
Highly relativistic radiation belt electron acceleration,
transport, and loss: Large solar storm events
of March and June 2015
D. N. Baker1, A. N. Jaynes1, S. G. Kanekal2, J. C. Foster3, P. J. Erickson3, J. F. Fennell4, J. B. Blake4,
H. Zhao1, X. Li1, S. R. Elkington1, M. G. Henderson5, G. D. Reeves5, H. E. Spence6, C. A. Kletzing7,
and J. R. Wygant8

1Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, USA, 2Goddard Space Flight
Center, NASA, Greenbelt, Maryland, USA, 3MIT Haystack Observatory, Westford, Massachusetts, USA, 4The Aerospace
Corporation, Los Angeles, California, USA, 5Los Alamos National Laboratory, Los Alamos, NewMexico, USA, 6Institute for the
Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire, USA, 7Department of Physics
and Astronomy, University of Iowa, Iowa City, Iowa, USA, 8Department of Physics and Astronomy, University of Minnesota,
Twin Cities, Minneapolis, Minnesota, USA

Abstract Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March
2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching
�223nT. On 22 June 2015 another strong storm (Dst reaching �204nT) was recorded. These two storms
each produced almost total loss of radiation belt high-energy (E≳ 1MeV) electron fluxes. Following the dropouts
of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to
nearly 10MeV in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features
including strong “butterfly” distributions with deep minima in flux at α=90°. However, despite strong driving of
outer zone earthward radial diffusion in these storms, the previously reported “impenetrable barrier” at L≈2.8
was pushed inward, but not significantly breached, and no E≳ 2.0MeV electrons were seen to pass through the
radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel
features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.

1. Introduction

A primary goal of the Radiation Belt Storm Probes (RBSP)mission of NASAwas to develop amuch deeper under-
standing of the structure and dynamics of Earth’s radiation belts [Mauk et al., 2012]. Almost immediately after
the August 2012 launch of the dual RBSP spacecraft into their highly elliptical, near-equatorial orbits, it was dis-
covered that a third Van Allen belt (or “storage ring”) of highly relativistic electrons can exist near the inner part
of the traditionally recognized outer Van Allen zone [Baker et al., 2013]. This feature has been the subject of
much theoretical investigation and speculation since its discovery [e.g., Thorne et al., 2013; Shprits et al., 2013].

In addition to morphological properties of the radiation zones such as the third belt, it has also been a major
achievement of the RBSP program (renamed the “Van Allen Probes” mission in November 2012) to under-
stand more thoroughly how ultrarelativistic electrons are accelerated deep inside the radiation belts due
to various wave-particle interactions [e.g., Reeves et al., 2013; Foster et al., 2014; Baker et al., 2014a; Kanekal
et al., 2015]. These Van Allen Probes studies demonstrated that electrons up to energies approaching 10
megaelectron volts (MeV) can be produced over broad regions of the outer Van Allen zone on timescales
of minutes to a few hours. The key to such rapid acceleration is the interaction of “seed” populations of
~10 to ~200 keV electrons (and subsequently higher energies) with electromagnetic waves in the lower band
whistler-mode chorus frequency range [Thorne et al., 2013].

Extended studies of Van Allen Probes data show that “source” electrons (in a typical energy range of one to a
few tens of keV energy) produced by magnetospheric substorms play a crucial role in amplifying the chorus
waves in the magnetosphere. It is directly observed that these chorus waves then rapidly heat and accelerate
the tens to hundreds of keV seed electrons that are injected by substorms into the outer Van Allen zone
[Jaynes et al., 2015]. Thus, in many instances we see that geomagnetic activity driven by strong solar storms
(coronal mass ejections, or CMEs) almost inexorably leads to ultrarelativistic electron production through the
intermediary step of intense magnetospheric substorms [Foster et al., 2014; Baker et al., 2014a].
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In this paper we report observations of two of the largest geomagnetic storms of the last decade. A distinctive
event that commenced on 17 March 2015 had a significant ring current development that corresponded to a
geomagnetic activity index value approaching Dst=�223 nT. While this does not reflect a “Great” storm of
the sort last seen in the period 2003–2005 whenDst ≤�300 nT was often reported [Li et al., 2006, 2009], none-
theless the March 2015 storm was the largest event seen in the past decade. Almost as strong an event was
seen commencing on 22 June 2015. In that storm, Dst reached a value of �204 nT. Both the March and June
2015 storms produced dramatic effects on the relativistic and ultrarelativistic electrons measured by the
Relativistic Electron-Proton Telescope (REPT) sensors on board the Van Allen Probes spacecraft [Baker et al.,
2012]. This paper describes the radiation belt acceleration, transport, and loss characteristics of these intense
geomagnetic storm events.

