon regulatory
factor (IRF) and activator protein-1 (AP-1), which induce
numerous downstream genes encoding a broad range of
inflammatory cytokines, chemokines, antimicrobial peptides,
complement factors and interferons.3,4

TLRs are type I transmembrane molecules which transduce
their downstream signaling through the MyD88-dependent

pathway or the MyD88-independent but TRIF-dependent
pathway, subsequently leading to activation of mitogen-
activated protein kinase (MAPK), NF-κB and IRF pathway,
inducing the production of proinflammatory cytokines and
IFNs (Figure 1).5–8 Innate immune activation of phagocytes
through TLRs also induces an Mst1–Mst2–Rac signaling axis to
activate intracellular microbicidal killing.9,10

RLRs, a family of cytoplasmic RNA helicases, are essential
for innate recognition of viruses and are the key mechanism for
the control of viral replication and dissemination. RIG-I11 and
melanoma differentiation-associated protein 5 (MDA5)12 can
recognize viral dsRNA and recruit the CARD containing
adaptor protein MAVS (also known as IPS-1, CARDIF or
VISA), leading to IRF activation and the production of type I
IFN. In addition to RLRs, a group of cytosolic DNA sensors
such as cyclic GMP-AMP synthase (cGAS),13–15 absent in
melanoma 2 (AIM2),16,17 DDX41,18,19 Rad50,20,21 LRRFIP1,22

DNA-dependent activator of IRFs (DAI),23 as well as various
RNA sensors such as IFN-induced protein with tetratricopep-
tide repeats 1 (IFIT1)24 also play potent roles in inducing
antiviral immune response, respectively via the adaptor protein
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stimulator of interferon genes (STING, also known as MITA,
ERIS or MPYS) or the MAVS pathway. cGAS, which was
previously thought to recognize cytoplasmic dsDNA over 40 bp
in a sequence-independent manner, is recently shown to
recognize unpaired guanosines flanking short (12–20 bp)
dsDNA (Y-form DNA) found in human immunodeficiency
virus type 1 to induce type I IFN production.25,26 In neutro-
phils, transcription factor Sox2 could directly recognize micro-
bial DNA through its high-mobility-group domain to activate
innate immunity against microbial infection.27–29

NLRs consist of a large group of intracellular PRRs that
includes NODs (nucleotide-binding oligomerization domains),
NLRPs (LRR- and pyrin-domain (PYD)-containing protein),
CIITA (Class II, major histocompatibility complex, transacti-
vator), IPAF (ICE protease-activating factor) and NAIPs
(neuronal apoptosis inhibitory protein), which vary in the
effector domain they use to transduce downstream signals.30,31

NOD1 and NOD2 respectively recognize meso-diamin-
opimelic acid (Meso-DAP) and muramyl dipeptide of

intracellular bacteria to trigger host defense against bacterial
infection via the MAPK and NF-κB pathway. NOD1 and
NOD2 are also shown to recruit ATG16L1 to the plasma
membrane at the site of bacterial entry to induce autophagy, a
process which is critical for the limitation of bacterium
invasion.32,33

