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Most prior work with positron emission tomography (PET) dopamine subtype 2/3 receptor (D2/3R) non-selective antagonist tracers
suggests that obese (OB) individuals exhibit lower D2/3Rs when compared with normal weight (NW) individuals. A D3-preferring D2/3R
agonist tracer, [11C](+)PHNO, has demonstrated that body mass index (BMI) was positively associated with D2/3R availability within striatal
reward regions. To date, OB individuals have not been studied with [11C](+)PHNO. We assessed D2/3R availability in striatal and
extrastriatal reward regions in 14 OB and 14 age- and gender-matched NW individuals with [11C](+)PHNO PET utilizing a high-resolution
research tomograph. Additionally, in regions where group D2/3R differences were observed, secondary analyses of 42 individuals that
constituted an overweight cohort was done to study the linear association between BMI and D2/3R availability in those respective regions.
A group-by-brain region interaction effect (F7, 182= 2.08, p= 0.047) was observed. Post hoc analyses revealed that OB individuals exhibited
higher tracer binding in D3-rich regions: the substantia nigra/ventral tegmental area (SN/VTA) (+20%; p= 0.02), ventral striatum (VST)
(+14%; po0.01), and pallidum (+11%; p= 0.02). BMI was also positively associated with D2/3R availability in the SN/VTA (r= 0.34,
p= 0.03), VST (r= 0.36, p= 0.02), and pallidum (r= 0.30, p= 0.05) across all subjects. These data suggest that individuals who are obese
have higher D2/3R availability in brain reward regions densely populated with D3Rs, potentially identifying a novel pharmacologic target for
the treatment of obesity.
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INTRODUCTION

It has been estimated that over one-third of Americans are
obese (OB) (Flegal et al, 2012) and thus at increased risk for
developing obesity-related comorbidities such as coronary
artery disease, hypertension, functional limitations, and type-
2 diabetes (Field et al, 2001; Lakdawalla et al, 2004; Mokdad
et al, 2003; Must et al, 1999; Sturm et al, 2004). Considerable
preclinical and human research examining obesity has
focused on dopamine 2/3 receptors (D2/3Rs) due to their
expression within brain regions associated with reward
and motivation such as the striatum and the substantia
nigra/ventral tegmental area (SN/VTA). In rodents, D2R
density was lower in the dorsal striatum of chronic high-fat-
induced OB mice as compared with OB-resistant and
low-fat-fed controls (Huang et al, 2006), implicating lower
D2R availability similar to rodent stimulant administration

paradigms (Culver et al, 2008; Dalley et al, 2007;
Ujike et al, 1989; Yi and Johnson, 1990). Further work has
investigated a selective D3-antagonist medication in an
operant food self-administration paradigm and showed that
a D3-antagonist attenuated lever presses and food intake in
both lean and OB rats, providing preliminary evidence of
D3R-related motivation to consume food (Thanos et al,
2008). This notion is consistent with clinical data implicating
the D3R in populations abusing substances that influence
nigrostriatal reward pathway function (Boileau et al, 2012;
Erritzoe et al, 2014; Matuskey et al, 2014; Payer et al, 2014).
In humans, prior work utilizing positron emission