2. Data Set Overview

The REPT instruments on board the identical Van Allen Probes spacecraft measure the energy spectral and
directional characteristics of electrons from ~1 to>20MeV [Baker et al., 2012]. REPT sensors alsomeasure pro-
tons from E~ 15MeV to E> 100MeV with good accuracy and precision [Selesnick et al., 2014, 2016], both
within the inner Van Allen zone and throughout the higher altitude parts of the spacecraft orbits during solar
energetic particle events. For the purposes of this analysis, we refer to three distinct regions regarding highly
energetic electrons: the inner radiation belt (L< 2), the slot region (2< L< 2.5), and the outer radiation belt
(L> 2.5). Careful analysis of REPT and other Van Allen Probes data [e.g., Baker et al., 2014b; Li et al., 2015;
Fennell et al., 2015] shows that during the Van Allen Probes era (2012 up to present) there have been no mea-
sureable fluxes of E ≥ 1MeV electrons in the inner radiation belt region. In fact, Baker et al. [2014b] described
the existence of an “impenetrable barrier” for earthward transport of highly relativistic electrons at L=2.8.
Given this barrier, E> 2MeV electron changes during major storms occur only for the outer Van Allen radia-
tion zone (L ≥ 2.5). To fully characterize the storms in this study, we also use supporting data from the MagEIS
(Magnetic Electron Ion Spectrometer) [Blake et al., 2013], EMFISIS (Electric and Magnetic Field Instrument
Suite and Integrated Science) [Kletzing et al., 2013], and HOPE (Helium, Oxygen, Proton and Electron Mass
Spectrometer) [Funsten et al., 2013] instruments.

Figure 1 shows a broad survey of radiation belt changes for the first 3 years of the Van Allen Probes mission.
The figure shows color-coded spin-averaged intensities of electrons in the energy range 1.6≲ E≲ 2.0MeV.
(This REPT channel has a nominal effective energy of 1.8MeV.) Each panel shows 1 year of data in an L value
versus time format: the L range goes from L=2.0 to L~ 6.5 and thus covers most of the “slot” region and

Figure 1. Color-coded electron intensities for electrons with E ~ 1.8MeV, as described in the text for the period (a) September 2012 to August 2013; (b) September
2013 to August 2014; and (c) September 2014 to August 2015. Each panel shows fluxes in an L value versus time format.
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essentially all of the outer Van Allen zone. The color coding represents 4 orders of magnitude (102–106) in
spin-averaged intensity (electrons/cm2 s srMeV). As may be seen by inspecting each panel of Figure 1, there
have been a myriad of different onsets, dropouts, temporal decay features, and spatial distributions of elec-
tron “events.” Hence, there is a rich and remarkable array of different kinds of electron disturbances ranging
from very intense periods (e.g., October 2012) to periods with almost no measureable fluxes (e.g., mid-
September 2014).

As has been mentioned above, some of the previously best studied and relatively high flux periods include
October 2012 [Reeves et al., 2013] and March 2013 [see Foster et al., 2014; Baker et al., 2014a]. After a relatively
low-activity interval throughout 2014, the year of 2015 showed a tremendous resurgence in relativistic elec-
tron events. And, by inspecting Figure 1c, one can see that the March 2015 and June 2015 periods were as
intense and spatially extensive as any periods during the Van Allen Probes era.

