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Abstract
Module-based network analysis of diverse pharmacological mechanisms is critical to systematically understand combination

therapies and disease outcomes. We first constructed drug-target ischemic networks in baicalin, jasminoidin, ursodeoxycholic

acid, and their combinations baicalin and jasminoidin as well as jasminoidin and ursodeoxycholic acid groups and identified

modules using the entropy-based clustering algorithm. The modules 11, 7, 4, 8 and 3 were identified as baicalin, jasminoidin,

ursodeoxycholic acid, baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid-emerged responsive modules, while 12,

8, 15, 17 and 9 were identified as disappeared responsive modules based on variation of topological similarity, respectively. No

overlapping differential biological processes were enriched between baicalin and jasminoidin and jasminoidin and ursodeoxy-

cholic acid pure emerged responsive modules, but two were enriched by their co-disappeared responsive modules including

nucleotide-excision repair and epithelial structure maintenance. We found an additive effect of baicalin and jasminoidin in a

divergent pattern and a synergistic effect of jasminoidin and ursodeoxycholic acid in a convergent pattern on ‘‘central hit strategy’’

of regulating inflammation against cerebral ischemia. The proposed module-based approach may provide us a holistic view to

understand multiple pharmacological mechanisms associated with differential phenotypes from the standpoint of modular

pharmacology.
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effect, cerebral ischemia

Experimental Biology and Medicine 2016; 241: 2063–2074. DOI: 10.1177/1535370216662361

Introduction

Since the advent of high-throughput experimental tech-
niques, the complexity of biological networks has become
increasingly evident,1 and it has also been shown that indi-
vidual genes or proteins are often difficult to be placed in
biological context and fully annotate functionally.2

Concomitantly, the study of pharmacological mechanisms
in treatment of complex diseases such as cerebral ischemia
is re-addressed using systems pharmacology approaches
and systems medicine.3,4 As such, requirement for ‘‘net-
work design principles’’ became both feasible and neces-
sary. During the last decade, the modular nature of a wide
variety of complex networks has been investigated in
detail,5–7 and modules as the building blocks of higher
level functional organization have played a key role in
decoding the mechanism of complex systems.8 Moreover,
use of modular design as a tool in pharmacological research
contributes a lot to rationalize drug actions and predict

disease outcomes.9,10 For example, modular biomarkers in
response to tamoxifen attest to the immunomodulatory role
of tamoxifen, and further reveal that it deregulates cell cycle
and apoptosis pathways.11 A module network rewiring-
analysis predicts dynamical drug sensitivity and resistance,
and also characterizes complex dynamic processes for ther-
apy response.12 Characterization of drug-induced transcrip-
tional modules has provided a starting point for drug
repositioning and functional understanding.13 Therefore,
the study of therapy response basing on modules, cannot
merely elucidate essential principles to react to drug at the
network level, but also reveal fundamental mechanisms,
thereby benefitting efficient identification of biomarkers in
pharmacogenomics.14,15

Qingkailing injection, an extensively used traditional
Chinese patent medicine in treating cerebral ischemia in
China, can reduce intracerebral hemorrhage-induced brain
damage as well as ischemic stroke-induced infarct volume
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through inhibiting apoptosis and increasing the expression
of endothelial nitric oxide synthase.16 Baicalin (BA), jasmi-
noidin (JA), and ursodeoxycholic acid (UA) are the three
bioactive ingredients of Qingkailing injection.17 The
pharmacological mechanisms of these three ingredients
and their combinations including BA and JA (BJ) as well
as JA and UA (JU) in the treatment of cerebral ischemia
have shown both similarities and differences according to
analysis of differentially expressed genes and signaling
pathways. BA, UA and JA all act on Ca2þ-dependent sig-
naling cascades.18 BA activates extracellular matrix-recep-
tor interaction pathways, leading to direct or indirect
control of cellular activities.19 JA inhibits the expression of
caspase-3 after brain damage.20 UA results in the downre-
gulation of Bdnf, MNK1/2 (Mknk1), and c-fos (Fos), regu-
lating cell proliferation and differentiation.19 Besides, JU
plays an important role of the synergistic effect in activating
P53 pathway,21 while BA and JA fuse those differentially
expressed genes to contribute to the additive effect of BJ,
such as Huntington’s disease signaling.22

In this context, moving a step further, we developed a
novel module-based method to identify drug responsive
modules by integrating gene expression data and high-
quality protein–protein interaction (PPI) networks. Our
goal was to demonstrate that the response mechanisms of
different compound treatments on cerebral ischemia could
be elucidated from a modular pharmacology standpoint9

and predict drug targets in a holistic view. Specifically,
using this method, we compared the pharmacological
mechanisms of the two combination therapies BJ and JU
in treating cerebral ischemia.

