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Abstract

Several studies point towards alteration in gut microbiota composition and function in coeliac 

disease, some of which can precede the onset of disease and/or persist when patients are on a 

gluten-free diet. Evidence also exists that the gut microbiota might promote or reduce coeliac-

disease-associated immunopathology. However, additional studies are required in humans and in 

mice (using gnotobiotic technology) to determine cause–effect relationships and to identify agents 

for modulating the gut microbiota as a therapeutic or preventative approach for coeliac disease. In 

this Review, we summarize the current evidence for altered gut microbiota composition in coeliac 

disease and discuss how the interplay between host genetics, environmental factors and the 

intestinal microbiota might contribute to its pathogenesis. Moreover, we highlight the importance 

of utilizing animal models and long-term clinical studies to gain insight into the mechanisms 

through which host–microbial interactions can influence host responses to gluten.

Introduction

The gastrointestinal tract forms the body's largest interface with the external environment 

and is exposed to a vast amount of foreign material, including pathogenic and commensal 

bacteria, as well as food antigens. Oral tolerance is a key feature of the gut immune system, 

whereby a state of local and systemic unresponsiveness to food protein or systemic 

ignorance of commensal bacteria is maintained under homeostatic conditions. Intestinal 

homeostasis requires balanced interactions between the gut microbiota, dietary antigens and 

the host.1 Environmental factors that disrupt this relationship can contribute to a breakdown 

in intestinal homeostasis by directly influencing immune and barrier function, as well as the 

composition of the gut microbiota. This step in turn can lead to proinflammatory reactions to 

otherwise innocuous antigens and the development of chronic inflammation.2,3

Coeliac disease is a chronic immune-mediated enteropathy triggered by the ingestion of 

gluten, the water-insoluble protein fraction in wheat, rye and barley, in patients who are 
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HLA-DQ2 or HLA-DQ8 positive. Patients with coeliac disease can experience a loss of oral 

tolerance to gluten any time throughout life.4 The increasing incidence of coeliac disease 

and the observation that only a small proportion of genetically susceptible individuals will 

develop active small intestinal inflammation suggest a role for additional environmental 

factors or host factors in disease pathogenesis.5–7 Genome-wide association studies (GWAS) 

have identified 39 non-HLA coeliac disease risk loci.8 Many of these loci harbour genes 

associated with immune function, including T-cell activation and development (that is, IL2 
and IL21) and innate immunity (that is, TLR7 and TLR9).8 Another study published in 2012 

identified an association between fucosyltransferase 2 (FUT2) and coeliac disease. The 

FUT2 gene encodes an enzyme that controls the expression of the A, B, and h blood group 

antigens in mucus and bodily secretions. In the intestinal mucosa, these antigens act as 

microbial anchors and carbon sources for the bacteria in the gastrointestinal tract,9 and 

defects in FUT2 are associated with altered intestinal microbiota.10 However, these non-

HLA loci have been estimated to only contribute to 14% of the genetic variance of coeliac 

disease,8 suggesting a critical role for additional host and environmental factors in disease 

pathogenesis.

The awareness and understanding of coeliac disease has progressed in the past few decades; 

however, we are still far from fully understanding disease pathogenesis, the spectrum of 

disease manifestations and the factors involved in disease onset and progression. Coeliac 

disease is a unique autoimmune disease in that the trigger (gluten) and the major 

susceptibility genes have been identified. This knowledge makes it an ideal disease to study 

the environmental microbial factors that can act as disease modifiers, the interplay between 

microbiota and host genetics, and how these factors can be manipulated to prevent or 

improve treatment of this condition. The overall goal of this Review is to explore the current 

evidence for the intestinal microbiota as an environmental modifier in coeliac disease.