The impressive strength of the electron acceleration in 2015 is emphasized by the data of Figure 2. This is in
the same format as Figure 1 but shows data for the REPT 4.0≲ E≲ 4.5MeV energy channel (which has an
effective energy of 4.2MeV). For this ultrarelativistic energy range, the figure shows many fewer enhance-
ment events than was evident in Figure 1. (This trend of more electron enhancement events at lower ener-
gies continues down into the few hundred keV range, as noted in Reeves et al. [2015]). In fact, from September
2013 to August 2014 (Figure 2b), there were almost no significant fluxes of 4.2MeV electrons anywhere
throughout the entire outer zone. However, as was also seen for the 1.8MeV channel (Figure 1), the multi-
MeV fluxes shown in Figure 2 were impressively high for both the March 2015 event and for the June 2015
event. It is for this reason that we focus attention on these storms here.

3. The March 2015 Solar Storm Events

There were several active regions on the visible face of the Sun in March 2015. As shown in Figure 3a, the
most notable was Active Region (AR) 2297. The Solar Dynamics Observatory (SDO) image in the He II
(304 Ångstrom) line shows AR2297 at 2304 UT on 14 March. By 0200 UT on 15 March, this region gave
rise to a powerful CME event that was largely earthward directed. As shown in Figure 3b, the Solar
Heliospheric Observatory (SOHO) coronagraph instrument LASCO (Large Angle and Spectrometric
Coronagraph) observed a clear halo CME that had reached a large spatial extent by the time of the image
(0406 UT on 15 March). This CME drove an interplanetary (IP) shock wave that reached the first Lagrangian
point (L1) location of SOHO at 0410 UT on 17 March. Other observations near Earth (Figure 4) show that
the IP shock hit Earth’s magnetosphere at 0445 UT on 17 March.

Figure 2. Similar to Figure 1 but for electrons with E ~ 4.2MeV.
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The eventual aftermath of the IP shock produced a rapid (but transient) energization of electrons of energy
up to >6MeV and was recorded by instruments on Van Allen Probe A, which was positioned at an advanta-
geous location during this time. This shock energization is similar to the famous injection of very high energy
electrons (E> 15MeV) during the March 1991 period which was observed by the Combined Radiation and
Release Satellite mission and has been studied extensively [Blake et al., 1992; Li et al., 1993; Elkington
et al., 2004].

The shock wave and CME proper striking the magnetosphere on 17 March initiated a strong geomagnetic
storm (as was noted previously). As evident in Figures 4d and 4e, there was a large ring current development
(minimum Dst=�223 nT) and strong auroral electrojet (AE) activity (peak AE values> 1500 nT, as shown in
Figure 5). As evident in Figure 4a, there was also a deep subsequent dropout of energetic electrons extending

Figure 4. Data from REPT A and REPT B in an L versus time format with color indicating flux magnitude for (a) 1.8 MeV, (b) 4.2 MeV, and (c) 6.3 MeV electron channels
for the period of 25 February through 15 April. Geomagnetic indices (d) Dst and (e) hourly averaged AE are shown for the same time period.

Figure 3. (a) Image of the Sun in He II line (301 Å) taken at 2304 UT on 14 March 2015. The bright active region 2297 is
clearly visible on the solar disk in this Solar Dynamics Observatory (SDO) image. (b) Data from the SOHO/LASCO corona-
graph (C3) taken at 0406 UT on 15 March 2015 showing a large, fast CME emerging from the Sun toward Earth.
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all the way from 1.8MeV (Figure 4a) up through 4.2MeV (Figure 4b). The multi-MeV electrons up to 7.7MeV
recovered to much larger flux levels after the dropouts. For the ~1.8MeV electrons, the recovery was rapid
(≤1 day) such that the fluxes were more than replenished by early on 18 March. On the other hand, the
E~4.2MeV electrons did not recover (Figure 4b) until early on 19 March and the E~6.3MeV electrons did
not recover again in flux until ~20 March. Note in all the REPT energy ranges shown that the high-energy
electrons approached the impenetrable barrier (L= 2.8 is shown by the horizontal white dashed line in panels
a, b, and c) but did not penetrate through the slot region into the inner belt. Also note that the impenetrable
barrier was seen to be energy dependent during this period of strong solar wind driving, and thus the barrier
location varied from L≈ 2.6 up to L> 2.8 depending on electron energy. In the immediate aftermath of the
storm, the lowest REPT energies (E< 3MeV) were driven into L≈ 2.6, while the highest REPT energies
(>7.7MeV) did not pass L=2.8 at all.