Inflammasomes are large multi-molecular platforms that
recruit the adaptor ASC to activate caspase-1, leading to the
maturation and secretion of IL-18 and IL-1β and pyroptotic
cell death, thus contributing to innate inflammatory responses
to microbial or danger signals.34,35 ASC particles could
accumulate in the extracellular space to amplify activation of
caspase-1 and maturation of IL-1β.36,37 Recognition of dsDNA
by AIM2 also recruits the inflammasome adaptor ASC to
induce caspase-1-dependent inflammasome activation and IL-
-1β production. Activation of AIM2 inflammasome by Franci-
sella tularensis subspecies novicida (F. novicida) is dependent on
guanylate-binding proteins (GBPs)-mediated bacterium lysis
for release of pathogenic DNA. GBPs are encoded by
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Figure 1 Schematic of signaling pathways of TLRs. Most TLRs with the exception of TLR3 initiate a MyD88-dependent pathway as shown
in the left part. With the cooperation of Mal/TIRAP, TLR4 induces the MyD88–IRAK4 complex to recruit IRAK1 and IRAK2, which then
interact with and induces K63-linked polyubiquitination of TRAF6 and TAK1/TAB2/TAB3 complexes. Activated TAK1 subsequently induce
phosphorylation and activation of MAPKs and the IKK complex consisting of IKKα, IKKβ and K63-polyubiquitinated NEMO, finally
promoting activation of AP-1 and NF-κB, and production of proinflammatory cytokines. TLR7 and TLR9 induces MyD88 activation to
recruit signaling complex formed by IRAK4, TRAF6 and TRAF3, which induces phosphorylation and activation of IRF7 and production of
type I IFN. Meanwhile, TLR3 and internalized TLR4 activate TRIF-dependent signaling as shown in the right part. TRAM is needed for the
interaction between TLR4 and TRIF. TRIF recruits TRAF6 and RIP1, which induces downstream activation MAP kinases and NF-κB,
similar to the MyD88-dependent pathway. TRIF also activates that TRAF3/TBK1/IKKε axis to promote IRF3-dependent expression of
type I IFN.
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interferon-stimulated genes which is induced by F. novicida via
the DNA sensor cGAS and its adaptor STING.38,39 In addition,
RNA viral infection also triggers inflammasome activation and
IL-1β production. Recognition of RNA virus by RIG-I mediates
ASC/caspase-1 inflammasome-dependent IL-1β procession in a
manner independent of MAVS and NLRP3.40 RNA virus also
initiates assembly of the receptor-interacting protein 1 (RIP1)–
RIP3 complex to drive mitochondrial damage and activation of
NLRP3 inflammasome via GTPase dynamin-related protein1
(DRP1).41

While efficient activation of PRR signaling is essential for the
establishment of antimicrobial host defense and maintenance
of tissue homeostasis, dysregulated or exaggerated innate
immune response may cause pathological inflammation and
even lead to pathogenesis of autoimmune diseases, inflamma-
tory diseases, and cancer and so on. Thus, a delicate regulatory
network is required to achieve the optimal signal output of
innate immune responses, that is to efficiently eliminate
invading pathogens while to avoid harmful immunological
diseases. Comprehensive and multi-level mechanisms have
evolved to tightly regulate the magnitude and duration of PRR
signaling.42,43 In this review, we summarize the molecular and
cellular mechanisms underlying the activation and regulation
of innate inflammatory responses.

MOLECULAR REGULATION OF INNATE IMMUNITY AND

INFLAMMATION

Gene-specific regulation of inflammatory responses
PRR-triggered inflammatory responses involve the activation
and suppression of several thousands of genes with distinct
functions.44 How to ensure the specific gene to be activated or
silenced at the right time and space is a fundamental question
in innate immune regulation. Epigenetic mechanisms such as
DNA methylation, histone modifications and non-coding
RNAs emerge to play essential roles in gene-specific transcrip-
tional regulation of innate immunity via controlling chromatin
status and gene expression.45–47 These chromatin modifiers
perform coordinated actions to convert the extracellular stimuli
into the complex gene expression patterns during innate
inflammatory responses. At the steady state, the poised/inactive
enhancers are occupied by lineage-determining transcription
factors known as pioneers, such as PU.1 and marked with a
combination of H3K4me1 and repressive H3K27me3. Upon
TLR stimulation, the pioneer transcription factor PU.1 allows
the binding of signal-dependent transcription factors such as
NF-κB, IRFs, AP-1, and STAT and relaxes chromatin structure
with acquisition of H3K27ac and removal of H3K27me3
marks.48,49 Notably, various specific enzymes or mediators
have been shown to regulate inflammatory gene expression via
controlling chromatin status. In the antiviral immunity, DNA
methyltransferase Dnmt3a upregulates histone deacetylase 9
(HDAC9) via epigenetic mechanisms to deacetylases the kinase
Tank-binding kinase 1 (TBK1) for activation, contributing to
enhanced IFN production.50 Viral infection also upregulates
the expression of protein lysine methyltransferase Setdb2 to
occupy and induce the repressive H3K9me3 of Cxcl1