Gut microbiota in gut homeostasis

At birth, we are colonized with a complex community of microbes that reaches up to a 

density of 1 × 1012 bacterial cells per gramme of content in the adult colon (Figure 1).11 

These microbes live in a symbiotic relationship with the host and are key determinants of 

health and disease by influencing nutrient absorption, barrier function and immune 

development. Even though the bacterial load in the colon is markedly higher than in the 

small bowel, evidence exists that the microbiota of the small bowel is in closer contact with 

the host because of a loose mucus layer, and that it has a critical role in shaping the immune 

system and inducing the production of antimicrobial peptides that in turn affect the colonic 

microbiota.11 A comprehensive study of the gut microbiota using culture-independent 

approaches determined that, unlike previously thought, the small intestine harbours 

facultative and strict anaerobes.12 Although less complex than the microbiota of the colon, 

Clostridium spp., Streptococcus spp. and coliforms are dominant groups in the small 

intestine. Moreover, this study indicated that the small intestinal microbial community 

rapidly responds metabolically to dietary changes.12

Studies using germ-free mice have demonstrated the importance of the microbiota on the 

development of host physiology and a functional immune system (Figure 2). In addition to 
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gut morphological and functional differences,2,13,14 germ-free animals have immature 

organized lymphoid tissues,2,13,14 as well as reduced numbers of intestinal CD4+ T cells, 

small intestinal type 17 T helper (TH17) cells,15 colonic regulatory T (TREG) cells16 and T-

cell receptor (TCR)αβ+ intraepithelial lymphocytes (IELs)17,18 compared with colonized 

mice. Differentiation of B cells to IgA-producing plasma cells is also dependent on the 

microbiota.19,20 Signals from the microbiota induce production of antimicrobial peptides 

(AMPs), such as RegIIIγ, from Paneth cells, γδTCR+ IELs and epithelial cells.14,21–23 The 

gut microbiota also stimulates the release of mucins from goblet cells.2 The microbiota 

might also be critical for the development of various innate lymphoid cell (ILC) subsets, and 

for the production of IL-22 from group 3 ILCs,24 which in turn stimulates AMP release from 

epithelial cells.25,26 Thus, microbiota–host interactions are key in the development of 

normal functional and immune responses to gut luminal antigens.

When studied individually, particular members of the gut microbiota can differentially 

modulate host responses (Figure 2). For example, flagellin, a bacterial structure that 

stimulates Toll-like receptor (TLR)5, can stimulate RegIIIγ production from epithelial cells 

via IL-22 release from dendritic cells.27 Flagella are associated with pathogenicity by 

promoting bacterial motility, cell adhesion and biofilm formation, constitute a virulence 

factor that can modulate host immune responses and are present in bacteria such as 

Escherichia coli and Salmonella.28,29 Furthermore, segmented filamentous bacteria (SFB) 

are potent inducers of TH17 cells in mice.30,31 A murine community of eight commensals, 

or altered Schaedler flora, induce balanced immune responses, which includes TREG cells as 

well as TH17 cells, but to a lesser extent than SFB.16 On the other hand, monocolonization 

of mice with Clostridium or Bacteroides fragilis induces colonic TREG-cell 

differentiation.16,32–34 Bacterial products, such as B. fragilis-derived polysaccharide A or 

short-chain fatty acids (SCFAs; for example, acetic acid, propionic acid and butyric acid), 

have also been shown to induce TREG cells.35–38 Products of bacterial metabolism (SCFAs) 

have also been shown to induce IL-18 production from epithelial cells and promote 

tolerogenic dendritic cells, which produce IL-10 and retinoic acid.39 Overall, these studies 

suggest that induction of immune responses by the gut microbiota is influenced not only by 

the presence or absence of live bacteria (germ-free versus colonized conditions), but also by 

the relative abundance of particular members of the microbiota and their by-products.

Thus, given the importance of host–microbial interactions on host immunity and physiology, 

disruptions in gut microbiota composition or function (dysbiosis) might have important 

implications for health and disease. Indeed, dysbiosis has been described in a number of 

chronic inflammatory diseases.3,40 However, the overall contribution of dysbiosis from 

disruption of homeostasis to disease development is not well understood.