The solar wind and interplanetary magnetic field (IMF) conditions driving the magnetosphere on 16–18 March
2015 are shown here in Figure 5 (from the OMNI data set). For the shock wave hitting the magnetosphere, the
solar wind speed increase was relatively modest jumping only from Vsw ~ 400 km/s to Vsw~ 500 km/s after the
shock passage (Figure 5). The total magnetic field increase for the event was much more impressive with |B|
increasing from ~10nT to over 25 nT (there is no panel showing |B| in the figure). However, the initial IMF orien-
tation was such that Bzwas northward (Figure 5c). It was not until after the 0500 UT that the IMF turned strongly
southward (Bz~�20nT) and even later (~1200 UT) that the solar wind speed reached its maximum value of
Vsw~ 600 km/s. Obviously, it was these latter solar wind and IMF forcing conditions that produced the largest
ring current enhancements (Figure 5e) and auroral electrojet increases (Figure 5f).

Figure 6 shows the locations of the Van Allen Probe A and Probe B spacecraft around the time of the IP shock
arrival on 17 March. The A spacecraft was in the postmidnight sector at about 3 RE geocentric distance. The B
spacecraft was in the premidnight/postdusk sector at a slightly larger geocentric radial distance. The B space-
craft was on its outbound passage, while the A spacecraft was on its inbound leg headed into the inner zone.

Figure 7 shows details of pitch angle-resolved fluxes of E~2.1MeV electrons measured by REPT A (Figure 7a)
and REPT B (Figure 7b). The period of time covered is from 0200 UT to 0700 UT on 17 March 2015. Recall from
Figure 6 that spacecraft A was postmidnight and was near L=3.0 when the IP shock wave hit the magneto-
sphere at ~0440 UT. Note that there was a brief dip in the electron flux at 0440 UT at both spacecraft when
the shock impact occurred and followed immediately by a further brief enhancement at α= 90° pitch angles

Figure 5. Solar wind density (a), dynamic pressure (b), interplanetary magnetic field north-south component (c), solar wind
speed (d), geomagnetic storm index (e) and auroral electrojet index (f) for the period 16–18 March 2015 showing the
driving conditions for the strong magnetic storm commencing on 17 March.
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in low L at Van Allen Probe A. Almost immediately thereafter, VAP A reached the impenetrable barrier at
L=2.8 and the flux levels dropped to background levels. In contrast, VAP B was outbound during this same
period. Note, in Figure 7b, that VAP B passed outward through the L= 2.8 barrier at ~0325 UT and was
embedded in high fluxes until ~0440 UT.

In the days prior to 17 March, butterfly pitch angle distributions (minimum at 90°) were present above L~4.5,
likely due to drift shell splitting. Additionally, at precisely the shock impact time, there was a strong depletion

Figure 7. Pitch angle distribution plots of E = 2.1MeV fluxes, where color indicates particle intensity, from (a) Van Allen Probe A and (b) Van Allen Probe B for the
period 0200–0700 UT on 1 March 2015. White dashed lines indicate the shock arrival time.

Figure 6. Plots showing the positions of the Van Allen Probes A and B spacecraft on 16–17March 2015. The colored dots show the locations at ~0440 UT on 17March
when an interplanetary shock wave hits the magnetosphere.
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of 90° pitch angle electrons at low L shells seen by Van Allen Probe B that persisted until ~0630 UT (Figure 7b).
Note also in Figure 7b how modulated in time the pitch angle distributions were, suggesting that the shock
impact produced a long-lasting “drift echo” in the electron population [e.g., Claudepierre et al., 2013] that was
manifested as a ringing of the directional electron fluxes that occurred at precisely the azimuthal drift fre-
quency of 2.1MeV electrons (~7.3min at L=5). However, the cause of the observed dispersion in pitch angle
is still unclear.