tomography (PET) and D2/3R antagonist tracers has not
yielded particularly well-defined results in obesity (for a
comprehensive review of the PET dopaminergic and obesity/
BMI literature, please see the work of Val-Laillet et al (2015).
Studies employing [11C]raclopride, a D2/3R non-selective
tracer, have demonstrated lower striatal D2/3R availability in
both severely obese (body mass index (BMI)439.9 kg/m2)
(Wang et al, 2001) and OB (BMI 30.0–39.9 kg/m2)
individuals (Haltia et al, 2007) when compared with
normal-weight (NW) (BMI 18.5–24.9 kg/m2) individuals.
Furthermore, within both severely obese (Wang et al, 2001)
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and OB (Haltia et al, 2007) individuals, a negative linear
association between D2/3R availability and BMI was
observed. This relationship did not extend to non-OB
individuals, where no associations between striatal D2/3R
availability and BMI have been found with [11C]raclopride
(Caravaggio et al, 2013). Work done with the D2-high
affinity tracer, [11C]N-methyl-benperidol (NMB), failed to
show any striatal D2/3R availability alterations between
NW and severely obese individuals (Eisenstein et al, 2013).
Lastly, work has also been done with [11C]FLB457 and
[18F]fallypride, D2/3R tracers capable of extrastriatal reward
region receptor quantification. In NW individuals, a positive
linear association between amygdalar D2/3R availability and
BMI was observed with [11C]FLB457 (Yasuno et al, 2001),
whereas work done with [18F]fallypride has suggested a
negative linear association in the left amygdala and the left
caudate in a wide-ranged BMI (range 19–35 kg/m2, mean
24.8 kg/m2) cohort (Kessler et al, 2014). Other regions
investigated with [18F]fallypride have shown slightly higher
D2/3R availability (not statistically significant) in the
SN/VTA of OB as compared with NW females (Savage
et al, 2014) and a positive linear association between D2/3R
availability and BMI in the caudate and putamen of a large
cohort of individuals with a wide BMI range (range
18–45 kg/m2) (Guo et al, 2014).
The D3-preferring D2/3R agonist PET tracer, [11C](+)

PHNO, has been found to be especially reliable (due to an
excellent specific-to-nonspecific binding ratio) at quantifying
extrastriatal midbrain reward regions particularly essential
for the synthesis and production of dopamine such as the
SN/VTA, where D3Rs are predominant (Graff-Guerrero
et al, 2008; Narendran et al, 2006; Searle et al, 2010; Tziortzi
et al, 2011). In addition, [11C](+)PHNO has also been shown
to bind to high-affinity, presumably ‘active’, G-protein
coupled forms of the D2R within the striatum (Shotbolt
et al, 2012; Willeit et al, 2006). Prior work done with [11C](+)
PHNO has indicated that BMI correlated positively with
D2/3R availability in the ventral striatum (VST) (Caravaggio
et al, 2013), a region of mixed D2Rs and D3Rs (Tziortzi et al,
2011), in a cohort with a relatively narrow non-OB BMI
range (range 18.6–27.8 kg/m2, mean 23.4 kg/m2). Further
work in a wide-BMI-ranged (range 21.5–36.5 kg/m2, mean
27.9 kg/m2) small cohort showed a positive association
between D2/3R availability and BMI in the right dorsal
caudate (Cosgrove et al, 2015).
The current study investigated, for the first time,

differences in D2/3R availability between 14 OB and 14 age-
and gender-matched NW individuals utilizing [11C](+)
PHNO PET. Additionally, in regions where D2/3R differences
were observed, a cohort of 14 overweight (OW) individuals
was added to investigate linear associations in a sample
representative of the United States population based on BMI
(ie, ~ 33% NW, ~ 33% OW, and ~ 33% OB) (Flegal et al,
2012). Based on prior work (Caravaggio et al, 2013) and
tracer-binding characteristics (Shotbolt et al, 2012; Tziortzi
et al, 2011), we expected to observe higher [11C](+)PHNO
tracer binding in important brain reward areas in OB
compared with NW individuals in regions populated with
D3Rs (ie, the SN/VTA) and in mixed striatal regions where
high-affinity ‘active’ forms of the D2R may exist (ie, VST) as
well as positive linear relationships between tracer binding
and BMI in those respective regions after the OW cohort

was added. Overall, this work aims to extend the obesity
literature by providing useful and informative data con-
tributing to mechanistic understanding of the disease and
identify potential novel pharmacologic targets for treatment.

