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ABSTRACT
Myelin is a critical component of the nervous system and a major contributor to

contrast in Magnetic Resonance (MR) images. However, the precise contribution

of myelination to multiple MRmodalities is still under debate. The cuprizone mouse

is a well-established model of demyelination that has been used in several MR

studies, but these have often imaged only a single slice and analysed a small region

of interest in the corpus callosum. We imaged and analyzed the whole brain of

the cuprizone mouse ex-vivo using high-resolution quantitative MR methods

(multi-component relaxometry, Diffusion Tensor Imaging (DTI) and

morphometry) and found changes in multiple regions, including the corpus

callosum, cerebellum, thalamus and hippocampus. The presence of inflammation,

confirmed with histology, presents difficulties in isolating the sensitivity and

specificity of these MR methods to demyelination using this model.
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INTRODUCTION
Myelin is a critical component of a healthy nervous system. It is composed of protein and

lipid layers that tightly wrap neurons, improving their electrical conductivity and

reducing their energy requirements (Nave & Werner, 2014). Focal demyelinating lesions

are the hallmark of Multiple Sclerosis and disruption of myelin is also associated with

other neurodegenerative diseases such as Alzheimer’s and Parkinson’s Disease.

Non-invasive methods to quantify the myelination state of the nervous system are

hence highly useful in order to better track the progression of these diseases, and any

protective or regenerative treatments that become available (Dubessy et al., 2014).

Myelin is also a uniquely useful structure for MRI as it contributes to almost every

known contrast mechanism. The high lipid content provides abundant pathways for

spin-lattice interactions, reducing the longitudinal relaxation time (T1) of surrounding

protons (Stuber et al., 2014) and generating significant Magnetization Transfer (MT)
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effects (Turati et al., 2014). It is impermeable, hindering the diffusion of water molecules

(Song et al., 2005). Myelin is diamagnetic compared to grey matter (GM), leading to

excellent phase and susceptibility contrast (Lee et al., 2012). The unique layered

structure traps water protons in restricted environments, leading to reduced transverse

relaxation (T2) and an additional inhomogeneous or dipolar MT effect (Mackay et al.,

1994; Varma et al., 2015). It is hence of little surprise to find great interest in quantifying

myelin content using Magnetic Resonance (MR) techniques.

Although numerous approaches have been proposed to quantify myelin with MRI,

proper validation of such methods can be lacking in the literature. A particular case in

point is the multi-component Driven-Equilibrium Single-Pulse Observation of T1/T2

(mcDESPOT) method. This aims to divide the MR signal resulting from steady-state

sequences into three pools representing water trapped in the myelin sheath,

intra-extracellular water, and free water in cerebrospinal fluid (Deoni, Matthews &

Kolind, 2013). It has been used in several clinical studies, however to our knowledge it has

had little validation with pre-clinical or histological studies. It has also been criticized for

theoretical difficulties with the fitting procedure (Lankford & Does, 2012; Zhang et al.,

2014), but these have been partially addressed by subsequent literature (Hurley &

Alexander, 2014; Bouhrara & Spencer, 2015). In this paper, we provide a practical

demonstration of mcDESPOT in the widely-used cuprizone mouse model of

demyelination (Torkildsen et al., 2008; Skripuletz et al., 2011). In this model mice are fed

cuprizone over a period of weeks, and progressive demyelination can be observed

throughout white matter (WM) (Goldberg et al., 2015).

The cuprizone model has already been extensively imaged with multiple MR

techniques, which are summarized in Table 1. However, the majority of these studies

were restricted to imaging just one or two slices of the brain, often chosen to cover

sections of the corpus callosum. This negates one of the major benefits of MRI, which is

the ability to image the entire brain in a reasonable amount of time. The analyses are

then often conducted on a small number of Regions-Of-Interest (ROIs), reducing the rich

information available in MRI to a single composite number.

Hence a further aim of this study was to acquire full-brain, high resolution MRI of

the cuprizone model, and look for effects outside of the corpus callosum. Such

methodology is widespread in clinical MR studies, so their use in pre-clinical studies will

aid translatability. We are aware of only two cuprizone papers that attempted similar

acquisitions; however, Tagge et al. (2016) did not achieve sufficient SNR in the cerebellum

and Fjær et al. (2013) did not conduct histology there.

The comprehensive study of Thiessen et al. (2013) attempted to measure the Myelin

Water Fraction (MWF) with the quantitative Multi-Echo T2 (MET2) method but failed to

find a MWF even in healthy WM at 7T. MET2 is considered somewhat of a gold standard

for MWF imaging, so this study was an opportunity to evaluate whether mcDESPOT

could robustly detect a MWF. Using ex-vivo imaging we could acquire a greater number of

MR modalities at higher resolution than would be feasible in-vivo. In addition to the

structural and relaxometry data, we also acquired Diffusion Tensor Imaging (DTI) data,
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allowing direct comparison of the sensitivity and specificity of DTI to relaxometry across

the whole brain.

To summarise, the aims of this experiment were:

1. Demonstrate the feasibility of MWF imaging using the mcDESPOT technique in a

pre-clinical model.

2. Observe the effects of cuprizone treatment across the entire encephalon using multiple

quantitative MR methods.

3. Use histological validation to assess their sensitivity to demyelination and

inflammation.

METHODS
Animal model
All experiments were performed under approval of the local King’s College London ethics

committee and the UK Animals (Scientific Procedures) Act 1986, according to the Home

Office Project License Number 70/8480 (held by Diana Cash). For a thorough description

of the cuprizone model, the reader is referred to Skripuletz et al. (2011). Seven adult

male C57BL/6J (Harlan, UK) mice were housed communally and freely fed powdered

rodent chow for five weeks, while a further eight were fed powdered chow mixed

with 0.2% cuprizone (Bis(cyclohexanone)oxaldihydrazone; Sigma Aldrich, Irvine, UK).