The gut microbiota in coeliac disease

Approximately 30% of the general population carry the HLA-DQ2/8 coeliac disease 

susceptibility genes; however, only 2–5% of these individuals will go on to develop coeliac 

disease, suggesting that additional environmental factors contribute to disease 

development.41 The additional factors that influence coeliac disease development are 

unknown, but might include alterations in the intestinal microbiota. Indeed, some studies 
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have demonstrated that patients with active coeliac disease have altered faecal and duodenal 

microbiota compositions compared with healthy individuals, which is partially restored after 

treatment with a gluten-free diet (Supplementary Table 1 online). Specifically, changes in 

the abundance of Firmicutes and Proteobacteria have been detected in children and adults 

with active coeliac disease.42,43 Other studies have reported decreases in the proportion of 

protective, anti-inflammatory bacteria such as Bifidobacterium, and increases in the 

proportion of Gram-negative bacteria such as Bacteroides and E. coli, in patients with active 

coeliac disease.44–46 Increases in the number of Staphylococcus44,46 and Clostridium,44,47 

and decreases in Lactobacillus spp.46,48,49 have also been reported in children with coeliac 

disease. Altered diversity and altered metabolic function (SCFAs) of the microbiota have 

also been reported in patients with coeliac disease.46,50 A study demonstrated that the 

microbial composition of the gut in patients with coeliac disease was associated with the 

clinical manifestation of disease. The gut microbiota in patients experiencing gastrointestinal 

symptoms was dominated by Proteobacteria, whereas the microbiota of patients with 

dermatitis herpetiformis or individuals experiencing dyspepsia (controls) was dominated by 

Firmicutes.43 Increases in the number of Proteobacteria were also detected in patients with 

coeliac disease who were experiencing persistent symptoms, despite having normal 

histology and adhering to a gluten-free diet.51

The associations made between factors that influence microbial colonization, such as birth 

delivery mode, antibiotic use and breastfeeding and/or feeding practices (Figure 1b) and 

later disease development have shed more light on the potential role of microbes in coeliac 

disease. In Sweden, the annual incidence of coeliac disease in children was four times higher 

from 1985–1995 compared with previous years or children born in 1996–1997, which has 

been coined the “Swedish epidemic”. This increase in coeliac disease incidence coincided 

with changes in feeding practice guidelines, which included postponing gluten introduction 

from 4 months to 6 months, an increase in the average gluten consumption in children under 

2 years of age, and with the identification of rod-shaped bacteria in small intestinal biopsy 

samples.52,53 These findings suggest that the interaction between feeding practices 

combined with subsequent changes induced in intestinal microbiota composition might have 

a role in coeliac disease development. Associations between delivery by Caesarean section 

and increased coeliac disease risk54,55 have been made, although are not consistent.56 

Positive associations between early antibiotic use and later coeliac disease development have 

also been made.57 Breastfeeding might have a protective role, particularly if breastfeeding is 

maintained during gluten introduction.58 However, these findings are controversial, and 

several clinical trials found no association between early gluten introduction or duration of 

breastfeeding and subsequent coeliac disease risk.59–61

Together, these studies demonstrate that there are differences in microbial composition 

between patients with coeliac disease and healthy individuals as controls; however, the 

literature has not revealed a typical `coeliac microbiota signature' (Supplementary Table 1 

online). This scenario is not unlike other chronic inflammatory gastrointestinal diseases, 

such as IBD or IBS, for which evidence supports an association between altered microbial 

composition and disease states.62–64 However, consensus across studies with respect to the 

specific changes involved is lacking and a disease-specific microbial signature has not yet 

been defined.65–67 Differences in the age of the study population (children versus adults), 
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methodology (fluorescence in situ hybridization-PCR, denaturing gradient gel 

electrophoresis, 16s ribosomal RNA sequencing), sampling technique (biopsy versus faecal 

sample), length of gluten-free diet and the clinical presentation of disease could contribute to 

inconsistent findings in the literature. These differences make it difficult to compare across 

studies and determine whether the gut microbiota contributes to coeliac disease development 

or progression, or whether it is simply a consequence of the disease. Moreover, the exact 

mechanisms through which the gut microbiota might influence coeliac disease onset or 

progression is unknown, but could include activation of innate immune system, modulation 

of the epithelial barrier, or exacerbation of the gliadin-specific immune response (Figure 3).