promoters. The decreased CXCL1 inhibits infiltration of
neutrophils and thus mediate sensitivity to bacterial super-
infection after infection with influenza virus. Thus, chromatin
modification provide molecular basis for the crosstalk between
inflammatory responses against different pathogens.51 During
the late phase of inflammatory response, induction of de novo
5-hydroxymethylation upstream of the Il6 locus by a methyl-
cytosine dioxygenase TET2 recruits HDAC2 to inhibit Il6
transcription via histone deacetylation and is critical for
termination of the high transcription of Il6.52 It will be
intriguing to further investigate the molecular mechanisms
and physiological relevance of epigenetic modification at
different phases of innate inflammatory response.

In addition, a number of nuclear receptors, such as gluco-
corticoid receptor,53 peroxisome proliferator-activated receptor
gamma,54 liver X receptor,55 small heterodimer partner (SHP),56

nuclear receptor subfamily 4, group A, members (NR4A1)57 and
(NR4A2)58 inhibit TLR4-induced NF-κB downstream genes via
inhibiting NF-κB activity and/or enhancing the NCoR/SMRT
corepressor complex to limit inflammatory gene programs.
NR4A1 enhances host resistance to lipopolysaccharide (LPS)
sepsis in mice via inhibiting NF-κB binding on target gene
promoter regions. Interestingly, LPS-activated p38α blocks the
suppressive activity of NR4A1 by inducing its phosphorylation
and therefore facilitates LPS-induced inflammatory response. It
is also shown that NR4A1 limits the production of norepi-
nephrine in macrophages through recruitment of the CoREST–
histone deacetylase complex to the Th promoter, thus inhibiting
the pathogenesis of experimental autoimmune encephalomyeli-
tis, outlining a novel molecular link between sympathetic stress
response and inflammation.59

Signal-specific regulation of inflammatory responses
Post-translational modifications (PTMs) constitute an essential
layer of regulation of innate inflammatory signaling via
affecting the function and activity of existing signaling mole-
cules at post-translational level.60,61 The conventional PTMs
such as ubiquitination and phosphorylation and unconven-
tional PTMs such as methylation, acetylation and sumoylation
target nearly all critical components of PRR signaling, such as
receptors, adaptors, enzymes and transcriptional factors to
modulate the quality of PRR signals.62–65

Taking PTM control of TLR-triggered tumor necrosis factor
receptor-associated factor 6 (TRAF6)/NF-κB signaling pathway
as an example. Removal of K63-linked polyubiquitination by
A2066 and TRAF family member-associated NF-κB activator
(TANK)67 is shown to modulate TRAF6 activity for inhibition
of TLR signaling activation.68–70 Besides, phosphorylation of
TRAF6 by germinal center kinase MST4 prevents TRAF6
oligomerization and autoubiquitination and consequently inhi-
bits inflammatory responses.71 In addition, Rhbdd3, a member
of rhomboid family of proteases, negatively regulates TLR-
triggered activation of NF-κB and IL-6 production in DCs,
contributing to balanced T-cell-mediated immunity and pre-
vention of autoimmunity. Mechanistically, Rhbdd3 localizes in
early endosomes in DCs and interacts with K27-linked
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ubiquitination of NF-κB essential modifier (NEMO) and
subsequently recruits A20 to facilitate A20-mediated
K63-linked deubiquitination of NEMO.72,73 By contrast,
iRhom2, a novel noncatalytic relative of rhomboid proteins,
facilitates LPS and Listeria-induced TNF production by pro-
moting the TNF convertase (TACE) maturation and
trafficking,74,75 and also enhances innate immunity to DNA
viruses by mediating STING trafficking and stability.76 The
differential regulation of innate immunity by Rhomboid family
members awaits further investigation, and is likely to be related
with their different subcellular localization that may provide
specific biochemical and physical environment for specific
signaling modifications.