The buildup of highly relativistic electrons during the course of the March 2015 storm was quite striking in its
speed and magnitude. Figure 8 shows flux traces for sequential orbits of the Van Allen Probe A spacecraft
from early on 17 March through late on 19 March. Each panel of Figure 8 shows a different energy range:
(a) 2.1MeV, (b) 2.6MeV, (c) 3.4MeV, and (d) 4.2MeV. The colors of different traces ranging from violet and
blue (17 March) to red hues (19 March) show that in the L range around L~ 4, the fluxes of 2.1MeV electrons,
for example, increased by a factor of more than 104 during this 2 day period. A further striking feature is that
despite the fluxes eventually being in the range 105–106 electrons (cm2 s srMeV)�1 beyond L~ 3.0, the fluxes
never rose above background levels inside L~ 2.7 during these 2 days.

As shown in Figure 9, during this event as late as 19 March the plasmapause was eroded into a location
around L=3.1 (as measured by the EMFISIS upper hybrid resonance frequency, ωUHR, not shown here, and
the cutoff of low-energy HOPE ion data). The barrier was farther inward (at L≳ 2.7). The multi-MeV electrons
approached the barrier location and showed clear butterfly angular distributions (Figure 9a) all the way from
L~3.5 inward to L~ 2.7. But the MeV electrons neither diffused, nor were they injected, through the slot
region. In contrast (Figures 9b and 9c), lower energy electrons (<1MeV) measured by MagEIS and ions
(1–40 keV) measured by HOPE were able readily to penetrate right through the plasmapause location and
average location of the ultrarelativistic electron barrier.

Figure 8. Flux profiles versus L value for Van Allen Probe A orbits from early on 17 March 2015 through late on 19 March
2015. It is seen that electron fluxes in these energies (a) 2.1 MeV, (b) 2.6 MeV, (c) 3.4 MeV, and (d) 4.2 MeV all build up rapidly
with time but never significantly breach the impenetrable barrier at L 2.8.
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As a final observational feature of this strong storm period, we show in Figure 10 the 7.7MeV fluxes from the
combined REPT-A and REPT-B sensors for the period 20–23 March. The data are displayed as color-coded flux
levels arrayed orbit by orbit in a magnetic latitude versus radial distance format. This plot suggests that these
ultrarelativistic electrons build up primarily near the magnetic equator and do so dominantly in the radial
range 4≲ L≲ 5. There is a lack of intense chorus activity and phase space density signatures of local accelera-
tion for this particular time (not shown here), suggesting that this acceleration may be due mainly to
ULF-driven inward radial diffusion.

4. The June 2015 Solar Storm Events

The southern hemisphere of the Sun was quite active in June 2015, showing both extensive trans-equatorial
coronal hole structures and large magnetic active regions. Figure 11a shows an image of the Sun taken at
~1330 UT on 19 June 2015. It is an SDO AIA image in the 195Å wavelength, and it shows Active Region

2371 as a particularly obvious area in
the lower right quadrant of the solar
disk. As noted, the large coronal hole
features extending from south to north
across the solar disk also were evident.
Figure 11b shows a CACTUS (Computer
Aided CME Tracking Software) differ-
enced image of the SOHO/LASCO coro-
nagraph data taken at ~0800 UT on 19
June. A clear halo CME directed toward
Earth is seen from the data. The CME
portrayed in Figure 11b reached Earth
late on 21 June causing a storm sudden
commencement (see Figure 12d). At
least two other CMEs struck the Earth
later on 22 June: One occurred at
~0530 UT and the other more powerful
event caused a large storm (Dst) intensi-
fication at 1836 UT on 22 June (see
Figure 13).

Figure 10. Magnetic latitude versus radial distance portrayal of flux build
up from 20 March through 23 March 2015 at 7.7 MeV energies measured
by REPT-A and REPT-B sensors.