Table 1 A review of the existing cuprizone literature. Awide variety of MR modalities have been used,

but a majority of papers analyzed a small ROI in the corpus callosum.

Citation In-/Ex-vivo Acquired

volume

Analysis volume Methods

Song et al. (2005) Ex MS CC, EC, OT, CP DTI

Merkler et al. (2005) In 3D CC, EC T1w, T2w, MTR

Sun et al. (2006) In MS CC DTI

Wu et al. (2008) In MS CC T2w, DTI

Torkildsen et al. (2009) In MS Lesion volumes T2w

Xie et al. (2010) In MS CC DTI

Zhang et al. (2012) Both 3D/MS CC, Ctx T2w, MTR, DTI

Chandran et al. (2012) In MS CC, Cg, EC T2w, DTI

Thiessen et al. (2013) Both SS CC, EC, Ctx T1/2, qMT, DTI, MWF

Fjær et al. (2013) In 3D CC, GM, Cbl, Ctx T2w, MTR

Falangola et al. (2014) In MS CC DKI

Turati et al. (2014) In SS�2 CC, EC qMT

Guglielmetti et al. (2016) In MS CC, Ctx T2w, DKI

Jelescu et al. (2016) In SS CC T2w, MTR, DKI

Tagge et al. (2016) In 3D Cbr T2w, MTR

Note:
SS, Single-slice; MS, Multi-slice; CC, Corpus Callosum; EC, External Capsule; Ctx, Cortex; Cg, Cingulum;
Cbl, Cerebellum; Cbr, Cerebrum; OT, Optic Tracts; CP, Cerebral Peduncles; T1w, T1 Weighted; T2w, T2 Weighted;
T1, T1 Map; T2, T2 Map; MTR, Magnetisation Transfer Ratio; qMT, Quantitative Magnetisation Transfer;
DTI, Diffusion Tensor Imaging; DKI, Diffusion Kurtosis Imaging; MWF, Myelin Water Fraction.
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All animals were weighed weekly. The five week time-point was chosen as heavy

demyelination is expected to be present. They were then killed by transcardiac perfusion

with ice-cold heparinized saline followed by 4% buffered paraformaldehyde (PFA).

The heads were removed, stored in PFA for 24 h and then rehydrated in Phosphate

Buffered Saline preserved with 0.05% sodium azide at 4� for a minimum of 30 days

(Cahill et al., 2012).

After image acquisition one control and one cuprizone mouse were excluded from the

MRI analysis as the cerebellum had been damaged during sample preparation, preventing

a good registration in this region, however the rest of the brain could be used for histology.

For quantitative histology, high quality sections could be obtained from all cuprizone

animals but only five controls.

MRI acquisition
MR Images were acquired using a 7 Tesla pre-clinical MR system (Agilent Technologies).

Samples were immersed in fluorinated liquid to reduce susceptibility artefacts (Galden;

Solvay) and loaded four at a time (see Fig. 1) into a 39 mm diameter transmit-receive

birdcage coil (Rapid GmbH). Three sets of MR images were acquired; a 3D Fast-Spin Echo

for structural analysis, a mcDESPOT protocol, and a DTI protocol.

The 3D FSE image had a matrix size of 256 � 256 � 256 with isotropic 112.5 mm

voxels, TE/TR = 40/3,000 ms, an echo-train length of 16, echo-spacing 6.67 ms, readout

bandwidth 62.5 kHz, and scan time 3 h 25 min. The DTI scans were acquired using a

four shot EPI sequence with a 192� 128 matrix, 40 slices, 150� 225� 500 mmvoxel size,

TE/TR = 43/4,000 ms, 10 averages and scan time was 3 h 7 min. The diffusion

preparation consisted of 30 diffusion directions with b = 2,000 and four b = 0 images,

with d/� = 4/16 ms.

The mcDESPOT protocol consisted of a SPoiled Gradient Recalled (SPGR) scan, a

balanced Steady-State Free-Precession (bSSFP) scan, and an Actual Flip-angle Imaging

(AFI) scan for B1 inhomogeneity correction. The SPGR and bSSFP images both had a

192 � 192 � 192 matrix size with isotropic 150 mm voxels. The SPGR images had

TE/TR = 5.148/20 ms, with a read-out bandwidth of 25 kHz, and were acquired at

Figure 1 A schematic of the process used to automatically identify and re-orient each individual

subject. (A) A structural image showing how the subjects were arranged in the scanner. (B) The four

largest connected components are labelled as the individual subjects. (C) The center-of-gravity (CoG) of

each subject is identified, and a line drawn between the CoG and the origin. This defines the approximate

rotation angle required for re-orientation. (D) An individual subject after re-orientation and rigid

registration to the atlas.
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12 flip-angles (4, 5, 6, 8, 10, 12, 16, 20, 24, 26, 28, 30�), scan time 2 h 28 min, and a strong

diffusion spoiling scheme. The bSSFP images were acquired with TE/TR = 3/6 ms, a

band-width of 62.5 kHz, also 12 flip-angles (8, 9, 10, 12, 15, 20, 30, 40, 50, 55, 60, 65�) and
scan time 2 h 57 min. The extreme flip-angles were chosen to be the optimal for the

expected single-component T1 and T2 values (Wood, 2015). The AFI scan had a

matrix size of 96 � 96 � 96, isotropic 300 mm voxels, TE/TR1/TR2 = 4.304/20/100 ms,

bandwidth 15.625 kHz, a flip-angle of 55� and scan time 37 min (Yarnykh, 2007; Yarnykh,

2010). The acquisition protocol for mcDESPOT allows the calculation of standard

relaxometry (T1&T2) maps from the same data.