Genetic susceptibility and dysbiosis

In addition to environmental factors—such as birth delivery mode, diet and antibiotic use—

host genetics can influence the composition of the gut microbiota (Figure 1). Although 

partly attributed to shared environmental influences, family members have more similar gut 

microbiotas than unrelated individuals.68–70 Human studies have shown gene–microbiota 

interactions at specific genetic loci, and associations between the abundance of bacterial taxa 

and genetic loci have been described.71–75 Similarly, in mice, the abundances of bacterial 

taxa have been linked to genotype76,77 and microbial differences have been detected 

between transgenic mice (for example, mice lacking pattern-recognition receptors) and wild-

type controls.78,79 These microbial differences, however, might be due to a so-called 

maternal effect (mice from the same litter might have a more similar gut microbiota than 

mice from a different litter, even if they are genetically identical and reared in adjacent 

cages) or housing differences.78,80,81 Moreover, it was shown that diet dominates the host 

genome in shaping the gut microbiota in mice.82 These studies highlight the complexity and 

difficulty in delineating the influence of host genotype and/or environment interactions in 

shaping the gut microbiota, and emphasize the need for utilizing proper controls in 

experimental designs. Furthermore, human monozygotic and dizygotic twin pair studies 

have failed to detect a strong influence of genotype on microbial composition of the gut.69 

Thus, the degree to which genotype can influence microbial composition or particular 

members of the gut microbiota is not fully understood, and this aspect remains a 

controversial topic. Moreover, how these gene–microbiota interactions might also be 

influenced by environmental factors and can contribute to disease susceptibility is unknown.

Nevertheless, a number of studies suggest that the interaction between genetics and the gut 

microbiota might play a part in coeliac disease susceptibility. In mice, the expression of 

different MHC genes were shown to influence the composition of the gut microbiota in 

otherwise genetically identical mice,83 suggesting that a coeliac-disease-associated genotype 

could influence gut microbial composition. In patients with coeliac disease, some changes in 

the gut microbiota are not restored after long-term treatment with a gluten-free diet, 

suggesting that these changes might be linked to the coeliac-disease-associated genotype 

(Supplementary Table 1). However, human data linking the high-risk genotypes, gut 

microbial composition and disease onset is lacking and several new studies have started to 

explore this aspect.
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In a first study, infants at high genetic risk of coeliac disease were shown to have higher 

proportions of the Bacteroides–Prevotella group than infants at intermediate or low genetic 

risk of coeliac disease.84 Increased proportions of Gram-negative bacteria, E. coli, 
Streptococcus–Lactococcus, Eubacterium rectale–Clostridium coccoides, sulfate-reducing 

bacteria, C. lituseburense and C. histolyticum were also detected in high-risk infants 

compared with low-risk infants.84 However, the influence of environmental factors, such as 

milk-feeding type (breastfed versus formula fed) or birth delivery mode, in this study were 

not considered. A subsequent study also detected differences in the prevalence of 

Bacteroides spp. between infants at high-risk and low-risk of coeliac disease, some of which 

were independent from the influence of milk-feeding type.85 Similarly, in a cohort of 164 

infants, those with increased genetic risk of developing coeliac disease had reduced numbers 

of Bifidobacterium spp. and B. longum and increased numbers of B. fragilis group and 

Staphylococcus spp. compared with infants with low risk of developing coeliac disease. 

However, differences in numbers of Bacteroides spp. and Bifidobacterium spp. were 

attenuated by breastfeeding whereas increased numbers of Staphylococcus spp. were found 

in high-risk breastfed and formula-fed infants. This finding suggests that the HLA-DQ 

genotype might have a more prominent role in Staphylococcus colonization.86 Another 

study found that the gut microbiota of infants at high risk of developing coeliac disease does 

not stabilize or resemble an adult microbiota by 2 years of age.87 Finally, a study of 

exclusively breastfed infants demonstrated that infants at high risk of coeliac disease (DQ2+) 

had increased proportions of Firmicutes (mainly due to the genera Clostridium), increased 

proportions of Proteobacteria (mainly due to Enterobacteriaceae and Raoultella) and 

decreased proportions of Actinobacteria (mainly due to Bifidobacterium and 

Corynebacterium).88 However, the precise role of these genotype-associated microbial 

profiles in the development of coeliac disease has not yet been determined and follow-up 

studies on these high-risk and low-risk cohorts are underway.