Materials and methods
Data preparation

The gene expression data were obtained from our previous
study, and six group datasets were included: vehicle, BA, JA,
UA as well as two combinations BJ and JU.23 A microarray
chip containing 16,463 oligoclones (Incyte Genomics, Santa
Clara, CA, USA) was used to conduct gene expression pro-
filing. The procedures of microarray preparation and data
analysis have been described previously.21–23 The experi-
mental protocol and data analysis are shown in Figure 1.

Constructing target networks in different groups

We downloaded PPI data from NIA Mouse Protein–Protein
Interaction Database,24 INTACT,25 BIOGRID,26 and MINT,27

and then deleted duplicate data and self-interactions. In our
analysis, we not only considered interactions present in
these databases but also predicted orthologous and paralo-
gous data from the mouse PPIs. We constructed a unique
global mouse gene and protein network by integrating pro-
tein interactions.

We used our previous gene expression profiles of hippo-
campus in ischemic mice treated with the three monothera-
pies (BA, UA, and JA) and the two combinations (BJ and
JU). The mean centered normalization of expressed data
was performed. Genes with normalized expression value
greater than one (that is, the original expression value is

greater than the mean) were defined as significantly differ-
entially expressed. Finally, we generated target networks of
each group by mapping these genes to the interaction
network.

A plugin for Cytoscape Network Analyzer28 was
employed to compute and display a comprehensive set of
topological parameters, including the network nodes,
edges, density, clustering coefficient, connected compo-
nents, diameter, radius, and centralization.

Identifying modules in different groups

We selected the entropy-based clustering algorithm (ECA)29

to mine modules in the related target networks of each
group. This algorithm exploits the concept of entropy to
assess modularity of a graph and defines loss of entropy
representing an increase in modularity.29 Since low entropy
indicates low uncertainty which represents a stable
state,30,31 we expect this algorithm could find a stable
modular state. It first selects a random seed as the initial
node and forms a seed cluster by including all neighbors of
the seed. Next, the seed cluster shrinks and grows to min-
imize graph entropy by iteratively removing and adding
the nodes on the borders of the cluster. This seed growth
stops when an optimal local boundary is found. The process
of selecting a seed and generating an optimal cluster is
reiterated, leading to a set of clusters. We set the graph
entropy less than a threshold of 20 as the cutoff value to
filter out clusters and 3 as the minimum module size. To
eliminate the randomness, we subsequently identified
modules randomly in all the six networks and then com-
pared the average graph entropy with the ECA result.

Gene ontology enrichment analysis

Based on the detected modules, gene ontology (GO) enrich-
ment analysis was utilized to characterize the function of
modules by using the GO::Term Finder tool (http://search.
cpan.org/dist/GO-TermFinder/)32–34 and mouse genome
informatics.35 An over representation of a term is defined
as a modified Fisher’s exact p-value with an adjustment for
multiple tests using Benjamini method. In this analysis, all
the genes on the array were set as the background, and GO
terms with P value <0.05 were considered as significant.