MATERIALS AND METHODS

Research participants were recruited from the greater New
Haven area by advertisement, word of mouth, and referral.
Once determined initially eligible through telephone ques-
tionnaire, participants reported to the Yale PET Center or
the Clinical Neuroscience Research Unit of the Connecticut
Mental Health Center where they were consented and
screened by members of the research team. As part of the
screening process, study participants underwent compre-
hensive medical and psychiatric histories, physical examina-
tion, neurological and mental status exam, routine laboratory
studies, electrocardiogram, and a semistructured (Sheehan
et al, 1998) or a structured clinical interview (American
Psychiatric Association. and American Psychiatric
Association. Task Force on DSM-IV, 2000) to confirm
study eligibility. Study participants were excluded based on
evidence of a current or previous major psychiatric
(eg, schizophrenia or bipolar disorder) or eating disorder
(eg, binge eating disorder), current or history of serious
medical or neurological illness (eg, past traumatic brain
injury resulting in loss of consciousness), current pregnancy
(as documented by urine human chorionic gonadotropin
testing at screening and on the day of PET imaging), current
or history of a substance abuse disorder, evidence of drug use
on day of screening and day of imaging (as documented by
urine toxicology studies), taking weight loss medications or
medications known to influence the dopamine system (eg,
methylphenidate or amphetamine), breastfeeding, or contra-
indications to magnetic resonance imaging.
Fourteen otherwise healthy OB (BMI429.9 kg/m2)

individuals were compared with 14 age-and gender-matched
healthy NW (BMI 18.5–24.9 kg/m2) individuals. As part of
the secondary analyses, 14 otherwise healthy OW
(BMI 25–29.9 kg/m2) individuals were added to the analysis
to examine the linear association between BMI and D2/3R
availability in a large, broad-BMI-ranged cohort (see Tables 1
and 2 for means and standard deviations of demographics,
injection parameters, and radioactivity data for all indivi-
duals studied). All participants with the exception of one

Table 1 Demographic, Injection, and Radioactivity Data for
Normal Weight (NW) and Obese (OB) Participants

NW (n=14) OB (n= 14) p-value

Gender 10 M, 4 F 10 M, 4 F –

Age (years) 34.9 (10.2) 37.0 (10.1) 0.59

BMI (kg/m2) 22.3 (1.8) 35.3 (4.5) o0.01

Specific activity (MBq/nmol) 52.1 (26.3) 53.8 (25.8) 0.87

Radioactive dose (MBq) 358.3 (181.3) 450.9 (125.6) 0.14

Cerebellar mean concentration
(nM)

0.0747 (0.0169) 0.0672 (0.0224) 0.34

Injected mass (μg/kg) 0.0267 (0.0055) 0.0230 (0.0073) 0.15

Bold values indicate statistical significance.
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OW participant were non-nicotine/tobacco users and some
have been reported on elsewhere (Matuskey et al, 2015;
Matuskey et al, 2016). Once research participants were
eligible for the study, they were asked to abstain from all food
and liquids (except for water) the night prior to presenting to
the Yale PET Center for imaging until the scanning
procedures were completed.
[11C](+)PHNO was prepared as previously reported

(Gallezot et al, 2012). All PET scans were performed with
the high-resolution research tomograph (Siemens/CTI,
Knoxville, TN, USA), which acquired 207 slices separated
by 1.2 mm with a reconstructed image resolution of ~ 3 mm.
Scans were acquired over 120 min at rest. Prior to [11C](+)
PHNO emission imaging, a transmission scan was obtained
for attenuation correction.
Motion correction was based on an optical detector (Vicra;

NDI Systems, Waterloo, Ontario, Canada). Dynamic PET
imaging data were reconstructed with corrections for
attenuation, normalization, scatter, randoms, deadtime, and
motion employing the MOLAR algorithm (Carson et al,
2003) with a frame timing of 6 × 30 s; 3 × 1 min; 2 × 2 min;
and 22 × 5 min.
PET data were used to construct a time–activity curve for