Other non-HLA genes associated with increased coeliac disease risk might also affect 

intestinal microbiota composition. For example, mutations leading to the absence of a 

functional FUT2 leads to a nonsecretor status, which has been associated with alterations in 

the composition of the gut microbiota in healthy individuals89 and in patients with Crohn's 

disease.73 The nonsecretor status was associated with decreases in faecal bifidobacteria,89 an 

increased risk of uropathogenic E. coli infections90 and is associated with coeliac disease.9

Evidence indicates that disease-associated microbiota profiles might be modulated by 

environmental factors. These existing studies are limited by a low number of patients, so 

future studies involving an increased number of participants and longer follow-up are needed 

to determine the interaction between the gut microbiota and disease-associated genotypes 

and whether this increased risk can be modified by environmental interventions. Animal 

models that express the human DQ2 or DQ8 genes can also be used to study gene–microbe 

interactions and the influence on gluten-induced immune responses (Table 1).

From association to causality

In vitro studies have demonstrated that microbes can influence immune responses to gluten. 

For example, the addition of Bifidobacterium, E. coli or Shigella to peripheral blood 
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mononuclear cell and dendritic cell cultures can influence cytokine production after gliadin 

stimulation.91,92 Bifidobacterium strains have also been shown to prevent the generation of 

toxic gliadin peptides during in vitro digestion,93 and reduce gliadin-induced barrier and 

tight junction dysfunction in epithelial cell lines and intestinal loop models.94,95 

Furthermore, E. coli and Shigella were shown to increase gliadin peptide translocation in 

intestinal loops.95 Although these in vitro studies demonstrate that microbes can influence 

gluten-induced immune responses and barrier function, the in vivo importance of these 

findings are unclear. Although associated with several limitations, animal models, including 

germ-free and gnotobiotic models (Table 1), will be of critical value to study whether the 

composition of the gut microbiota influences the loss of tolerance to gluten in genetically 

susceptible hosts and the mechanisms through which microbes can influence host responses 

to gluten.

An early study in germ-free rats demonstrated that long-term gliadin, but not albumin, 

feeding from birth until day 63 induced moderate small intestinal damage, including crypt 

hyperplasia, villous atrophy and increased numbers of IELs, suggesting that gliadin, but not 

albumin, can induce mucosal damage in the absence of gut microbes.96 Transgenic nonobese 

diabetic-DQ8 mice, which express the human DQ8 gene,97 have been used to further study 

the influence of microbial colonization and composition on gluten-induced immune 

responses in genetically susceptible hosts. In agreement with the findings in germ-free rats, 

germ-free nonobese diabetic-DQ8 mice developed more severe gluten-induced pathology 

(characterized by increased numbers of IELs), reduced villus-to-crypt ratios, increased 

enterocyte cell death and increased IEL activation compared with colonized mice. In 

addition, germ-free mice developed a heightened proinflammatory, gluten-specific CD4+ T-

cell response compared with colonized mice (Figure 4a). Altogether, these findings suggest 

that the gut microbiota might exert a beneficial effect by reducing the proinflammatory 

effects associated with gluten ingestion. In line with the concept that the gut microbiota can 

exert both a beneficial and harmful effect, the composition of the gut microbiota was found 

to influence gluten-induced pathology. Mice colonized with a benign microbiota, derived 

from the altered Schaedler flora that lacks any opportunistic pathogens, are protected from 

gluten-induced pathology, whereas mice colonized with a specific pathogen free (SPF) flora 

that includes Proteobacteria (Helicobacter and Escherichia) develop a moderate degree of 

gluten-induced pathology (Figure 4b,c). Supplementation of the benign microbiota with an 

adherent E. coli isolated from patients with coeliac disease led to gluten-induced pathology. 

Finally, perinatal antibiotic treatment, which led to increased numbers of Proteobacteria, 

including Escherichia, enhanced gluten-induced pathology98 (Figure 4d). These findings 

provide evidence that distinct changes in the gut microbiota can either ameliorate or worsen 

responses to gluten in genetically susceptible hosts and support the hypothesis that this 

microbiota might represent an environmental factor involved in coeliac disease development 

or progression. In addition, the data also provide evidence underlying the reported clinical 

association between antibiotic use and subsequent increased coeliac disease risk.57

Another important question is whether dysbiosis could precede and promote development of 

coeliac disease by altering the intestinal environment and immune homeostasis. For instance, 

IL-15 was found to be a cytokine that promotes lymphokine killer activity in IELs from 

patients with active coeliac disease99–101 and patients with refractory sprue,102 promotes 
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IEL survival,103 blocks inducible TREG-cell differentiation104 and blocks TREG cell and 

TGF-β mediated inhibition of effector T-cell function.105,106 Whether the gut microbiota 

contributes to upregulation of IL-15 in the intestinal mucosa remains to be determined, but 

this concept is supported by findings showing that TLR activation upregulates IL-15 

expression.107,108 Furthermore, it remains to be determined whether IL-15 can alter the 

composition and/or function of the gut microbiota that in turn could enhance or reduce 

IL-15-mediated immunopathology.