Defining the drug responsive module (RM), based on
topological similarity

To define the RM, we first quantified the topological simi-
larity between modules in vehicle and any treatment
groups (BA, JA, UA, BJ or JU group). We measured the
similarity between modules G1 and G2 in the vehicle and
any treatment groups

S G1,G2ð Þ ¼
# E1 \ E2ð Þ

# E1 [ E2ð Þ

The term (E1 \ E2) denotes the number of common edges
and (E1 [ E2) represents the number of edges in the union
of G1 and G2. The similarity ranges from 0 to 1 and we set a
threshold of 0.9 as the cutoff. Similar modules were defined
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in terms of the value of similarity greater than 0.9. If the
similarity of one module compared with any module in the
compared group was less than 0.9, we defined it as a differ-
ential module. In other words, it is a module that was absent
in the compared groups. We also integrated the GO enrich-
ment analysis: if a GO term has just been enriched in one
differential module compared with modules in other groups,
we defined it as a differential function of this differential
module and the module was accordingly a drug responsive
module (RM). We further divided it into an emerged RM
(RME) or a disappeared RM (RMD). For example, if an RM
in the vehicle group was not identified in the treated

groups, meaning that the module vanished after drug inter-
vention, we defined it as an RMD. On the other hand, if an
RM just appeared in the treated groups, we considered it as
an RME.

RMs pathway analysis

Enrichment analysis of KEGG pathways on RMs was per-
formed using a web server DAVID 6.7 functional annotation
tool (http://david.abcc.ncifcrf.gov/).36 We selected all
pathways with a P value <0.05 after correcting for multiple
terms, tested by Benjamini Notably, we only enriched the
pathways that corresponded to the differential functions.

Figure 1 Flow diagram. Drug-target networks were constructed by integrating gene expression and protein interaction data, and the modules were identified using

entropy-based clustering algorithm (ECA). The comparison of topological similarity and GO functional enrichment analysis was used to define the drug responsive

modules (RMs). The KEGG pathway in RMs was enriched using DAVID 6.7 software. (A color version of this figure is available in the online journal.)

Yu et al. Drug response module reveals anticerebral ischemia mechanisms 2065
. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . .

http://david.abcc.ncifcrf.gov/


Results
Pharmacodynamic results

It was found that BA, JA and UA effectively reduced the
ischemic infarct volume compared with the vehicle group
(P <0.05).17 BJ was more effective than BA or JA monother-
apy in reducing the ischemic infarction volume, and similar
result was obtained by JU compared with JA or UA alone.23

Further analysis demonstrated that BJ showed additive
effects,22 and JU resulted in synergistic effects.21,37

Network topological parameters in different groups

The experimental protocol and data analysis are shown in
Figure 1.We generated a mouse protein interaction network
containing 65,850 edges by integrating multiple protein
interaction databases. After mapping the different experi-
mental gene expression data to this work, we finally
obtained five drug interventional target networks of BA,
JA, UA, BJ and JU as well as one vehicle target network
(Figure 2). The network topological parameters such as
nodes, edges, density, clustering coefficient, connected

component, diameter, radius and centralization of these
six networks were similar (Table 1).

Module distribution

The modules identified by ECA are shown in Table 2. We
identified 841, 749, 740, 690, 770 and 792 modules (nodes
�3) from BA, JA, UA, BJ, JU and vehicle target networks,
respectively. The average size of those modules ranged
from 3.81 to 3.90. The values of average entropy of the six
networks were calculated (range, 1.242 to 1320), which were
similar to each other but significantly lower than that with
the randomized identification (range, 3.10–3.31) (P<0.05).

RMs among different monotherapies

Results showed that 64, 41 and 44 differential modules were
identified from BA, JA and UA groups compared with vehi-
cle group, respectively. Integrating the GO enrichment ana-
lysis, 11, 7 and 4 modules were identified as the RMEs of BA,
JA and UA, respectively. Different modules in the enrich-
ment might correspond to the same biological processes.

Figure 2 Global networks and identified modules of vehicle, BA, UA, JA, BJ and JU groups. (A color version of this figure is available in the online journal.)

Table 1 Topological attributes of global networks in different groups

Topological attributes Vehicle BA JA UA BJ JU

Nodes 2183 2229 2032 1981 1899 2028

Edges 6656 6738 5980 5780 5415 6108

Density 0.003 0.003 0.003 0.003 0.003 0.003

Diameter 12 11 12 13 12 11

Radius 1 1 1 1 1 1

Centralization 0.129 0.128 0.136 0.136 0.137 0.134

Clustering coefficient 0.109 0.102 0.109 0.106 0.103 0.106

Connected components 26 27 26 25 25 21
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Figure 3 Differential biological processes enriched by RMs between BA, JA and UA. (a) Wayne map of differential biological processes enriched by RMEs between

BA, JA and UA; different RMEs in the enrichment may correspond to the same biological processes, the GO term ‘‘negative regulation of ubiquitin-protein ligase activity

involved in mitotic cell cycle’’ was enriched by three different RMEs of BA. (b) Wayne map of differential biological processes enriched by RMDs between BA, JA and UA;

different RMDs in the enrichment may correspond to the same biological processes, the overlap GO term ‘‘sensory perception of pain’’ both in BA and UA was enriched

by two different RMDs, respectively. (A color version of this figure is available in the online journal.)