MRI analysis
TheMR Images were first converted to NIFTI format from the manufacturer’s proprietary

format, and then were processed using a combination of FSL (Jenkinson et al., 2012),

ANTs (Avants et al., 2011) and in-house C++ software utilizing the ITK library, available

from https://github.com/spinicist/QUIT. The processing pipeline consisted of several

steps. The following operations were carried out in the native space of the acquired

images.

1. ATukey filter was applied in k-space to remove high frequency noise (Tagge et al., 2016).

This is a common reconstruction step on clinical scanners but is not implemented on

our system.

2. The B1 map was calculated from the AFI scan (Yarnykh, 2007). The single-component

T1 map was then calculated from the SPGR data using the B1 map to correct the

flip-angles. Because we acquired multiple flip-angles (required for mcDESPOT), we

used a non-linear Levenberg-Marquadt algorithm instead of the common linearization

method to fit the data. An initial value of 1s was chosen for T1 and no issues were

observed with convergence to local minima.

3. T2 and off-resonance maps were calculated from the SSFP data, B1&T1 maps using the

DESPOT2-FM method (Deoni, 2009). To improve the speed of the fitting procedure,

instead of the original stochastic fitting method we used a bounded non-linear

trust-region optimizer (Zhu et al., 1997). To ensure the global optimumwas found four

different starting points for off-resonance were ranging from -1/(2�TR) to +1/(2�TR)
were tried. The starting point for T2 was set to T1/10. Yarnykh & Yuan (2004) lists

values of T2/T1 ranging from 0.044 to 0.065 in various in-vivo and ex-vivo samples, but

we observed fewer fitting failures using a larger initial value.

4. The mcDESPOT parameter maps, consisting of the MWF, Intra-Extra cellular Water

Fraction (IEWF), Free Water Fraction (FWF), T1&T2 values for each fractional

component, and the myelin water residence time (�M), were calculated using a

Gaussian-prior stochastic Region Contraction method (GRC) (Deoni & Kolind, 2014).

The mcDESPOTmodel is known to be difficult to fit, particularly close to banding

artefacts in bSSFP data (Lankford & Does, 2012; Hurley & Alexander, 2014). In order to

stabilize the fit, we applied some additional simple heuristics; the off-resonance value of

each component was fixed to the value calculated from DESPOT2-FM and we weighted
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the residuals of the bSSFP data by 3sin2(f +Y)/4, where f is the phase-increment value

and Y is the accrued phase due to off-resonance in each TR. This weighting scheme

ensures that data in the banding artefacts of one phase-increment is ignored in

preference to data from the other phase-increments. The fittings ranges for the

mcDESPOT parameters were chosen by observing the single-component T1&T2

values in regions of white and grey matter and are given in Table 2.

5. FSL topup and eddy were used to remove distortion and eddy current artefacts in the

raw diffusion data (Andersson, Skare & Ashburner, 2003; Andersson & Sotiropoulos,

2016). We did not acquire data with a reversed phase-encode direction as the

manufacturer’s sequence does not have this option. Instead, we synthesized a

standard spin-echo image from the T1&T2 maps using the TE/TR of the diffusion

sequence. The resulting image had no distortion and diffusion weighting, and was

given to topup as a b = 0 image, which could then undistort the acquired diffusion

images. The DTI parameter maps were then calculated and consisted of Mean

Diffusivity (MD), Axial Diffusivity (AD), Radial Diffusivity (RD) and Fractional

Anisotropy (FA) using FSL dtifit.

The mcDESPOT processing produces ten separate parameter maps (ignoring the

B0 and B1 parameter maps that correct for field inhomogeneities). However the MWF,

IEWF and FWF are defined as fractions that must sum to one, and so are not independent

parameters. Hence, of these only the MWF was used for statistical analysis. Of the

remaining parameters the myelin water residence time �M could potentially be an

indicator of myelin sheath integrity. However, as will be shown below the current

mcDESPOTmethodology cannot reliably fit this parameter, so we did not analyse it

further.

The following procedure was then used to split the images into individual subjects

and register them to a common space:

1. The structural scan was bias-field corrected (Tustison et al., 2010), thresholded and the

four largest connected-components were identified. These components were used as

masks to separate each subject from the others. The center-of-gravity of each image

was then calculated. Because the subjects were scanned in a consistent orientation (with

the base of the brain towards the center of the sample tube), we calculated a simple

rotation around the tube axis and translation that moved the subjects to the center of

the field of view and oriented them in a standard manner. A simple rigid registration

was then performed between each subject and an atlas image (Dorr et al., 2008) to

ensure all samples were approximately aligned. This process is illustrated in Fig. 1.

Table 2 Lower and upper fitting bounds for the mcDESPOT parameters. The units are milliseconds

for all parameters except the MWF and FWF.

Parameter T1M T2M T1IE T2IE T1FW T2FW �M MWF (%) FWF (%)

Lower 600 6 1,000 40 1,800 120 6 0.1 0

Upper 1,000 20 1,400 90 5,000 2,500 350 35 100
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2. A template image was constructed using the 3D FSE and FA images from all subjects in

the study (Avants et al., 2010). The resulting 3D FSE template was then non-linearly

registered to the atlas image. Including the FA maps in the registration process

improved the alignment of the external capsule between groups (see Discussion).

3. All subjects were non-linearly registered to the study templates using their FSE and FA

images. Logarithmic Jacobian determinants were calculated from the inverse warp

fields in standard space to estimate apparent volume change. The transforms from native

to study template, and from study to standard space were concatenated and applied to

all relaxometry and DTI parameter maps to align them to the template. These images

were resampled to match the voxel size of the template using a Gaussian interpolator.

The full-width half-maximum of the interpolator was set to 100 mm for the relaxometry

data and 125 mm for the DTI, due to their differing acquisition voxel sizes.