Future research

In this Review, we have described the latest advances made in understanding the emerging 

role of the gut microbiota in the pathogenesis of coeliac disease. However, many issues 

remain unresolved. Although the studies in patients with coeliac disease clearly demonstrate 

an association between altered microbial composition and disease, a coeliac microbiota 

signature has not been identified and there is no consensus regarding bacterial species that 

are associated with active or inactive coeliac disease. These inconsistent findings make it 

difficult to elucidate the potential pathogenic role of gut microbes on the development or 

progression of coeliac disease in the clinical setting. Although proof-of-concept studies have 

demonstrated that the gut microbial composition can influence how a genetically susceptible 

host responds to gluten,98 mechanistic studies are lacking. In vitro evidence has provided 

some clues as to how certain microbes91,92 might influence gluten-induced immune 

responses. However, future studies utilizing a variety of genetically susceptible, 

gnotobiotically derived mouse models are needed to fully understand how and what specific 

microbes influence innate immunity, gluten-specific responses, barrier function and gluten 

metabolism, as well as whether these factors contribute to the development of coeliac 

disease. These types of studies are critical for determining causality, but their direct 

translational value might be limited due to the associated limitations with animal models of 

coeliac disease.109 Thus, clinical studies will be needed to provide translational value of 

basic studies. Long-term follow-up studies in high-risk versus low-risk infants within 

families could help to identify microbial signatures or species associated with disease onset, 

and will also help elucidate the role of genotype–environment–microbial interactions in 

coeliac disease. Finally, the identification of causal or coeliac-disease-promoting bacteria 

will provide opportunities for modulating the gut microbiota as a therapeutic or preventative 

approach. Indeed, early clinical trials (in both adults with active coeliac disease and children 

with newly diagnosed coeliac disease) with probiotics have reported some success in 

modulating varying aspects of gluten-induced inflammation and symptoms.110,111 Clinical 

studies have also shown associations between increased levels of Proteobacteria and 

persistent symptoms,51 suggesting modulation of the gut microbiota might improve ongoing 

symptoms, despite adhering to a gluten-free diet. However, a deeper understanding of the 

precise role of microbes in coeliac disease pathogenesis will aid in the development of 

appropriate and effective microbiota-modulating strategies.

Conclusions

Host–microbial interactions have a critical role in maintaining intestinal homeostasis by 

influencing host immunity and physiology. Disruption of these host–microbial interactions 
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could contribute to the breakdown in intestinal homeostasis and to disease pathogenesis. 

However, the overall contribution of factors that disrupt homeostasis, such as dysbiosis, to 

disease development is poorly understood. Dysbiosis has been described in patients with 

coeliac disease, but studies have failed to find a distinct coeliac microbiota signature, 

making it difficult to determine the true pathogenic role of the gut microbiota in coeliac 

disease. However, the ongoing studies linking altered microbiota in high-risk infants to later 

coeliac disease development will provide insight into the influence of environmental factors 

on gene–microbe interactions and the potential role of gut microbes in coeliac disease onset 

or progression. Animal models have provided proof-of-concept studies demonstrating that 

host responses to gluten can be modified by the composition of the gut microbiota. The 

continued use of animal models will provide clues into the mechanisms by which the 

composition of the microbiota influences host responses to gluten. Ultimately, these studies 

could provide opportunities for modulating the gut microbiota as a therapeutic or 

preventative approach.
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Key points