Notably, the enzymes that mediate PTM control of PRR
signaling, such as A20, are themselves being tightly controlled
in a gene-specific manner, thus forming an intersecting net-
work to modulate the quality of innate immune signaling. The
transcriptional repressor downstream regulatory element antagonist
modulator binds to the downstream regulatory elements (DREs) of
A20 gene to repress A20 transcription, leading to enhancement of
TLR-triggered NF-κB activation. By contrast, binding of the
transcription factor USF1 to the DRE-associated E-box domain
in the gene encoding A20 strengthens A20 expression in response
to inflammatory stimuli.77 In addition, histone methyltransferase
Ash1l binds to the promoter regions of A20 gene to enhance the
H3K4 methylation level, thus inducing A20 gene transcription and
expression, consequently suppressing TLR signaling and inflam-
matory autoimmune diseases.78 These studies further highlight the
importance of crosstalk between PTM and chromatin modification
in innate immune signaling regulation.

For the regulation of type I IFN-dependent antiviral
immunity, protein PTM also plays an indispensable role via
their effects in activity of signaling molecules such as RIG-I,79

NEMO and IRF3. The tumor suppressor PTEN-mediated
negative phosphorylation at Ser97 of IRF3 controls the import
of IRF3 into the nucleus, contributing to inhibition of IRF3
activation and type I IFN production.80,81 E3 ligase TRIM29
inhibits IRF3 signaling via the transcription factor NF-κB by
directing binding to NEMO and inducing its ubiquitination
and proteolytic degradation.82 In addition, sumoylation con-
tributes to repression of both inflammatory and antiviral
responses, partially via targeting and suppressing activity of
the Ifnb1 promoter.83 These data identify key negative regula-
tors of innate immunity and might have important clinical
implications for related inflammatory and infectious diseases.

Dysregulation of inflammasomes have been closely asso-
ciated with diverse inflammatory diseases, therefore the nega-
tive regulation of inflammasomes are essential for prevention
of excessive inflammation and maintenance of immune
homeostasis.84,85 PYD-only protein POP3 competes with ASC
to bind AIM2-like receptors (ALRs), thus acting as an inhibitor
of DNA virus-induced activation of ALR inflammasomes in
monocytes and macrophages.86,87 Neurotransmitter dopamine
(DA)/dopamine D1 receptor (DRD1) signaling pathway nega-
tively regulate NLRP3 inflammasome activation and NLRP3-
dependent systemic inflammation via a second messenger

cyclic adenosine monophosphate, which binds to NLRP3 and
promotes its ubiquitination and degradation via the E3
ubiquitin ligase MARCH7.88 Moreover, protein kinase A
directly phosphorylates NLRP3 at Ser295 and attenuates its
ATPase function, accordingly, mutations in NLRP3-encoding
residues adjacent to Ser295 are linked to the auto-inflammatory
disease cryopyrin-associated periodic syndromes (CAPS).89

These studies reveal endogenous regulatory mechanisms of
inflammasome regulation and suggest molecular basis and
potential therapeutic targets of inflammatory and autoimmune
diseases.

Interplay across different PRR signaling pathways
The TLRs, RLRs and NLRs trigger an intensively interacting
network of downstream signaling to activate innate defense
against invading pathogens (Figure 2). Distinct set of PRRs in
different species, tissues, cells or cellular organelles display a
partially overlapped and compensated recognition of PAMPs
during inflammatory conditions. LPS from Gram-negative
bacteria, is crucial for TLR4 activation, but also initiates innate
immune signaling via detection by cytosol caspase-4/5/11 in
mammals,90,91 while in plants via sensing by transmembrane
receptor kinase LORE. LORE confers recognition of LPS in
plants and the subsequent induction of an immune
response.92,93 Whether additional proteins, e.g. LPS-binding
protein is involved in LORE-mediated recognition of LPS
remain to be elucidated.