Table 2 Modules identified by entropy-based clustering algorithm (ECA) in different groups

Groups Clusters

Average

size

Sum of

the entropy

Average

entropy

Average entropy in

randomized networks

Vehicle 792 3.871 985.87 1.245 3.280

BA 841 3.900 1094.94 1.302 3.201

JA 749 3.854 930.49 1.242 3.279

UA 740 3.820 932.86 1.261 3.203

BJ 690 3.896 910.73 1.320 3.098

JU 770 3.812 943.61 1.225 3.297

Yu et al. Drug response module reveals anticerebral ischemia mechanisms 2067
. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . .



Finally, there were 9, 7 and 4 significantly enriched differen-
tial biological processes belonging to the relevant modules
(Figure 3(a)). Regarding to the overlapping differential bio-
logical processes among the RMEs, none were found among
the three, but one was observed between the BA and UA
groups (regulation of binding) and another one between
the BA and JA groups (secretion by cell). No overlap of dif-
ferential biological processes was found between the UA and
JA groups (Figure 3(a)). Furthermore, eight (88.9%), six
(85.7%) and two (50%) differential biological processes
were only enriched in the BA, JA and UA-RMEs, respectively.

The RMDs were defined as modules that were present in
the vehicle group but not identified in the compound-trea-
ted groups according to the similarity. We found 54, 45 and
53 differential modules in the vehicle group compared with
the BA, JA and UA groups, respectively, and finally identi-
fied 12, 8 and 15 modules as BA, JA and UA-RMDs by
integrating the GO enrichment analysis. Excluding the
duplicates of biological processes in different modules, we
obtained 11, 8 and 14 significantly enriched differential

biological processes corresponding to the relevant RMDs
(Figure 3(b)). Among these, two overlapping differential
biological processes were identified among the BA, JA
and UA groups, including mRNA polyadenylation and
lipoate metabolic process. Another five overlapping differ-
ential biological processes were observed between BA and
UA, 1 between BA and JA, and 4 between JA and UA,
respectively. In addition, three (27.3%) differential bio-
logical processes were only enriched in the BA-RMDs,
including regulation of gene expression, golgi transport
vesicle coating, and maintenance of protein location in
cell; three (21.4%) were only found in the UA-RMDs, includ-
ing regulation of cellular biosynthetic process, negative
regulation of transport, and tricarboxylic acid cycle; and
one (12.5%) about RNA stabilization was only enriched in
the JA-RMDs. This indicated that these compounds induced
more co-disappeared modules than emerged modules.

Most of the enriched GO functions were reported to have
a specific relationship with cerebral ischemia/stroke in pre-
vious studies (Supplementary Table S1, S2). For example, one

Figure 4 Differential biological processes enriched by RMs between BA, JA and the combination BJ. (a) Wayne map of different biological processes enriched by

RMEs between BA, JA and BJ. (b) Wayne map of different biological processes enriched by RMDs in BA, JA and BJ. The GO term ‘‘sensory perception of pain’’ in BJ

was enriched by two different RMDs. (A color version of this figure is available in the online journal.)
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of the BA-RMEs was annotated with regulation of Janus
kinase/signal transducers and activators of transcription
(JAK-STAT) cascade. JAK/STAT carrying signals from the
cell membrane to the nucleus in response to extracellular
growth factors and cytokines has been demonstrated in the
astroglial response to focal cerebral ischemia.38 The thera-
peutic effect of BA might be partly mediated by the JAK/
STAT pathway. Studies have shown that branched-chain
amino acids are reduced in ischemic stroke, and the degree
of reduction correlates with worse neurological outcomes.39