▪ The intestinal microbiota coexists with its host in a continuum between 

homeostasis and pathogenicity; the upper gastrointestinal tract harbours a 

gut microbiota that is affected compositionally and metabolically by food 

components

▪ Coeliac disease is a chronic immune-mediated enteropathy caused by 

dietary gluten in genetically susceptible individuals

▪ The role of microbial factors in coeliac disease pathogenesis has been 

suggested

▪ Although clinical studies demonstrate that microbial changes are associated 

with coeliac disease, the individual microbes involved and underlying 

mechanisms remain elusive

▪ Emerging data in gnotobiotic models indicate that the intestinal microbiota 

has a complex modulatory role in host immune responses to gluten

▪ A deeper understanding of the precise role of microbes in coeliac disease 

pathogenesis will aid in the development of microbiota-modulating 

strategies, such as probiotics, to prevent or help treat the disease
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Figure 1. 
Development of the gut microbiota. The composition and density of the microbiota varies 

along the length of the intestine as well as with age. a | Differences in microbial composition 

and density are observed along the length of the gastrointestinal tract, with much lower 

densities and greater variability in the proximal intestine. b | The gut microbiota fluctuates 

over the first 2–3 years of life, with high interindividual variability and low diversity, but 

becomes more stable over time. Immediately after birth, the neonatal intestine is colonized 

by facultative anaerobes and is dominated by Enterobacteriaceae. After the introduction of 

solid food, the gut microbiota continues to mature and the diversification of Bacteroides and 

Clostridium rapidly increases, whereas the proportion of Bifidobacterium stabilizes. By 2 

years of age, the gut microbiota is dominated by members belonging to the Firmicutes and 

Bacteroidetes phyla and begins to resemble that of an adult-like microbiota. A number of 

factors, such as host genetics, birth delivery mode, diet, antibiotic or probiotic treatment and 

infections can influence the developing gut microbiota. Whether and how these host or 

environmentally triggered changes in gut microbiota also affect risk of inflammatory 

disease, including coeliac disease, remains controversial. Abbreviation: SFB, segmented 

filamentous bacteria.
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Figure 2. 
Gut microbiota shapes host immunity. The gut microbiota induces maturation of the 

gastrointestinal lymphoid tissue (Peyer's patches, MLN). Signals from the microbiota induce 

production of AMPs, such as RegIIIγ, from Paneth cells, γδTCR+ IELs and epithelial cells. 

Microbial signals can also stimulate the development of ILC subsets, including IL-22-

producing ILCs. Flagellin or LPS can stimulate AMP production from epithelial cells via 

IL-22 or TLR4, respectively. The gut microbiota also stimulates the release of mucins from 

goblet cells, and microbes influence the development of T-cell subsets, including CD4+ T 

cells, αβTCR+ IELs, and are critical for the induction of IgA-producing plasma cells. SFB 

are potent inducers of TH17 cells, whereas Clostridium, PSA derived from Bacteroides 
fragilis, and SCFAs stimulate TREG -cell differentiation. SCFAs can also promote IL-18 

production from epithelial cells and promote IL-10 and retinoic acid production from DCs, 

which in turn promotes differentiation of TREG cells and IgA-producing plasma cells. 

Abbreviations: AMP, antimicrobial peptide; DC, dendritic cell; FasL, Fas ligand; IEL, 

intraepithelial lympocytes; ILC, innate lymphoid cell; LPS, lipopolysaccharide; MLN, 

mesenteric lymph node; NKG2D, NKG2-D type II integral membrane protein; PSA, 

polysaccharide A; SCFA, short-chain fatty acid; SFB, segmented filamentous bacteria; TCR, 

T-cell receptor; TH17 cell, type 17 T helper cell; TREG cell, regulatory T cell.
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Figure 3. 
Potential microbial modulation of coeliac disease pathogenesis. Gluten peptides in the small 

intestinal lumen translocate the epithelial barrier, via transcellular or paracellular 

mechanisms and are deamidated by tissue TG2 in the lamina propria. Deamidated gliadin 

peptides are taken up by lamina propria DCs, inducing a proinflammatory gluten-specific 

CD4+ T-cell response, characterized by IFN-γ and IL-21 production, and anti-gliadin and 

anti-TG2 antibody production by B cells in genetically predisposed hosts. Activation of the 

innate immune response is also a key initial step in coeliac disease. Increased epithelial cell 

stress can upregulate stress molecules on epithelial cells (HLA-E, MICA/B) and induce 