4. A brain parenchyma mask was created from the atlas labels by excluding Cerebrospinal

Fluid (CSF) regions. The inverse transforms from the atlas to the study template and

from the study template to each subject were applied to calculate the brain volume of

each subject.

A group analysis was then carried out on all relaxometry maps, DTI maps and the

Jacobian deteriminant images with permutation tests and Threshold-Free Cluster

Enhancement (TFCE) using FSL randomize (Smith & Nichols, 2009;Winkler et al., 2014).

The brain volume estimates were included as a regressor of no interest in the design matrix

when analysing the Jacobian determinants, but not for the parameter maps. Animal

weights and total brain volumes were compared using a separate two sample t-Test

assuming unequal variance.

Histology
After imaging the brains were removed from the skulls and cryoprotected by immersion in

30% sucrose for at least 72 h. A total of 20 mm thick sections were cut in 12 series

on a cryostat, collected onto chrome-gelatin coated slides and stored at -20 �C.
Immunohistochemistry was performed on two of the series with washes between each

step. After rehydrating in Tris buffer (TBS) for 3 � 5 min endogenous peroxidase activity

was blocked by applying 1% hydrogen peroxide (H2O2) in TBS for 30 min at room

temperature (RT), followed by a non-specific binding block with 10% skimmed milk

powder in TBS with 2% Triton-X (TBS-X) for 2 h at RT. Sections were then incubated in

primary antibodies for either microglia (rabbit anti-Iba-1, 1:2,000, 019-19741, Alpha

Laboratories) or Myelin Basic Protein (rat anti-MBP, 1:1,000, ab7349; Abcam) diluted in

5% skimmed milk powder in TBS-X overnight at 4 �C. Following three washes in TBS-X

sections were incubated in either biotinylated goat anti-rabbit or anti-rat antibody diluted

in 5% skimmed milk powder in TBS-X (1:1,000; BA-1000 and BA-9400, respectively;

Vector Laboratories Ltd.) for 2 h at RT followed by incubation in avidin-horseradish

peroxidase complex (Vectastain ABC Elite, PK-6000; Vector Laboratories) for 1 h.

Immunoreactivity was visualized by incubating sections in 0.05% diaminobenzidine

and 0.01% H2O2 for up to five minutes with exact timing being determined by the depth

Wood et al. (2016), PeerJ, DOI 10.7717/peerj.2632 7/25

http://dx.doi.org/10.7717/peerj.2632
https://peerj.com/


of colour of the sections. Sections were then rinsed in TBS and dehydrated in increasing

concentrations of industrial methylated spirits (IMS) followed by xylene before

cover-slipping with DPX mounting medium (Sigma Aldrich, UK).

A third series was stained with Luxol Fast Blue (LFB) to visualize myelin. Sections were

placed in a 50/50 IMS/Histoclear solution overnight to remove fat from the tissue and

then hydrated in 95% IMS. Sections were then placed into LFB solution at 56 �C
overnight, followed by rinses in 95% IMS and distilled water before differentiating in

lithium carbonate for 30 s followed by 30 s in 70% IMS and a rinse in distilled water.

Differentiation was then checked microscopically and differentiation steps repeated until

GM was clear and WM well defined. Once completed, sections were dehydrated in

increasing concentrations of IMS followed by xylene before cover-slipping with DPX

mounting medium. For analysis of all three stains we used three sections approximately

-1.58, -1.82 and -2.06 mm posterior from Bregma.

Iba1 stained sections were analysed with a Zeiss Axioskop2 MOTmicroscope and

design-based optical fractionator probe in Stereoinvestigator software (v11.03.1, MBF

Bioscience). An ROI was drawn over the corpus callosum, cortex above and hippocampus

below covering an area of 20 mm2 in each section using a PlanApo 4� objective. Microglia

population estimates were obtained using systematic random sampling with a sampling

grid of 300 � 300 mm (Gundersen coefficient of error < 0.1) and a counting frame of

50 � 50 mm. Section thickness was manually defined as 15 mm with a dissector height of

14 mm and guard zones of 0.5 mm at the top and bottom of each frame. All microglia

falling with the bounds of the counting frame and not touching the exclusion boundaries

were counted using a PlanApo 40� objective at the monitor. Cell density was calculated as

the ratio of the population estimate to the volume of the ROI, estimated using the

Cavalieri principle (West, Slomianka & Gundersen, 1991).

Sections stained for MBP and LFB were analysed using thresholding techniques.

The MBP sections were first pseudocoloured in Aperio Imagescope (v12; Aperio

Technologies Inc.) where staining in each pixel of the corpus callosum ROI was

categorised into one of three levels and a snapshot at �4 magnification was then

analysed by ImageJ (v 1.50b, NIH) software. The analysis included removing of

background andmeasuring the percent coverage of the appropriate peak corresponding to

corpus callosum staining. The same method was applied to LFB but omitting the

pseudocolouring step and using Otsu threshold parameters in ImageJ. All results were

statistically analysed in Prism v6.07 (GraphPad Software Inc.) using unpaired T-tests.

RESULTS
The MR parameter maps and statistic images are available online (DOI: 10.6084/m9.

figshare.3495848).

At the end of treatment the mean weight of the control and cuprizone groups were

27.5 ±2.5 g and 21.8 ± 1.2 g, respectively, which were significantly different when

assessed with a two-tailed T-test (p = 0.0004). However the mean brain volumes were

387.8 ± 10.1 mm3 and 381.5 ± 9.0 mm3, which was not a significant difference (p = 0.26).
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A single slice through the quantitative relaxometry parameter maps for a single control

mouse is shown in Fig. 2. WM and GM are clearly distinguishable in the single-

component maps. The T2 map better distinguishes the hippocampus and third ventricle

at the base of the brain. MWF is clearly visible in the expected regions, with values of

approximately 20% in the corpus callosum, slightly higher in the cerebral peduncles and

optic tract and less than 5% in GM regions. IEWF is approximately the inverse of the

MWF, but a large amount of Free Water is indicated in the third ventricle.