JA activated the ‘‘branched-chain family amino acid cata-
bolic process’’ related modules independently. We inferred
that the branched chain family amino acid catabolism might
be one of the therapeutic targets of JA. As for the UA group,
although the GO term of ‘‘peroxisome membrane biogen-
esis’’ has not been reported to be associated with cerebral
ischemia directly, the impaired peroxisomal function
showed significant contribution to the prolongation and
intensification of inflammation.40 In contrast, UA plays a crit-
ical anti-inflammatory role based on previously reported
pharmacological mechanisms in cerebral ischemia.19

RMs variation in additive effects

Previous studies have shown that the combination group BJ
was more effective than BA or JA alone in reducing the ische-
mic infarction volume, indicating the underlying additive
effects.22 Our module-level analysis revealed 53 differential
modules in BJ group (compared with vehicle group) and 65
differential modules in vehicle group (compared with BJ
group). Of these, eight were identified as BJ-RMEs including
eight significantly enriched differential biological processes
and 17 were BJ-RMDs including 16 significantly enriched dif-
ferential biological processes. Nevertheless, the enriched BJ
functions were not simply the sum of BA and JA (Figure
4(a) and (b)). Comparison of drug-RMEs revealed no overlap
in differential biological processes between BA, JA and BJ as
well as between JA and BJ. However, one overlapping differ-
ential biological process—negative regulation of ubiquitin-
protein ligase activity involved in mitotic cell cycle—was
observed between BA and BJ. Comparison of drug-RMDs
revealed an overlapping differential biological process related
to lipoate metabolic process between BA, JA and BJ. Another
four overlaps were noted between BA and BJ as well as JA and

Figure 5 Differential biological processes enriched by RMs in JA, UA and the combination JU. (a) Wayne map of differential biological processes enriched by RMEs

between JA, UA and JU. (b) Wayne map of differential biological processes enriched by RMDs between JA, UA and JU. (A color version of this figure is available in the

online journal.)
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BJ. Finally, seven independent enrichment processes were
used for BJ-induced RMs (87.5% RME vs. 43.8% RMD),
respectively (Figure 4(a) and (b)). Interestingly, in BJ inde-
pendently induced RMs, only a few GO functional annota-
tions (3/7 in RMEs and 2/7 in RMDs) were closely related to
cerebral ischemia (Supplementary Table S3, S4). GO terms
such as regulation of macromolecule metabolic process or ves-
icle docking involved in exocytosis were not associated with
cerebral ischemia/stroke.

RMs variation in synergistic effects

In contrast to the additive effects of BJ, the combination of
JA and UA (JU) showed synergistic effects.37 In our
module-level analysis, 53 differential modules from JU
group (compared with vehicle group) and 57 differential
modules from vehicle group (compared with JU group)
were found. Despite the synergistic effect, JU was not
related to more responsive modules than JA and UA
(Figure 5(a) and (b)). Only three modules were identified
as JU-RME and nine as JU-RMD. No overlapping differential
biological processes were noted between JA, UA and
JU-RMEs, although a total of five overlapping differential
biological processes were identified among their RMDs,
including lipoate metabolic process, mRNA polyadenyla-
tion, methylation, misfolded or incompletely synthesized
protein catabolic process, and regulation of kinase activity
(Figure 5(b)). JA-JU comparisons shared an overlap both in
RMEs and RMDs, but no more were found between UA and
JU. This finding is consistent with our previous results

obtained from genes and pathway analysis showing that
JA contributed more when administered as part of the com-
bination JU.21,37 Furthermore, the number of the independ-
ently enriched JU-RME or -RMD modules was two (66.7%)
and three (33.3%), respectively (Figure 5(a) and (b)). Based
on published studies (Supplementary Table S3), only
‘‘MyD88-dependent toll-like receptor signaling pathway’’
in RME and ‘‘Nucleotide-excision repair’’ in RMD are dir-
ectly related to cerebral ischemia (Supplementary Table S4).