Figure 9. Van Allen Probe A data for 19 March 2015, 0315–0500 UT. (a) Pitch angle distributions for 2.1 MeV electrons from 1.5 ≲ L ≲ 5. (b) Pitch angle distributions for
231 keV electrons. (c) Spin-averaged low-energy oxygen energy spectrogram.
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As is evident in Figures 12a–12c, the compound activity initiated in the Earth’s magnetosphere related to the
multiple CME impacts produced a sudden and nearly complete loss of all outer zone relativistic electrons. This
is seen in Figures 12a–12c as deep particle dropouts. Note further (in Figures 12b and 12c) the obvious
presence of the storage ring that had been present in the range 2.8≲ L≲ 3.5 from early June. This storage ring
was suddenly eliminated by the storm onset. The energetic electrons across the outer zone were replenished
on timescales ranging from≲ 0.5 day (1.8MeV electrons, Figure 12a) to ~ 2 days (6.3MeVelectrons, Figure 12c).
Note as well that the storage ring feature was only reestablished following another much later (minor) storm
onset late on 4 July 2015.

The reason for the deep depletion of the entire outer zone electron population late on 22 June was the large
solar wind dynamic pressure increase that reached Earth at 1836 UT with the arrival of the strongest

Figure 12. Similar to Figure 4 but covering the period 5 June to 18 July 2015.

Figure 11. (a) SDO image of the Sun (195 Å) taken at 1330 UT on 19 June 2015 showing large coronal hole structures and
active region 2371 (as indicated). (b) An image taken at ~0800 UT showing the halo CME released from the Sun on 19
June 2015.
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interplanetary shock wave and the subsequent CME passage (see Figures 13a and 13b). This pressure
increase was accompanied by a significantly southward IMF (~� 35 nT; see Figure 13c) and by solar wind
speed jumping abruptly up to Vsw ~700 km/s (Figure 13d). The result was a substantial further decrease inDst
(Figure 13e) and strong substorm activity as measured by the AE index (Figure 13f).

There were three NOAA Geostationary Orbit Environmental Satellite (GOES) spacecraft arrayed around the
magnetopause subsolar point precisely when the 1836 UT shock wave hit the magnetosphere on 22 June.
The orbital configuration is shown in Figure 14a. This figure also shows that the Van Allen Probes spacecraft
were located in the postdusk sector at the time of the shock arrival. The Van Allen Probes were separated
from one another by only about 2 RE, primarily in the GSE-Y direction.

The results portrayed in Figure 14 are from a display tool being used in the Space Weather Prediction Center
of NOAA. By utilizing the upstream solar wind dynamic pressure (see Figure 13), the magnetopause standoff
distances can be estimated at each point in time using the Shue et al. [1998] formulation. As evident in

Figure 14. Magnetopause locations inferred for 22 June 2015. (a) Schematic showing spacecraft locations and boundaries.
(b) Magnetopause standoff location. (c) GOES spacecraft data.

Figure 13. Solar wind and geomagnetic data for the period 22–23 June 2015. Similar in format to Figure 5.
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Figure 14b, the pressure increase of the solar wind at 1836 UT on 22 June pushed the magnetopause well
inside of geostationary orbit. This fact was confirmed by the direct signatures of magnetopause crossings
measured for a several hour period by GOES 13, GOES 14, and GOES 15 magnetometers (see colored line
traces in Figure 14c). The modeled displacement of the magnetopause as being well inside geostationary
orbit is shown in the schematic diagram in Figure 14a.

Figure 15 shows energetic electron flux measurements and angular distribution information for the two Van
Allen Probes spacecraft for the period 1745 UT to 2045 UT on 22 June. As noted in Figure 14, these spacecraft
both were in the outer radiation belt during this interval and were in generally the dusk sector of the mag-
netosphere when the shock wave struck the magnetopause. With the large compression of the magneto-
sphere commencing at 1836 UT, we would expect strong reduction of particle fluxes and significant

Figure 15. Pitch angle distributions and flux over time from (a) REPT A and (b) REPT-B for a focused time around the shock impact on 22 June.