The myelin T1&T2 maps are fairly flat across the brain, indicating that the fitting

routine finds fairly consistent values for these parameters. The exception to this is that

the T2 of myelin water in the cerebral peduncles and optic tract appear to be lower

than that found in the corpus callosum. The T2 of the IE-water shows some differences

between WM and GM, but less than is found in the single-component T2 map. Although

the myelin residence time (�M, defined as the mean time a water molecule stays in the

myelin pool before exchanging to the IE-pool) shows good contrast, it must be

remembered that this parameter is not well defined outside of WM tracts where there is

close to 0% MWF (see below).

Similarly, Fig. 3 shows the DTI parameters from a single control mouse. These appear

more blurred than the relaxometry maps due to the larger acquisition voxel size,

however there is still contrast between WM and GM. AD is visibly higher than RD

particularly in the hippocampus. FA shows good contrast between GM and WM,

especially in the cerebral peduncles and optic tract.

Figure 2 Illustrative relaxometry maps for a control mouse. Single-component T1&T2 maps are in

the left-most column. There are ten mcDESPOT parameter maps—T1&T2 and the fractional amount of

three water pools (Myelin, Intra-Extra cellular and Free), and the myelin residence time (�M). WM tracts

are clearly visible in the MWF map. The T1&T2 maps of the Free Water (CSF) pool have been omitted.

Figure 3 Single subject maps of the four DTI parameters—Mean, Radial and Axial Diffusivity and

Fractional Anisotropy. These have lower resolution than the relaxometry data but the WM tracts are

still visible. MD, AD & RD all show similar contrast, but the absolute value of AD is higher than RD.
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Figure 4 shows three axial slices through the group average T1, T2, MWF & DTI maps

at the level of the striatum, corpus callosum and arbor vitae of the cerebellum. The control

group is presented on the left of each slice and the cuprizone group average on the right.

Increases in T1&T2 are obvious in the corpus callosum and cerebellum, with a

corresponding decrease in MWF. T2 increases are also visible outside of the WM tracts.

Similar effects are present for MD, RD, and AD, while changes in FA are less evident.

Figure 5 overlays the study template with the difference in group means for all

parameters, thresholded at FWE-corrected p < 0.05. At this threshold a strong decrease in

MWF and corresponding increases in T1&T2 of around 100 & 20 ms, respectively can

be detected in the corpus callosum and arbor vitae. The detected regions of T2 change

are much larger than for T1, and extend into the cortical and subcortical GM, including

the sensorimotor cortex and the dorsal hippocampus. Increases in all diffusivities are

also evident in corpus callosum, cerebellum, and thalamus. Changes in FA are restricted

to a decrease directly in the splenium of the corpus callosum and an increase directly

above, a decrease in the cingulate cortex and isolated decreases below the arbor vitae.

Regions of both volume increase and decrease were found in the TBM data. Large

increases in volume were found in the splenium of the corpus callosum, external capsule,

and inferior parts of the arbor vitae. These correspond well to areas of change

indicated in the T1 and MWF maps. Decreases were found in the cortex, striatum, dorsal

hippocampus and fimbria, which do not appear to overlap with changes in the

Figure 4 The mean control maps compared against cuprizone in three slices. A control animal

(CTRL) is presented on the left of each slice and one treated with cuprizone (CPZ) on the right.

Decreased MWF (red arrows) is obvious in WM. Similar changes are visible in other maps except for FA

where the corpus callosum is visible in cuprizone animals (green arrows).
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quantitative parameters. For reasons of space not all these regions are shown in Fig. 5, but

can be viewed in the downloadable results.

Figure 6 shows histology slices for the LFB and MBP stains at approximately the

same position as the MRI slices in Figs. 4 and 5, again with a control animal on the left and

a cuprizone animal on the right. Decreases in both stains are clearly evident in the

cuprizone animal, marked by arrows. In the corpus callosum and external capsule the

Figure 5 Differences in the group means of the volume change and quantitative parameters overlaid

on the study template, thresholded at FWE-corrected p < 0.05. The areas of significant change differ

for each parameter, indicating different sensitivity and specificity to demyelination and inflammation.

Figure 6 Representative histological sections stained with LFB and for MBP at approximately the

same levels as the MRI. A control animal (CTRL) is presented on the left of each slice and one trea-

ted with cuprizone (CPZ) on the right. Widespread decreases in both stains are marked with arrows in

the corpus callosum. Distortion of WM tracts is also evident.
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MBP stain appears to show a decrease towards the edges of the tract, with MBP still

present in the center. The cerebellar WM is demyelinated in areas surrounding the

cerebellar nuclei.

Figure 7 shows equivalent slices through the Iba1 staining for microglial activation.

Zoomed areas are marked with boxes, showing the distinct shape of activated microglia in

the cuprizone animal in the same areas that show demyelination in the LFB and MBP

stains. Microglial activation appears less dense in the cerebellar nuclei compared to the

corpus callosum. Figure 8 shows the quantitative histology results in the corpus callosum.

Significant decreases in LFB and MBP staining, and increases in the number of Iba1

positive cells were found in the ROIs used. For LFB the mean intensities for control and

cuprizone were 73.0 ± 4.3 and 26.8 ± 3.4, respectively (p = 0.0001), for MBP they were

46.6 ± 5.5 and 26.8 ± 3.4 (p = 0.0076) while for Iba1 the population counts were

4,775 ± 420 and 11,963 ± 1,513 (p = 0.0039).

Figure 9 shows a single slice of the Co-efficient of Variation (CoV) for selected

parameter maps. The CoV for T1 is excellent, and is less than 5% throughout almost

the entire parenchyma, while T2 is marginally worse. The CoV of MWF is highly

region-dependent. In GM it is consistently above 10% and approaches 30% in some areas.