the cerebellum, a region of minimal D2/3R binding, which
was used as the reference region as in previous studies
(Boileau et al, 2012; Ginovart et al, 2007; Matuskey et al,
2014, 2015, 2016; Mizrahi et al, 2011; Payer et al, 2014; Searle
et al, 2010). A summed image (0–10 min after injection) was
created from the motion-corrected PET data and registered
to the participant’s MR image, which was nonlinearly
registered to an MR template in Montreal Neurological
Institute (MNI) space. All transformations were performed
with Bioimagesuite (version 2.5; http://www.bioimagesuite.
com). Parametric images of non-displaceable tracer binding
potentials (BPND), which are linearly proportional to the
density of available D2/3Rs, were computed using a simplified
reference tissue model (2-parameter version: SRTM2). This
method has been previously validated for [11C](+)PHNO
(Gallezot et al, 2014b; Wu and Carson, 2002) and utilized to
optimize the statistical quality of the SRTM applied in prior
studies by reducing noise of the functional images (Matuskey
et al, 2014, 2015, 2016). Unbound concentration in tissue was
estimated as the radioligand mass concentration in the
cerebellum at 60–90 min post injection.
Structural magnetic resonance imaging (MRI) was per-

formed on a 3-Tesla Trio system (Siemens Medical Solutions,
Malvern, Pennsylvania) with a circularly polarized head coil
for reasons of excluding individuals with anatomical abnorm-
alities and anatomically coregistering with PET images. The
dimension and voxel size of MR images were 256× 256× 176
voxels and 0.98× 0.98× 1.0 mm3, respectively.

Regions of interest (ROIs) included the amygdala, caudate,
hypothalamus, pallidum, putamen, SN/VTA, thalamus, and
VST. ROIs were based on the automated anatomical labeling
template delineated in MNI space (Tzourio-Mazoyer et al,
2002), with the exception of the hypothalamus, SN/VTA, and
VST. More specifically, the hypothalamus was manually
delineated on the MRI template image, the template SN/VTA
ROI was manually delineated using [11C](+)PHNO BPND

images from a previous study (Gallezot et al, 2014b), and
individual, hand-drawn VST delineations were performed in
MNI space on each subject’s MRI based on the guidelines
described by Mawlawi et al (2001). ROIs were applied to the
parametric BPND images to extract individual values.
In addition to ROI analyses, a voxel-wise analysis was

performed on parametric BPND images with SPM12
(Wellcome Trust Centre for Neuroimaging, London, UK).
Similar to the ROI methods, summed PET images were
registered to participants’ MR images before optimized
unified segmentation (Ashburner and Friston, 2005) was
used to determine nonlinear registrations into MNI standard
space. Transformations were applied to parametric BPND

images, resliced into 2 × 2 × 2mm isotropic voxels and
smoothed using a 2-mm FWHM Gaussian kernel. Group
differences were assessed using a two-sample t-test at a
voxel-level threshold of po0.001 with a cluster extent
threshold (k)410 voxels.
Data were summarized descriptively and assessed for

normality prior to analyses employing normality probability
plots and Kolmogorov test statistics. Linear mixed models
were used to examine the independent and joint effects of
obesity (between-group factor) and ROIs (within-group) on
BPND values. Between-group differences within each region
were estimated to explain significant interactions. Within-
group associations were accounted for by fitting three
variance—covariance structures to the data (unstructured,
compound symmetry, and heterogeneous compound sym-
metry) with an unstructured form fitting the data best
according to the Bayesian Information Criterion. Secondary
correlation analyses were not adjusted for multiple tests given
the targeted nature of the analyses (ie, based on the between-
group findings). All analyses were conducted using SAS
version 9.3 (Cary, NC) or SPSS version 22 (Armonk, NY) and
considered significant at the two-tailed α= 0.05 threshold.

RESULTS

We observed a main effect of obesity (F1,26= 6.11, p= 0.020)
demonstrating that OB and NW individuals differed in
overall D2/3R availability as well as a group-by-brain region
interaction effect (F7,182= 2.08, p= 0.047) between OB and
NW individuals. Post hoc analyses revealed that OB
participants exhibited higher D2/3R availability compared

Table 2 Demographic, Injection, and Radioactivity Data for Overweight (OW) and Combined Cohort (All)

Gender Age (years) BMI (kg/m2) Specific activity
(MBq/nmol)

Radioactive
dose (MBq)

Cerebellar mean
concentration (nM)

Injected mass
(μg/kg)

OW (n= 14) 13 M, 1 F 36.7 (11.5) 27.2 (1.3) 54.7 (33.5) 441.9 (197.1) 0.0797 (0.0280) 0.0283 (0.0117)