Overlapping and special pure RMs between additive
and synergistic effects

After removing the overlap with single compounds (BJ vs.
BA or JA and JU vs. JA or UA), we observed both over-
lapping and unique pure RMs between BJ and JU
(Figure 6). According to the above analysis (Figures 4 and
5), the number of RME or RMD modules with pure enrich-
ment was both 7 for BJ, 2 and 3 for JU. Compared with BJ, JU
induced fewer pure modules independently (two JU-RME

vs. seven BJ-RME; one JU-RMD vs. five BJ-RMD). No over-
lapping differential biological processes were enriched
between BJ- and JU-RMEs (Figure 6(a)), but two were
enriched by their co-RMDs including nucleotide-excision
repair and epithelial structure maintenance (Figure 6(b)).

Pathway enrichment analysis of RMs

According to KEGG pathway analysis, 2, 3 and 1 pathways
were significantly enriched based on the genes associated

Figure 6 Differential biological processes between BJ and JU pure RMs. (a) Wayne map of different biological processes enriched by pure RMEs between BJ and JU.

(b) Wayne map of different biological processes enriched by pure RMDs between BJ and JU. (A color version of this figure is available in the online journal.)
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with differential biological processes corresponding to the
BA, JA, and BJ-RMEs, respectively (Figure 7(a)). No over-
lapping pathways were noted among them, but one was
found between BA and BJ-RMEs involving proteasome.
For the RMDs, 9, 2 and 3 pathways were significantly
enriched in the BA, JA, and BJ, respectively (Figure 7(c)).
Two overlapping pathways were identified between BA
and BJ as well as one between BA and JA. BA appeared
to have more directional mechanism of action, inhibiting
six pathways independently, including mTOR signaling
pathway, prostate cancer, insulin signaling pathway, prion
diseases, complement and coagulation cascades, and sys-
temic lupus erythematosus.

In the JA, UA, and JU groups, KEGG pathway analysis
indicated that 3, 1 and 3 pathways were significantly
enriched in RMEs based on the genes corresponding to dif-
ferential biological processes, respectively (Figure 7(b)).
One overlapping pathway involving endocytosis was
found between JA and JU, but there was no overlap
among the three. For RMDs, a pathway involved in valine,
leucine and isoleucine degradation was identified among
the three groups, and the number of independent enrich-
ment was 1, 6, and 1, respectively (Figure 7(d)). Based on
the comparison of BJ and JU-RMEs, no overlapping path-
ways were found, but one overlapping pathway involved in
nucleotide excision repair was identified between BJ and
JU-RMDs.

The ‘‘starch and sucrose metabolism’’ in an RME of BA
and ‘‘antigen processing and presentation’’ in an RMD of JU
has not been reported to be associated with cerebral ische-
mia. However, most of the pathways have been directly or
indirectly related to this disease (Supplementary Table S5,
S6). Additionally, the biological significance of the enriched
GO functions and pathways was not similar, and the
number of the enriched GO functions was greater than
that of the enriched pathways.

Discussions

Due to the complexity of diseases with multiple targets,
modules are considered to be stable groups in biological
networks, and may be quite robust that are not likely to
be affected by individual gene expression changes.41

Therefore, a module biomarker may provide more implica-
tions to infer drug actions.42 In this paper, we developed a
novel method to identify drug RMs and elucidated the
potential pharmacological mechanisms of different com-
pounds individually (BA, JA or UA) and in combinations
(BJ or JU) in treating cerebral ischemia-reperfusion injury. In
contrast to conventional studies on drug response that
mainly focused on genes and pathways,43–45 our method
focused on modules and analyzed both their topological
structures and functions, which provided a holistic view

Figure 7 KEGG pathway enrichment of RMs. (a) Wayne map of pathway enrichment by RMEs between BA, JA, and BJ. (b) Wayne map of pathway enrichment by

RMDs between BA, JA, and BJ. (c) Wayne map of pathway enrichment by RMEs between JA, UA and JU. (d) Wayne map of pathway enriched by RMDs between JA, UA

and JU. One overlapping pathway of nucleotide excision repair was identified in BJ and JU- RMDs. (A color version of this figure is available in the online journal.)
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of the overall differences and similarities in the pharmaco-
logical effects of the five compounds at a systems level.