Figure 7 Representative histological sections stained for Iba1. Activated microglia (zoomed boxes)

can be seen in the same regions where LFB and MBP staining indicate demyelination.

Figure 8 Quantitative histology results for the LFB, MBP and Iba1. ROIs are indicated on the his-

tology images. Significant differences were found for all three stains, confirming the model functioned

correctly.
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This is perhaps expected given the low (<5%) absolute value of MWF in these regions.

However, even inWM tracts the CoV is generally close to 10% and does not fall below 5%.

The CoV of �M shows that this parameter is difficult to fit. Counter-intuitively, in GM

areas the CoVappears low while in WM areas it is high. However, it must be remembered

that in GM areas there is close to 0% MWF, so here the fitting procedure simply

converges to the center of the fitting range. In WM areas, where there should be sufficient

MWF to fit a valid �M, the CoV map increases indicating that there is insufficient

information to fit this parameter correctly.

For the DTI parameters the diffusivity parameters have a mostly acceptable CoV

(<10%) that increases slightly in WM regions. We attribute this to partial volume effects

and residual mis-registrations arising from the large voxel size in the anterior-posterior

direction for the diffusion acquisition. FA has a high CoV that is above 10% in much

of the parenchyma.

DISCUSSION
In this experiment, we aimed to demonstrate the use of mcDESPOT in the cuprizone

model, with images acquired over the entire brain, and compare the sensitivity and

specificity of multiple quantitative MR methods to demyelination. However, the presence

of inflammation in the cuprizone model is a significant potential confound that has

not been adequately discussed in previous MR literature.

Validation of mcDESPOT sensitivity to myelination
Amajor aim of this study was to provide a pre-clinical validation of the MWF as measured

by mcDESPOT as sensitive and specific to myelination state. In this regard the study

can be regarded as success, principally because in contrast to Thiessen et al. (2013) we

found a non-zero MWF in healthy control animals, and then observed a decrease in

MWF in cuprizone treated mice.

However, there are some important caveats to this apparent success. The first is that it is

not immediately clear what advantages mcDESPOT brings over conventional relaxometry,

given the extra acquisition time and extensive processing required to produce the

parameter maps. As shown in Fig. 5, the regions of significant change detected in T1 are

Figure 9 A coronal slice through the Co-efficient of Variation maps for selected parameters. The

colourmap for MWF, �M and FA was chosen to emphasise the different color scale. The CoV is smallest

for T1&T2, MD, RD & AD and highest for FA & MWF.

Wood et al. (2016), PeerJ, DOI 10.7717/peerj.2632 13/25

http://dx.doi.org/10.7717/peerj.2632
https://peerj.com/


most constrained to WM, the regions of T2 change extend a long way into the GM, and

MWF is somewhere in-between. No regions of significant change were detected in the

MWF that were not also detected in either the T1 or T2 map. Due to the co-localisation of

inflammation with demyelination in this model, it is difficult to disentangle the impact

of these different mechanisms to the MR parameters.

Moreover, because the MWF is defined as a fraction of total water in a voxel, it is

obvious that a change in the absolute amount of IE-water will by definition change the

MWF, although there has been no change in the absolute amount of myelin water.

This means that by definition the MWF can only be sensitive and not specific to

myelination state. As currently formulated, due to the need to normalize intensities

between the SPGR and bSSFP acquisitions, mcDESPOT cannot be adapted to image

absolute myelin and IE-water content, so further work is clearly needed in this area.

The final caveat is that the mcDESPOTmodel is difficult to fit correctly, and this

has been remarked upon elsewhere (Lankford & Does, 2012; Zhang et al., 2014; Bouhrara &

Spencer, 2015; Bouhrara et al., 2015). We found a lower MWF than has been reported for

in-vivo mcDESPOT human studies, where typical values in WM are over 20% rather

than the 10–20% reported here. These lower values are close to those reported by MET2

studies in human in-vivo and ex-vivo studies. However, we found these values to be

sensitive to the fitting ranges used, in particular for �M, the residence time of water in

myelin. As described above, this parameter is meaningless in GM regions and simply

converges to the center of any chosen fitting range.

In WM, where the residence time is well defined, we found values below 50 ms. This is

significantly shorter than that reported for human studies. This could be attributed to

species differences, or the process of PFA fixation, which is known to disrupt biological

membranes and introduce holes into otherwise impermeable structures (Zhang et al.,

2012). This will increase the rate at which water can move between the myelin and

IE-water pools. Hence, we do not think the low residence times are artefactual, but they do

conflict with both the widely used MET2 model and the results of Bouhrara et al. (2015),

which do not include exchange because it has been assumed that exchange is slow in

relation to T2. Given the high CoV for �M these values should be treated with some

caution and further work is needed to improve the accuracy with which this parameter

can be extracted from mcDESPOT data.

The cuprizone model
The above results show that the effect of cuprizone treatment is not limited to the

splenium of the corpus callosum. To the best of our knowledge this is the first study to use

MRI to show extensive cuprizone-induced changes throughout both the cerebrum and

cerebellum. In our data the effect of demyelination was particularly striking in the arbor

vitae, which contains the deep cerebellar nuclei surrounded by heavily myelinated tracts.

Cerebellar demyelination and inflammation has been previously shown in histological

examinations, although changes in the cerebellar cortex were less pronounced and delayed

(Groebe et al., 2009; Skripuletz et al., 2010). A recent experiment where rats were
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administered cuprizone and then serially imaged suggested that demyelination started in

the cerebellum and progressed forwards in the brain (Oakden et al., 2016).