All (N= 42) 33 M, 9 F 36.2 (10.5) 28.3 (6.1) 53.5 (28.4) 417.0 (174.1) 0.0738 (0.0235) 0.0260 (0.0087)
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with NW individuals in the SN/VTA (+20%; F1,182= 5.13,
p= 0.025), the VST (+14%; F,182= 8.14, p= 0.005), and the
pallidum (+11%; F1,182= 5.30, p= 0.022). Group-by-brain
interaction results persisted after independently adjusting for
potential confounding effects of age (F7,182= 2.06, p= 0.050),
gender (F7,182= 2.08, p= 0.048), specific activity at time
of injection (F7,182= 2.08, p= 0.048), and injected mass
(F7,182= 2.07, p= 0.048). Post hoc results were unaffected by
these confounding variables similar to the unadjusted
models. Further, there were no differences observed between
groups in mean cerebellar mass concentration of unbound
[11C](+)PHNO, thus providing additional evidence that
these results were not driven by injected mass. Of the three
regional findings, the VST was the only brain region that
survived correction for multiple comparisons utilizing the
Bonferroni method (adjusted α threshold= 0.05/8= 0.006).
Mean BPND values for both OB and NW individuals along
with relative group differences are shown in Table 3. Voxel-
wise analyses confirmed significant ROI findings of higher
D2/3R availability in OB as compared with NW individuals in
the SN/VTA, VST, and pallidum (Table 4 and Figure 1).
The secondary analyses employing a larger cohort to

include OW individuals in the above-mentioned significant
regions indicated that BMI was positively associated with
D2/3R availability in the SN/VTA (r= 0.34, p= 0.029;
Figure 2a), the VST (r= 0.36, p= 0.018; Figure 2b), and the
pallidum (r= 0.30, p= 0.051; Figure 2c) across all subjects.
Although these regions were targeted based on our between-
group comparisons, none of these associations survived
correction for multiple comparisons using Bonferroni
correction (adjusted α threshold= 0.05/3= 0.017). That
stated, the associations persisted after independently adjust-
ing for age (SN/VTA: r= 0.32, p= 0.043; VST: r= 0.37,
p= 0.018; pallidum: r= 0.31, p= 0.045), gender (SN/VTA:
r= 0.34, p= 0.029; VST: r= 0.37, p= 0.017; pallidum:
r= 0.30, p= 0.060), specific activity at time of injection

(SN/VTA: r= 0.34, p= 0.031; VST: r= 0.36, p= 0.020; pallidum:
r= 0.31, p= 0.049), injected mass (SN/VTA: r= 0.32, p= 0.043;
VST: r= 0.39, p= 0.011; pallidum: r= 0.29, p= 0.071), and
mean cerebellar mass concentration of unbound [11C](+)
PHNO (SN/VTA: r= 0.32, p= 0.041; VST: r= 0.39, p= 0.013;
pallidum: r= 0.27, p= 0.087).

DISCUSSION

To the best of our knowledge, the current study is the first to
utilize the D3-preferring D2/3R agonist tracer [11C](+)PHNO
to assess both striatal and extrastriatal D2/3R availability
differences between otherwise healthy OB and age- and
gender-matched NW individuals. Specifically, this work
demonstrated that OB individuals exhibited higher D2/3Rs
in both extrastriatal (ie, SN/VTA and pallidum) and striatal
(ie, VST) regions associated with reward and motivation
with the latter finding being the first published difference
in any addiction-like condition with [11C](+)PHNO in the
striatum. These results were unaffected by adjustment for
potential confounding factors such as age (Ishibashi et al, 2009;
Kim et al, 2011; Matuskey et al, 2016; Nakajima et al, 2015;
Volkow et al, 2000) or tracer injection parameters, and were
confirmed with a whole-brain voxel-wise analysis. Moreover,
after adding a cohort of OW individuals, we observed a
positive linear association between BMI and D2/3R availability
in the aforementioned regions that also persisted after
adjusting for age, gender, and tracer injection parameters.
Prior work with [11C](+)PHNO has demonstrated in non-