A mutual inhibition of RLR and TLR pathways has been
shown. RLR-triggered IRF3 following viral stimulation inhibits
TLR-induced IRF5 activation following bacterial stimulation
via dominantly occupying Il12b promoter, thus explaining the
molecular mechanisms of bacterial superinfection post-viral
infection.94 Conversely, TLR7 small-molecule agonist inhibits
nucleic acid-mediated TLR3, TLR7, TLR9 and RIG-I-
dependent type I IFN signaling via inhibiting the formation
of phosphorylated signal transducer and activator of transcrip-
tion factor 1 (p-STAT1), p-STAT2 and IRF9 complex.95

Meanwhile, RIG-I plays a positive role in regulation of
inflammasome and IL-1β secretion. Upon RNA viral stimula-
tion, RIG-I could interact with adaptor ASC to trigger caspase-
1-dependent inflammasome activation and IL-1β maturation.34

On the contrary, some NLR members play negative roles in
regulating RLR-mediated type I IFN responses via targeting
distinct signaling molecules: for NLR family CARD domain-
containing protein 5 (NLRC5) via interaction with RIG-I and
MDA5;96 for NLR family member X1 (NLRX1) via interaction
with MAVS and disruption of RLR–MAVS interactions;97,98 for
NLRC3 via impeding the interaction between STING and
TBK1 interaction;99 for NLRP4 via targeting TBK1 for
degradation.100

NOD proteins and TLRs are both critical for host defense
against bacterial infection. NOD1 and NOD2 agonists play
synergistic effects with TLR2, TLR3, TLR4, and TLR9 agonists
to promote maturation and activation of DCs and
basophils.101–103 On the contrary, NOD2 deficiency increases
TLR2-mediated activation of NF-κB and dysregulated TLR2 in
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NOD2-deficient mice causes the development of antigen-
specific colitis.104,105 Not only NOD2, many other NLRs play
inhibitory roles in regulating the signaling of TLRs: for NLRX1
and NLRC3 via interfering with the TRAF6-NF-κB signal-
ing;61,106,107 for NLRC5 via interacting with and blocking
phosphorylation of IκB kinase α (IKKα) and IKKβ;59 for
NRLP6 and NLRP12 via targeting MAPK and NF-κB activa-
tion;108,109 for NLRC4 via downregulating TLR5-mediated
antibody immune responses against flagellin.110 These syner-
gistic or antagonistic interactions across these three PRR
families contribute to a cross-linked and finely tuned network
of PRR signaling in response to the large repertoire of PAMPs
and ensures the most effective and proper outcomes of innate
immune responses.

CELLULAR REGULATION OF INNATE IMMUNITY AND

INFLAMMATION

PRR-triggered inflammatory responses are mediated and
regulated by a variety of immune and non-immune
cells.111,112 The endothelium system is critical player of innate
defense via releasing inflammatory cytokines and chemokines
in the first barrier to recruit monocytes, neutrophils, eosino-
phils and basophils from the circulation.113–116 TLR stimula-
tion induce phenotypic and functional maturation of DC into
potent antigen-presenting cells which efficiently initiate and

control adaptive immune responses, while in combination with
IFN-γ could induce M1 macrophage polarization that is critical
for phagocytosis and killing of invading pathogens. In this
section, we focus on two important cell populations in innate
immunity, DCs as the key bridge between innate and adaptive
immunity, and innate lymphoid cells (ILCs) as the key
mediator of effector responses during innate immunity.