We found no difference in total brain volume, despite confirming that cuprizone causes

significant weight loss (Nystad et al., 2014). We did not test for behavioural changes in

our model. It is well known that despite causing profound changes in the brain,

cuprizone treatment causes no large behavioural changes and only subtle motor and

cognitive deficits, which would require specialized equipment to test for (Skripuletz

et al., 2011).

The effect of cuprizone in the principal areas of the arbor vitae, splenium and external

capsule is very strong in our data. In the arbor vitae, the change in T1 is approximately

20%, and in T2 it approaches 50%. This means that despite our low group sizes the

statistical analysis appears extremely robust, with many voxels meeting the p < 0.05

threshold even using the conservative FWE multiple comparisons correction. T2 but

not T1 detects changes in GM regions such as the cortex and thalamus, which are

known to also be affected by cuprizone (Gudi et al., 2009; Fjær et al., 2013; Goldberg

et al., 2015). Even more widespread changes in T2 could be seen using FDR instead of

FWE correction (available in the on-line dataset), whereas changes in T1 remain restricted

to areas that are heavily myelinated in healthy animals.

We also detected changes in several quantitative parameters in the hippocampus, where

myelination and inflammatory changes have been well characterised by histology

(Skripuletz et al., 2011; Goldberg et al., 2015). This is again a region which most imaging

studies have neglected to either analyze or report. Our results indicate the possibility

that previous imaging studies to document the longitudinal profile of the cuprizone

model have been missing important areas of the brain, and inclusion of these areas in

future studies is necessary.

It was beyond the scope of this paper to perform a fully quantitative histological

evaluation of all brain areas in which the MRI changes were detected. Many studies to date

have shown extensive histological and immunohistochemical changes due to cuprizone

treatment, which match both our qualitative (Figs. 6 and 7) and quantitative results

(Fig. 8). We limited our myelination quantification with LFB and MBP to the key areas of

rostral corpus callosum, and microglial assessment with Iba1 to the surrounding

cortex and hippocampus. As expected, these showed a robust and significant decrease

in myelination in cuprizone mice, and a profound increase in number of activated

microglia. It is also clear from qualitative observations of histological slides that areas of

demyelination are spread throughout the brain and particularly salient at the external

capsule, hippocampus and arbor vitae. The affected WM areas are accompanied and

surrounded by clearly increased Iba1 staining and visibly enlarged microglial cell bodies,

indicating ongoing microglial hypertrophy and hyperplasia. The colocation of

demyelination and inflammation in the cuprizone model means that it is difficult to rule

out a contribution from inflammation to changes in the MR parameters.

We believe this study is the first to estimate brain volumes and apparent volume change

in the cuprizone model. Localized volume changes (both increases and decreases) were

widespread and extended to regions that showed no change in relaxometry or DTI

Wood et al. (2016), PeerJ, DOI 10.7717/peerj.2632 15/25

http://dx.doi.org/10.7717/peerj.2632
https://peerj.com/


parameters. Volume increases were located in the corpus callosum, dorsal hippocampus,

arbor vitae and sensorimotor cortex. These were corroborated by histology as apparent

enlargement and distortion of WM tracts, reflecting previously reported underlying

axonal swelling, damage and cellular infiltration (Song et al., 2005; Xie et al., 2010).

In addition, we also found bilateral decreases in the frontal, cingulate and retrosplenial

cortices as well as the caudate putamen and several other subcortical GM areas.

The lack of change in FA (discussed further below) was beneficial for this study as this

parameter could be used to improve the registration process. Initially, we followed

standard practice and used only the 3D FSE image for template creation and registration.

However, due to the strong effect of cuprizone the FSE contrast in several WM regions is

reversed compared to control animals. This led to subtle misalignments between the

two groups, principally of the external capsule, resulting in nonsensical changes in volume

and FA outside WM tracts. Incorporating the FA maps into the registration correctly

aligned the external capsule in the cuprizone group.

This demonstrates a difficulty in using current automated registration methods, as

fundamentally they assume that all input images are equivalent and this is clearly not the

case when gross pathology or even subtle changes in T1&T2 are present (Cousins et al.,

2013). Although non-linear deformation algorithms include regularisation methods to

prevent excessive volume changes (van Eede et al., 2013), this was not sufficient in our

data to prevent mis-registrations. However, incorporating a parameter that did not

demonstrate gross changes between groups (FA) stabilised the registration and yielded

a high quality result.

Diffusion measurements in the cuprizone model
DTI has become an extremely widespread method of assessing WM health in clinical

studies (Jones, Knösche & Turner, 2013), but interpretation of the diffusivity and FA

parameters can be difficult. In particular, RD and FA are often assumed to be a marker

of myelin “integrity” (Song et al., 2005;Wheeler-Kingshott & Cercignani, 2009; Janve et al.,

2013). Our results indicate two issues; firstly that both RD and AD (and hence MD) are

sensitive to demyelination, and that FA appears to be far less sensitive to changes in

myelination than diffusivities.

There are conflicting literature results for diffusion changes in the acute phase of

the cuprizone model, which are summarised in Table 3. Results from the chronic

(greater than six weeks) phase of cuprizone treatment have been omitted, as these do not

relate to our time point. However, the reported results also vary widely in diffusion

protocols, importantly the number of diffusion directions and strengths. It is possible that

earlier papers using only six directions could not correctly calculate the tensor

correctly for tracts in all orientations. Some caution should be applied to interpretations

comparing diffusion imaging from in-vivo and ex-vivo subjects, because as discussed

by Zhang et al. (2012), diffusivity parameters may alter as a result of tissue fixation.

Another contributory factor is different lengths of cuprizone treatment, as the levels of

demyelination and inflammation in cuprizone undergo progressive change between four

and six weeks of treatment (Skripuletz et al., 2011). In particular, at week four
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demyelination is incomplete whereas microglial activation is highest, but by week five

demyelination is complete but microglial activation is decreasing. Hence, as discussed

for relaxometry above, there are competing effects of inflammation and demyelination

on diffusivity measurements which are hard to disentangle using this model. Recent

work (Guglielmetti et al., 2016) supports this hypothesis, as they found an initial decrease

of diffusivity after three weeks of cuprizone treatment, followed by an increase at

six weeks.