OB individuals a positive linear association between BMI and
tracer binding in the VST (Caravaggio et al, 2013). Our work
extends those findings into an OB population when BMI
categorical cohorts were combined. Other work with [11C]
(+)PHNO has also yielded a positive linear association

Table 3 Regional [11C](+)PHNO BPND (with SD) and Relative Differences Between Normal Weight (NW) and Obese (OB) Participants

Amygdala Caudate Hypothalamus Pallidum Putamen SN/VTA Thalamus VST

NW (n= 14) 0.27 (0.08) 1.88 (0.32) 1.24 (0.42) 3.37 (0.39) 2.52 (0.35) 1.85 (0.36) 0.35 (0.09) 4.12 (0.52)

OB (n= 14) 0.30 (0.07) 1.98 (0.42) 1.27 (0.24) 3.73 (0.47) 2.73 (0.41) 2.21 (0.42) 0.37 (0.07) 4.73 (0.58)

ΔOB % +13 +5 +2 +11 +8 +20 +6 +14

p-Value 0.22 0.47 0.81 0.02 0.14 0.02 0.54 o0.01

Bold values indicate statistical significance.

Table 4 Details of BMI-Related Clusters Identified by Whole-Brain
Voxel-Wise Analysis: Spatial Extent (k) in Voxels, MNI Coordinates
(x, y, z) and t-score (t) of Peak Value

Region k x y z t

L/R midbrain (SN/VTA) 74 6 − 22 − 14 5.42

R pallidum 61 14 − 6 − 6 6.22

L pallidum 46 − 8 − 8 − 6 5.22

L VST 13 − 10 6 − 10 4.67

R VST 11 8 6 − 8 5.34

Figure 1 Voxel-wise analyses of obese relative to normal weight [11C](+)
PHNO BPND in the substantia nigra/ventral tegmental area (SN/VTA), the
ventral striatum (VST), and the pallidum. Whole-brain results displayed at
uncorrected po0.001 and k410; coronal coordinates in MNI space.
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between BMI and right dorsal caudate tracer binding in a
wide-BMI-ranged cohort of 12 individuals (Cosgrove et al,
2015). The small cohort studied, as well as the unilateral
nature of the finding in the dorsal caudate, warrants caution
however. Additionally, the current work, one that includes
the largest cohort to date examining D2/3R alterations imaged
with [11C](+)PHNO as related to BMI, did not observe any
receptor differences between OB and NW individuals in the
dorsal striatum.

Much prior PET and obesity research has utilized D2/3R
antagonist tracers. Like our current work, studies that used
[18F]fallypride have demonstrated positive associations
between BMI and striatal D2/3R availability (although in
the dorsal and not the VST) in a large, wide-BMI-ranged
cohort (Guo et al, 2014) as well as non-statistically significant
higher tracer binding in the SN/VTA of OB as compared
with NW females (Savage et al, 2014). That stated, our work
is not consistent with studies that used other D2/3R
antagonist tracers. For instance, work with [11C]raclopride
has demonstrated reductions in striatal D2/3R availability in
both severely obese (Wang et al, 2001) and OB (Haltia et al,
2007) individuals when compared with NW controls.
Complicating the picture further, [11C]raclopride findings
are not consistent with studies that utilized [11C]FLB457,
which demonstrated BMI was positively associated with
amygdalar D2/3R availability (Yasuno et al, 2001) or [11C]
NMB, where no association between BMI and striatal D2/3R
availability was found (Eisenstein et al, 2013). Such lack of
agreement across the obesity and PET dopamine literature is
complex and several factors could be responsible including
differences in tracers and research participants. To that end,
the radiotracer employed, [11C](+)PHNO, is responsible for
at least part of these observed differences and worth further
commentary as it has unique properties.
As previously mentioned, [11C](+)PHNO is a D2/3R