Figure 16. L-sorted data from the REPT-A and REPT-B instruments for three different energy channels covering the detailed interval 21–24 June 2015.
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“shadowing” effects (both direct and indirect) in the high-energy electron pitch angle distributions. This is,
indeed, what was seen in the data (shown in Figure 15), although butterfly pitch angle distributions were
present prior to the compression, just as was seen in March 2015 (Figure 7) and discussed earlier. During
the interval plotted, Van Allen Probe B was following Van Allen Probe A on an inbound orbit from L~ 6 down
to the inner zone and the sudden loss of particles can be clearly seen by comparing the two panels
(Figures 15a and 15b) as they transit the heart of the outer belt separated by ~1 h in time.

As a final look at losses and reenergization of relativistic electron during the 22 June storm, Figure 16 shows
more detailed L versus time plots for (a) 1.8MeV, (b) 4.2MeV, and (c) 6.3MeV electrons from 21 June through
24 June. We note that at all these energies the electrons dropped away completely by ~2000 UT on 22 June.
On the other hand, the 1.8MeV electrons recovered substantially at 3≲ L≲ 5 by ~0400 UT on 23 June. The
recovery for 4.2MeV electrons was delayed until 0200 UT on 22 June, and the 6.3MeV electrons showed weak
recovery by late on 23 June and more full recovery only by late on 24 June.

5. Discussion and Conclusions

Data presented here for the first 3 years of Van Allen Probes operations show that outer zone relativistic elec-
tron enhancements in the E≲ 2MeV energy range occur with relatively high frequency (Figure 1) and result
frommany different kinds of solar wind forcing. On the other hand, multi-MeV electron enhancement events
are a much more rare occurrence (Figure 2). The ultrarelativistic electrons (4–10MeV) measured by Van Allen
Probes sensors generally were observed in the years 2012–2015 only following the strongest high-speed
solar wind stream (corotating interaction region) events [see Baker et al., 2014a] or following the most power-
ful CME-impact events. It is these latter types of events that were studied in this paper.

The common radiation belt pattern amongst the strongest CME-driven storms is one where the initial inter-
planetary shock wave (ahead of the driving interplanetary CME itself) greatly compresses and distorts the
Earth’s magnetosphere. As found in prior studies, and as shown clearly here, this magnetospheric compres-
sion leads to profound relativistic electron losses due to magnetopause shadowing and resulting strong
radial gradients. The depletion of 90° pitch angle electrons due to magnetopause losses shows up quite
obviously as “butterfly” pitch angle distributions in the REPT data (Figures 7 and 15).

For essentially all of the largest ultrarelativistic electron events of the Van Allen Probes era—and certainly for
the March and June 2015 events focused upon here—the entire outer zone from L~2.8 to L~ 6.5 can
become essentially devoid of electrons after the shock impacts occur. This includes totally eliminating any
remnants of the storage ring, or third Van Allen belt [Baker et al., 2013], that may have existed before the
strong CME impacts occur. Thus, the radiation belts have been seen to be totally depleted of very energetic
electrons on multiple occasions, and such depletion occurs on quite short timescales (see Figures 4 and 12).
We note for the March 2015 period that 2–4MeV electrons (Figures 4a and 4b) were replenished in a day or
less across the broad range of L values from L~ 3.0 to L ≥ 5.0. On the other hand, the ~ 6MeV electrons
(Figure 4c) first were detected around L~4.5 and then appeared to diffuse inward toward the Earth over a
several day period (from 20 March to 23 March).

The occurrence of strong butterfly pitch angle distributions with minimum fluxes at α=90° was obvious in
Figures 7 and 15 for both the REPT-A and REPT-B data. In these cases, the butterfly features were seen when
the VAP spacecraft were at L values≳ 4.5. It seems evident that the 90° pitch angle flux depletions both before
the IP shock impact (Figure 7a) and after the impact (Figure 7b) in March 2015 were due to magnetopause
losses of the near-equatorial mirroring energetic electrons at higher L shells and strong radial gradients lower
in L [Selesnick and Blake, 2002; Turner et al., 2014; Shprits et al., 2006]. This magnetopause shadowing mechan-
ism represents a significant loss process for the outer radiation belt electrons and was also discussed in the
context of the June storm. It is remarkable that the barrier to inward transport [Baker et al., 2014b] in both
cases studied here held intact even under immensely powerful forcing conditions.