IL-15 production from epithelial cells. IL-15 can induce IEL proliferation and activation and 

cytotoxic killing of epithelial cells, leading to tissue damage. IL-15 can also inhibit the 

regulatory effects of TREG cells and induce proinflammatory DCs. Microbes, both 

commensals or opportunistic pathogens (pathobionts), might contribute to the development 

of coeliac disease by influencing TREG-cell induction, epithelial cell stress, IEL activation or 

upregulation, IL-15 regulation, DC maturation and proinflammatory cytokine production, 

intestinal permeability modulation, gluten peptide digestion, and induction of CD4+ T-cell 

responses. Abbreviations: DC, dendritic cell; FasL, Fas ligand; IEL, intraepithelial 

lymphocyte; MICA, MHC class I polypeptide-related sequence A; NKG2D, NKG2-D type 

II integral membrane protein; TCR, T-cell receptor; TG2, tissue transglutaminase 2; TREG 

cell, regulatory T cell.
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Figure 4. 
Modulation of host responses to gluten by the composition of the gut microbiota. a | In 

genetically susceptible hosts, the absence of bacteria can exacerbate gluten-induced immune 

responses, with increased IEL cytotoxicity (increased granzyme B production and NKG2D 

expression), increased proinflammatory gluten-specific CD4+ T-cell responses, and 

increased IgA AGA production. Together, this process leads to enhanced gluten-induced 

pathology characterized by reduced villous:crypt ratios and increased enterocyte cell death 

in the small intestine. b | In the presence of a limited, benign microbiota (altered Schaedler 

flora) that lacks any opportunistic pathogens, genetically susceptible hosts are protected 

from gluten-induced immune responses and pathology. c | In the presence of a complex 

microbiota that harbours opportunistic pathogens including Proteobacteria (Escherichia, 

Helicobacter), genetically susceptible hosts develop gluten-induced pathology, with 

increased IELs, proinflammatory gluten-specific T-cell responses and increased AGA 

production. However, the modulation of IEL cytotoxicity is unknown. d | Perturbation of a 

complex gut microbiota through antibiotic use or the presence of pathobionts can also 

exacerbate gluten-induced inflammation through unknown mechanisms. Abbreviations: 

AGA, anti-gliadin antibody; IEL, intraepithelial lymphocyte; NKG2D, NKG2-D type II 

integral membrane protein.
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Table 1

Animal models to study gluten-related disorders

Model Genetic 
background 
or 
association

Spontaneous or sensitization Gluten-dependent enteropathy AGA or anti-TG2 Reference

Dog (Irish Setter) No MHC 
class II 
association

Spontaneous Partial villus atrophy AGA Batt et al. 
(1984)112; 
Hall & Batt 
(1992)113; 
Polvi et al. 
(1998)114

Rhesus macaque MHC class II 
association 
unknown

Spontaneous Partial villus atrophy AGA anti-TG2 Sestak et al. 
(2011)115; 
Bethune et 
al.* 
(2008)116

Horse MHC class II 
association 
unknown

Spontaneous Yes, partial villus atrophy AGA anti-TG2 van der 
Kolk et al. 
(2012)117

Germ-free rats Wistar-AVN, 
no MHC 
class II 
association

Gliadin-feeding following birth Mild, number of IELs increased No Štepánková 
et al. 
(1996)96

Mice Balb/c Gluten-feeding for 30 days Partial villus atrophy, number of 
IELs increased

AGA Papista et 
al. (2012)118

Rag −/− Transfer of T cells from 
sensitized C56BL/6 mice to 
Rag−/1 mice

Partial villus atrophy AGA Freitag et al. 
(2009)119

HLA-DQ8 
transgenic, 
MHC class II 
dependent

Sensitization Number of IELs increased AGA Black et al. 
(2002)120; 
Verdu et al. 
(2008)121

HLA-DQ2 
transgenic, 
MHC class II 
dependent

Sensitization No AGA anti-TG2 De Kauwe 
et al. 
(2009)122

NOD Gluten-feeding Mild, number of IELs increased Not detected Maurano et 
al. (2005)123

IL-15-DQ8 
transgenic, 
MHC class II 
dependent

Gliadin-feeding for 10 days Number of IELs increased AGA anti-TG2 DePaolo et 
al. (2011)104

Abbreviations: AGA, anti-gliadin antibody; IEL, intraepithelial lymphocyte; NOD, nonobese diabetic; TG2, tissue transglutaminase 2.
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