agonist tracer that has demonstrated higher binding
in D3R-predominant extrastriatal regions compared with
D2R-predominant dorsal striatal regions (Graff-Guerrero
et al, 2008; Narendran et al, 2006; Searle et al, 2010; Tziortzi
et al, 2011). Such a preference might explain why the current
study demonstrated higher tracer binding in regions densely
populated with D3Rs (ie, the SN/VTA and the pallidum) and
in the mixed D2/3R area of the VST when compared with
studies that utilized D2/3R antagonist tracers that predomi-
nantly estimate D2Rs. These distinctions suggest that the D3R
subtype and the D2R subtype may be regulated differently
with respect to obesity, a finding also observed in the
stimulant-use-disorders literature (Boileau et al, 2012; Lee
et al, 2009; Martinez et al, 2004; Matuskey et al, 2014; Payer
et al, 2014; Volkow et al, 1990, 2001). Further, the D3R has
been implicated to be positively associated with behavioral
impulsiveness and risky decision making, thus our findings
of higher D3R availability in OB may be explained by
underlying trait impulsivity (Payer et al, 2014). As such,
these data suggest, albeit speculatively, that the D3R may be a
novel pharmacologic target for the treatment of obesity. In
fact, a prior study has demonstrated preliminary evidence
that a D3R antagonist, when compared with placebo, may
attenuate motivational attractiveness to palatable food cues
in otherwise healthy OW and OB individuals (Mogg et al,
2012). However, a follow-up study done by the same group
using the same D3R antagonist compound failed to show any
evidence of changes in neural activation in response to food
images on fMRI (Dodds et al, 2012), thus demonstrating the
need for clarity in further studies involving D3R antagonist
compounds in obesity.
In addition to providing an estimate of D3R sites, [11C](+)

PHNO, as an agonist tracer, could bind to high-affinity
G-protein-coupled forms of the D2R within the striatum that
are presumed to be ‘active’ (Shotbolt et al, 2012; Willeit
et al, 2006). Although debate still exists whether this can be

SN/VTA

Pallidum

VST

Figure 2 Unadjusted correlations between body mass index (BMI) and
[11C](+)PHNO BPND in the substantia nigra/ventral tegmental area (SN/
VTA) (a), in the ventral striatum (VST) (b), and in the pallidum (c).
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reliably measured in vivo (Seeman, 2012; Skinbjerg et al,
2012), in theory, only agonist tracers like [11C](+)PHNO
would prefer these sites as D2/3R antagonist tracers typically
bind with equal preference to both high- and low-affinity
forms of the D2/3R. Therefore, it is possible that these
differential binding characteristics could also help explain
our VST findings such that the regulation of ‘active’ high-
affinity forms vs ‘inactive’ low-affinity forms of the D2/3R
may be altered in obesity. Our finding in the VST is also
consistent with the previous [11C](+)PHNO work in non-OB
individuals (Caravaggio et al, 2013) and preclinical research
that posits the nucleus accumbens, a central component of
the VST, plays a key role in the formation/development of
the OB phenotype (Davis et al, 2008; Geiger et al, 2009;
Hryhorczuk et al, 2016; Rada et al, 2010; Valenza et al, 2015).
This regional specificity, along with tracer properties, may
help explain why differences were not found in the dorsal
striatum. Evidence does exist that obesity may be mediated
by the dorsal striatum through work with preclinical research
(Huang et al, 2006), functional connectivity (Contreras-
Rodriguez et al, 2015), and other PET studies done in
humans utilizing antagonist tracers (Haltia et al, 2007; Wang
et al, 2001). However, our lack of findings here are not
surprising considering [11C](+)PHNO has only recently been
found to be significantly different in the dorsal striatum of
humans with any addiction-like phenotype (Worhunsky
et al, 2016), suggesting decreased sensitivity in this region.
Another potential explanation for dissimilarities between