Dendritic cells
DCs play important roles in the initiation and modulation of
adaptive immune responses. DCs represent a complicated
heterogeneous cell populations with distinct developmental
origins, surface markers and effector/regulatory functions.
Conventional DCs are further classified into subgroups accord-
ing to the expression of CD8ɑ that is regulated by a complex
network of cytokines and transcriptional factors.117–121 While
CD8ɑ− classical dendritic cells (cDCs) primarily promote
antigen-specific CD4+ T-cell activation via the MHC II path-
way, CD8ɑ+ cDCs characteristically mediate cross-presentation
of exogenous antigens on MHC I molecules to cytotoxic T
lymphocytes (CTL). Ligation of TLRs by microbial products in
DCs rapidly induces the expression of inflammatory cytokines,
chemokines and chemokine receptors, co-stimulatory mole-
cules and MHC molecules, allowing procession and presenta-
tion of antigens to T cells, and therefore play essential roles in
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determining the activation and differentiation of T-cell
subsets.122–127 The activation of DCs by TLR agonists is
accompanied by a rapid increase in glycolysis DC which is
dependent on signaling via the kinases TBK1, IKKε and Akt.
TLR-driven glycolytic flux serves an essential role in supporting
the de novo synthesis of fatty acids for activation and function
of DCs.128,129

Meanwhile, novel subsets of DC are also important for
inducing immune tolerance toward harmless components via
induction of immune tolerance under specific physiological or
pathological conditions.130 The regulatory capacity of DCs at
steady state is programmed by specific local microenvironment,
such as stromal cells of the spleen, lung and liver or intestinal
epithelial cells.131–135 Thymic DCs induce Treg-cell develop-
ment via production of IL-2,136 and that CD11b(− ) cDCs
from the gut-draining lymph nodes were critical for induction
of peripheral Treg cells and oral tolerance.137 The presence of
exogenous immunosuppressive mediators, genetic manipula-
tion, specific pathogenic stimuli also induce regulatory property
of DCs through various mechanisms.138

The cross-presentation of exogenous antigens via MHC class
I molecules to initiate CTL responses is essential for immuno-
logical defense against viruses, intracellular bacteria and
tumors. While Rab11a activity recruits and keeps MHC-I
within endosomal recycling compartment (ERC) under steady
condition, MyD88-dependent TLR signals drive IKK2-
mediated phosphorylation of phagosome-associated SNAP23,
orchestrating ERC-phagosome fusion, promoting enrichment
of phagosomes with ERC-derived MHC-I, and finally allowing
cross-presentation during infection.139 Transcription factor
TFEB,140 cell stress sensor IRE-1α,141–143 NF-κB-inducing
kinase (NIK)144 and the lectin Siglec-G145 have been shown
to regulate DC cross-presentation in initiating antigen-specific
CTL responses via distinct molecular mechanisms. For exam-
ple, Siglec-G inhibits cross-presentation by CD8α+ DC via
impairing the formation of the MHC class I-exogenous antigen
peptide complex, contributing to suppression of CTL responses
to intracellular bacterial infection with Listeria monocytogenes
or Mycobacterium bovis bacillus Calmette–Guérin and tumors.
Siglec-G is associated with SHP-1 to inhibit the activation of
NOX2, consequently leading to promotion of phagosomal
acidification and less effective antigen cross-presentation. This
study provides new mechanistic insight into DC-mediated
regulation of innate and adaptive immune responses under
inflammatory conditions.