The limited areas of change in FA detected in the cuprizone model were surprising.

There is only one area of convincing change, a decrease directly at the splenium of

the corpus callosum, with an increase directly above. Comparison to histology suggests

that this region of the corpus callosum appears to distort, reducing the ordered nature of

the axons. Smaller potential changes are located in the cingulate cortex and on the

edges of the arbor vitae, but there are no widespread effects throughout WM tracts

as for the other parameter maps. This suggests that FA is insensitive to the myelination

state of WM, although this may be due to the increased variance in the FA measurements.

It was beyond the scope of this work to include an assessment of axonal damage via

neurofilament histological staining. However recent work indicates that during the

acute phase (less than six weeks) of cuprizone treatment axonal damage should be

minimal (Schregel et al., 2012; Alme et al., 2015), and only starts to accumulate during

the chronic phase (Lindner et al., 2009). This suggests that the changes we see in FA are

due to changes in the extracellular matrix or organisation of axons, rather than

outright damage.

Comparison of DTI and relaxometry data
Our results are broadly in line with those of Santis et al. (2014), who compared

mcDESPOT and DTI in healthy human subjects. They found a low correlation between

FA and measures of myelination. They also found a similar trend of parameter variance,

Table 3 A summary of DTI protocols and findings in the acute phase of cuprizone treatment. Results

past six weeks are omitted for brevity. The findings vary widely, but this is at least in part due to the

different imaging protocols and treatment lengths.

Citation N d/� (ms) b (s/mm2) In-/Ex-vivo Results

Song et al. (2005) 6 4/11 1,600 In 6w:RDC
Sun et al. (2006) 6 10/25 768 In 4w:ADB, 6w:ADBRDC
Wu et al. (2008) 2* * 700 In 4w:ADBRDC
Xie et al. (2010) 6 8/25 768 In 4w:ADB
Zhang et al. (2012) 6 3/15 1,000 In 4w:ADB 6w:RDC

1,700 Ex 4w:FABRDC, 6w:FABRDC
Chandran et al. (2012) 30 3/10 750 In 5w:FAB
Thiessen et al. (2013) 7 6/14 1,000 Ex 6w:FABAD, RDC
Guglielmetti et al. (2016) 30 5/12 400–2,800 In 3w:MD, AD, RDB, 6w:MD, AD, RDC
Jelescu et al. (2016) 30 2/16 1,000/2,000 In 6w:RDC

Notes:
N: Number of diffusion encoding directions.
* Wu et al. (2008) did not report their d/� values, and used two directions oriented parallel and perpendicular to the
corpus callosum instead of calculating the tensor.
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with T1 having the best performance and FA & MWF the worst. They found that T2

measurements performed significantly worse than diffusivities, while we found it

performed slightly better. We attribute this to the increased number of phase increments

in our bSSFP acquisition, which we found markedly decreased banding artefacts.

We calculated Pearson’s correlation ratio between the quantitative parameters across

the entire brain and all mice using AFNI (Cox, 2012). Slices through the splenium and

cerebellum are shown above and below the diagonal, respectively in Fig. 10. Red colors

indicate strong positive correlations, and blue indicates strong negative correlations.

Perhaps unsurprisingly, the relaxometry parameters and diffusivities form two separate

groups of highly correlated parameters.

T1&T2 are highly correlated in WM regions, and particularly so where cuprizone acts,

but are less strongly correlated in GM. They are both negatively correlated to MWF in

Figure 10 Pearson’s Correlation Ratio between each pair of MR parameters. A slice through the

external capsule is shown above the diagonal and a slice through the cerebellum below the diagonal.

Correlations between parameters are very strong (but both positive and negative) in the arbor vitae and

splenium.
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similar patterns. Correlations between diffusivities and T1&T2 are poor except in

areas where cuprizone has a strong effect. Correlations between FA and the other

parameters are poor. MD, AD and RD are highly correlated in both GM and WM, except

for AD and RD in the cerebral peduncles, fimbria and optic tract. These WM tracts

are known to be resistant to cuprizone damage at five weeks (Goldberg et al., 2015), and we

observed no qualitative changes in our histology in these regions. Hence, the low

correlations are likely a result of different WM organisation in these regions compared to

the highly ordered corpus callosum.

This analysis underscores the severity of the cuprizone model at five weeks—in the

primarily affected regions, the difference between model and control is so complete that

correlations across the entire dataset approach one, and we expect the same would hold

true for a histological analysis. It would be useful to better understand the contribution of

myelin and inflammation to the different MR parameters, similarly to how Desmond et al.

(2016) developed a model of the contribution of myelin and metals to T1&T2. In our

opinion, due to the strength of the correlations the single time point presented here is

insufficient to build such a model. However, microglial activation is known to precede

demyelination in the cuprizone model by approximately a week (Skripuletz et al., 2011),

and is required for demyelination to occur (Praet et al., 2015). Hence, a longitudinal

study with several earlier time points should observe a differential build up of

inflammation and demyelination, allowing the two effects to be separated.

CONCLUSIONS
This experiment demonstrates that T1&T2, the MWF, and diffusivities are sensitive to

demyelination but not necessarily specific, due to confounding co-localized inflammation

in the cuprizone model. FA appears insensitive to myelination state. In addition, we

found that cuprizone causes localized volume changes in the mouse brain. Collectively

these results show that whole brain acquisition and analysis is crucial to full

understanding of the cuprizone model. We propose that similar methods would be

beneficial when using MRI to study other preclinical models of neurodegeneration to

better understand and refine the knowledge of brain pathology.
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