this study and other studies that employed antagonist
tracers may be due to endogenous dopamine competition.
Without utilizing a pharmacologic intervention such as
the tyrosine-hydroxylase inhibitor α-methly-para-tyrosine
(AMPT) to deplete tonic dopamine (Abi-Dargham et al,
2000; Caravaggio et al, 2014; Laruelle et al, 1997; Martinez
et al, 2009), our outcome measure, BPND, reflects tracer
bound to receptors not currently occupied by the endogen-
ous neurotransmitter (ie, dopamine) and therefore measures
receptor availability (Innis et al, 2007). [11C](+)PHNO has
been shown to be substantially more sensitive to endogenous
dopamine competition (ie, increased tracer displacement
resulting in lower BPND) compared with the antagonist
tracers used in prior studies (Cropley et al, 2008; Gallezot
et al, 2014a; Ginovart et al, 2006; Moerlein et al, 1997;
Shotbolt et al, 2012; Willeit et al, 2008); thus, our receptor
availability findings could also be due to OB individuals
exhibiting lower levels of tonic dopamine. In fact, this
concept is consistent with prior reports that have shown diet-
induced OB and OB-prone rats exhibited lower levels of
tonic dopamine or less dopaminergic-mediated behaviors
(ie, conditioned place preference or amphetamine-induced
locomotor activity) compared with standard chow fed or
OB-resistant controls (Geiger et al, 2009; Hryhorczuk et al,
2016; Rada et al, 2010).
There are several potential limitations of the current study

worth discussing. First, this was a retrospective study, and we
did not collect information such as percent adiposity, eating
and exercising behavior questionnaires, impulsivity mea-
sures, and nutritional intake that would be potentially useful
to relate to our PET measures. Future prospective studies
may include collecting those measures as well as investigat-
ing exercise interventions to examine D2/3R transformations
as BMI decreases. In fact, one study using [18F]fallypride has

recently demonstrated that exercise intervention for 8 weeks,
compared with psychoeducation, normalized lower striatal
D2/3Rs in humans with methamphetamine-use disorder
(Robertson et al, 2015). Second, although research partici-
pants were gender- and age-matched in the primary
between-group comparisons, the cohort for the secondary
correlational analyses was heavily dominated by males
(33 males vs 9 females); thus, further correlational analyses
confirming our findings are warranted in a gender-balanced
cohort. Lastly, as previously mentioned, BPND only reflects
PET tracer binding to available receptors and since [11C](+)
PHNO is susceptible to endogenous dopamine fluctuations,
it is not possible to reconcile whether our findings in OB
individuals are driven by an upregulation of D2/3Rs or
accounted for by lower levels of endogenous dopamine.
Future studies employing an AMPT tonic dopamine
depletion paradigm may be in order to resolve the under-
lying effect obesity is having on brain neurochemistry.
In summary, this study, to the best of our knowledge, is the

first to examine both striatal and extrastriatal D2/3R
availability differences between otherwise healthy OB and
age-and gender-matched NW individuals utilizing the
D3-preferring D2/3R agonist tracer [11C](+)PHNO. Our data
suggest that D2/3Rs are higher in OB compared with NW
individuals in regions densely populated with D3Rs, thus
implicating the D3R as a potential pharmacologic target for
the treatment of obesity. These data also implicate the same
nigrostriatal pathway alterations in obesity that have
been previously observed with [11C](+)PHNO in cocaine
(Matuskey et al, 2014; Payer et al, 2014), methamphetamine
(Boileau et al, 2012), and alcohol (Erritzoe et al, 2014)
abusers, indicating excessive food consumption might alter
reward pathways in similar ways as do substances of abuse.
The direct role of the D3R in addiction is not currently clear
(Boileau et al, 2015). A full discussion is beyond the scope of
the current work because of the dynamic interactions of
D3Rs that include dopamine autoreceptor properties and
heterodimers that have diverse direct and indirect effects on
GABA, adenosine, and glutamate systems (Casado-Anguera
et al, 2016; Fiorentini et al, 2015; Leggio et al, 2015; Sokoloff
et al, 2013). That being stated, one speculative mechanism to
explain these phenomena could be that initial responses to
ingestion of an addictive substance (ie, drug of abuse or high-
fat palatable food) causes increases of dopamine which leads
to a desensitization of postsynaptic striatal D2Rs and a
compensatory presynaptic D3R upregulation in the SN/VTA
on either autoreceptors or postsynaptic GABA neurons, both
of which have negative control on dopamine neurons
(Sokoloff et al, 2013).
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