Innate lymphoid cells
ILCs are most recently identified populations of innate
immune cells that play an important role in lymphoid tissue
development, metabolic homeostasis and innate immunity
against microbial infection and are increasingly linked with
diverse pathological conditions such as infection, chronic
inflammation, metabolic disease and cancer.146,147 Distinct
ILC groups are defined on the basis of expression of surface
markers, transcription factors and cytokine secretion profiles,
and effector functions in homeostasis and inflammation.148

Whereas ILC1s and ILC3s are essential to host defense against
infection by viruses, intracellular bacteria and parasites, ILC2s
potently drive type 2 inflammation and mediate allergic
inflammation, tissue repair and anti-helminth innate
immunity.149–153 A novel population of IL-25-responsive
inflammatory ILC2 (iILC2) could develop into IL-33-
responsive natural ILC2 (nILC2)-like cells and contribute to
immunity to both helminths and fungi.154,155 Inflammatory
cytokines such as IL-1 and IFN,156,157 and crosstalk with
stromal cells, epithelial cells and various immune cells such as
DC,158 T cells159 and B cells160,161 are important for regulation
of ILC function and plasticity at the crossroad of homeostasis
and inflammation. For example, ILC3 can enhance antibody
production by splenic marginal zone B cells via integrating
stromal and myeloid signals. Further investigations are required
to uncover the detailed mechanism underlying the plasticity
and flexibility in the functions of distinct ILCs under biological
and pathological conditions.

The cellular and molecular events that underlie ILC fate
specification and functional regulation attract much attention
in the past few years. Key transcription factors and regulators
that control the development of ILC subsets at different stages
are being increasingly identified, such as TOX, TCF-1, NFIL3,
Id2, Runx3, GATA-3 and so on.162–164 TOX-deficient mice
have diminished numbers of LTi cells, NK cells, ILC1, ILC2
and ILC3 cells, indicating that TOX is required for in vivo
differentiation of common lymphoid progenitors into ILC
lineage-restricted cells.165,166 Using novel reporter mice,
researchers identified a novel subset of early ILC progenitors
(EILPs) with distinctive expression of transcription factor
TCF-1. EILPs exclusively and efficiently gives rise to NK cells
and all known adult helper ILC lineages and therefore are
perhaps the earliest ILC-committed progenitors identified so
far.167,168 The interaction of the TOX, TCF-1 and other
transcription factors and epigenetic factors in the development
of ILCs cells awaits further investigation.

CONCLUSIONS AND PERSPECTIVES

Increasing evidence reveal an essential role of PRRs in
innate sensing of pathogens and initiation of innate inflam-
matory responses. A delicate regulatory network of PRR
signaling both at molecular and cellular level contribute to
an appropriate and effective host immune response under
steady and inflammatory state. Though substantial progress
have been made in depicting the initiation, activation and
regulation of PRR-mediated innate immune response, some
intriguing question still challenge further investigation.
How does the immune system organize tissue-, cell- and
gene-specific regulation of innate inflammatory responses?
What is molecular basis for the combination, assembly and
translocation of signaling molecule machinery? What is the
developmental and functional characteristic of many other
rare but important cell populations of innate immune
systems, such as natural killer cells,169 invariant natural
killer T cells, mast cells, plasmacytoid DCs and so on.
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Excitingly, with the rapid development in immunological
technological platforms and combination of immunology and
many disciplines such as epigenetics, genetics, biochemistry
and neurobiology, substantial progress are being achieved in
evaluating how the immune system quickly and accurately
respond to external and internal stimuli. Single-cell sequencing
technologies have identified the complex heterogeneities and
divergences of cell phenotype and function.170–172 Advances in
genomics, transcriptomics, proteomics, metabolomics, inter-
actomics, phenomics have illustrated the complex networks of
immune cells and molecules in the settings of health and
diseases.173 Development of new mouse strains such as the
mouse strain lacking iNKT cells174 and new disease models
such as the mice with myeloid-cell-specific deletion of A20 as a
new model of rheumatoid arthritis175 have provided useful
tools for immunological studies. Cell fate mapping and in vivo
imaging technologies have enabled real-time, dynamic and
in situ assessment of the activity and function of immune
system.176-178 Future investigations will provide essential
insights into the regulatory mechanisms of innate immunity
and inflammation and outline potential clues for the develop-
ment of effective therapeutic approaches of inflammatory
diseases.
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