We do note, however, that over the days and weeks following 19 March, flux levels for>1.8MeV electrons at
L< 2.7 continued to rise very gradually, indicating that during this 17 March storm event the impenetrable
barrier was driven to somewhat lower L shells than had previously been observed in the Van Allen Probes
era, and remained at this slightly altered location for a few weeks thereafter. This observation indicates that
once the barrier is pushed inward, however slightly, one can continue to observe a long period of slow inward
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diffusion. Hence, very stably trapped populations can last for weeks to months, as was observedmore drama-
tically for the very high energy electrons in the slot region and inner zone following the March 1991 storm
[Blake et al., 1992] and the Halloween storm of 2003 [Looper et al., 2005]. The 17 March storm reveals the
barrier to be energy dependent and yet remarkably efficient at keeping multi-MeV electrons ultimately from
reaching the inner zone.

Our team has shown that the electron barrier location corresponded quite closely to the outward extent of a
very low frequency (VLF) bubble that surrounds the Earth and owes its origin to powerful ground-based radio
transmitters operating in the 20–30 kHz frequency range. These results are highly suggestive in our Van Allen
Probes data that the VLF bubble may play a significant role in strong precipitation and loss of multi-MeV
electrons as they are driven up to the L~2.8 location. Thus, the experimental evidence now emerging
changes the perspective we expressed in our Baker et al. [2014b] paper: We now favor man-made wave-
induced losses as a significant contributing factor to the impenetrable barrier’s existence when the plasma-
pause is eroded to very low L values.

The resurgence of highly relativistic electrons to flux levels greatly exceeding the predropout levels can occur
on very short timescales [Foster et al., 2014; Baker et al., 2014a]. The March and June 2015 storms studied in
this paper certainly followed this pattern with strong flux recoveries occurring in the heart of the outer zone
(L~ 4) on timescales of a few hours. What was notable for the March 2015 storm was that highly relativistic
electrons built up by a factor of 10,000 in flux level just outside the impenetrable barrier, yet there was no
significant injection or radial diffusion across the barrier and into the inner zone during the storm.
Although the barrier can be stressed, it clearly cannot be entirely broken under these conditions to allow
highly relativistic electrons access to the inner radiation belt.

We should remark here that the June 2015 storm period offered an opportunity to utilize newmeasurements
made by the recently launched four-spacecraft Magnetospheric Multiscale (MMS) mission. In [Baker et al.,
2016], the VAP measurements as described here have been studied in the context of the high spatial and
temporal resolution data from the MMS spacecraft. These results strongly reaffirm the findings of Jaynes
et al. [2015] that magnetospheric substorm particle injections (measured in detail by MMS) play a subsequent
key role in providing the seed particle population that ultimately is accelerated to relativistic energies in
Earth’s outer radiation zone. Thus, major substorm events occurring during powerful ring current develop-
ment of CME-driven geomagnetic storms are witnessed to play a central role in radiation belt enhancements.
The inner magnetosphere clearly is a highly coupled, inherently multiscale system.

Abundant electrons with E≳ 100 keV exist in the inner belt much of the time [e.g., Fennell et al., 2015]. For
such electrons, butterfly pitch angle distributions were seen from L~3.5 down to the inner zone. The butter-
fly pitch angle distribution of such mildly relativistic electrons in the slot region and inner belt has been
reported previously [Zhao et al., 2014], though the actual cause is still under considerable debate. Whether
the observed multi-MeV electron butterfly pitch angle distributions reported here are caused by same
mechanism is still unclear. To fully understand the cause, more detailed studies are needed but this is beyond
the scope of this present paper.

We have seen in both the March and June 2015 storms that ultrarelativistic electrons up to ~10MeV in energy
can be produced during the strongest solar wind driving events. However, the data presented here show that
generally it takes 1–2 days for the magnetospheric accelerator to produce large fluxes of these extremely
energetic electrons. During more routine solar wind and geomagnetic conditions, such high-energy elec-
trons tend not to be seen in measureable quantities. We, of course, look forward to even stronger solar events
than observed so far in solar cycle 24 to see yet more powerful radiation belt events.
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