All of the compounds contained more RMDs than RMEs,
indicating that several modules vanished after drug inter-
vention. At this point, it is worth emphasizing the terms of
‘‘emerged’’ and ‘‘disappeared’’. ‘‘Emerged’’ refers to a
group of nodes (genes or proteins) previously dissociated
functionally is currently associated functionally as a
module. Accordingly, ‘‘disappeared’’ refers to a lost
module. In other words, nodes lose their co-expression rela-
tive to their interacting partners to form a structural aggre-
gate. Though both of them may reflect the drug actions, the
disappeared modules tend to load more disease-associated
pharmacological mechanisms. From a modular biomarker
perspective, the emergence or loss of modules reflecting
functional reorganization47,48 may have pharmacological
implications at the systems level and be regarded as poten-
tial therapeutic targets in cerebral ischemia. For example, all
of these five compounds have one co-RMD that is annotated
with GO term ‘‘lipoate metabolic process’’. Lipoic acid
metabolism defects are metabolic disorders that cause
neurological impairment,49and lipoate confers protective
effects against reperfusion injury-induced oxidative
stress.50,51 In terms of pathways, valine, leucine and isoleu-
cine degradation are other metabolic events enriched in this
co-module, which closely relates to cerebral ischemia.52

This finding led us to speculate that modules carrying the
above metabolic information may be regarded as useful
therapeutic targets for cerebral ischemia.

Specially, another important work in our study is to
explore the mechanism of combination therapies. The
RMs analysis offers an alternative way to understand dif-
ferent mechanisms between additive and synergistic effects
in fighting against cerebral ischemia.

We identified BJ and JU co-RMDs that are annotated with
nucleotide-excision repair (as well as pathway enrichment)
and epithelial structure maintenance, respectively.
Although neither of them has been reported to be associated
with cerebral ischemia directly, nucleotide-excision repair
as a DNA repair mechanism may be implicated in the
pathogenesis of neurologic disorders.53 Preservation of
tubular epithelial structure has also been shown to prevent
renal ischemia-reperfusion injury.54 Therefore, we speculate
that the BJ and JU co-modules may be viewed as universal
therapeutic targets for cerebral ischemia.

Among the unique BJ-induced responsive modules,
divergent biological functions were enriched such as
metabolism, biogenesis, apoptosis and development.
Despite annotating only three RMEs and one RMD with cer-
ebral ischemia-relevant GO terms, we hypothesize that mul-
tiple responsive modules coordinate or interact with one
another to achieve a complex biological process that may
contribute to the additive effect of BJ, which is also consistent
with our previous study from a pathway perspective.22

Compared with BJ, JU induced fewer unique RMs (two
emerged and one disappeared). The information of RMEs
enriched such as MyD88-dependent toll-like receptor sig-
naling pathway (GO term) or NOD-like receptor signaling

Figure 8 Pathway map of NOD-like receptor signaling in independent JU-RME. List genes are marked in red star. (A color version of this figure is available in the

online journal.)
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pathway (pathway analysis, Figure 8) have recently
emerged as central regulators of immunity and inflamma-
tion-associated diseases.55,56 Increasing evidence indicates
that the ischemic inflammatory response plays a detrimen-
tal role in cerebral ischemia outcome.57,58 Modulation of
inflammatory signaling may be a useful therapeutic
approach to treat this disease.56 According to the RM ana-
lysis, we infer that, regulation of inflammation may be the
main role of JU in treating cerebral ischemia which also
contributes to its synergistic mechanism from a convergent
pattern.

In summary, our drug RMs combining topology and
function enable comprehension of the overlapping and
diverse pharmacological mechanisms of different com-
pounds individually and in combinations in treatment of
cerebral ischemia. Specifically, we found that the additive
effect of BJ may be resulted from multiple responsive mod-
ules working in a divergent pattern, and the synergistic
effect of JU may be explained by a ‘‘central hit strategy’’59

with fewer responsive modules regulating inflammation in
a convergent pattern against cerebral ischemia.
Nevertheless, limitations still exist. Firstly, we present
only the emerged and lost modules to reflect drug therapy.
Drug response module may also incorporate shrinkage,
growth, split and other dynamic processes.60 Secondly,
although the cerebral ischemic information carried by
RMs has been validated by previous literatures, experimen-
tal validation should also be taken into account in future
studies.
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