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Summary

Somatic mutations have been extensively characterized in breast cancer, but the effects of these 

genetic alterations on the proteomic landscape remain poorly understood. We describe quantitative 

mass spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated 

breast cancers of which 77 provided high-quality data. Integrated analyses allowed insights into 

the somatic cancer genome including the consequences of chromosomal loss, such as the 5q 

deletion characteristic of basal-like breast cancer. The 5q trans effects were interrogated against 

the Library of Integrated Network-based Cellular Signatures, thereby connecting CETN3 and 

SKP1 loss to elevated expression of EGFR, and SKP1 loss also to increased SRC. Global 

proteomic data confirmed a stromal-enriched group in addition to basal and luminal clusters and 

pathway analysis of the phosphoproteome identified a G Protein-coupled receptor cluster that was 

not readily identified at the mRNA level. Besides ERBB2, other amplicon-associated, highly 

phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We 

demonstrate that proteogenomic analysis of breast cancer elucidates functional consequences of 

somatic mutations, narrows candidate nominations for driver genes within large deletions and 

amplified regions, and identifies therapeutic targets.

Introduction

A central deficiency in our knowledge of cancer concerns how genomic changes drive the 

proteome and phosphoproteome to execute phenotypic characteristics1–4. The initial 

proteomic characterization in the TCGA breast study was performed using reversed phase 

protein arrays; however this approach is restricted by antibody availability. To provide 

greater analytical breadth, the NCI Clinical Proteomic Tumor Analysis Consortium 

(CPTAC) is analyzing the proteomes of genome-annotated TCGA tumor specimens using 
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mass spectrometry5,6. Herein we describe integrated proteogenomic analyses of TCGA 

breast cancer samples representing the four principal mRNA-defined breast cancer intrinsic 

subtypes7,8.

Proteogenomic analysis of TCGA samples

105 breast tumors previously characterized by the TCGA were selected for proteomic 

analysis after histopathological documentation (Supplementary Tables 1 and 2). The cohort 

included a balanced representation of PAM50-defined intrinsic subtypes9 including 25 basal-

like, 29 luminal A, 33 luminal B, and 18 HER2 (ERBB2)-enriched tumors, along with 3 

normal breast tissue samples. Samples were analyzed by high-resolution, accurate mass, 

tandem mass spectrometry (MS) that included extensive peptide fractionation and 

phosphopeptide enrichment (Extended Data Fig. 1a). An isobaric peptide labeling approach 

(iTRAQ) was employed to quantify protein and phosphosite levels across samples, with 37 

iTRAQ 4-plexes analyzed in total. A total of 15,369 proteins (12,405 genes) and 62,679 

phosphosites were confidently identified with 11,632 proteins/tumor and 26,310 

phosphosites/tumor on average (Supplementary Tables 3, 4 and Supplementary Methods). 

After filtering for observation in at least a quarter of the samples (Supplementary Methods, 

Extended Data Fig. 1b) 12,553 proteins (10,062 genes) and 33,239 phosphosites, with their 

relative abundances quantified across tumors, were used in subsequent analyses in this study. 

Stable longitudinal performance and low technical noise were demonstrated by repeated, 

interspersed analyses of a single batch of patient-derived luminal and basal breast cancer 

xenograft samples10 (Extended Data Fig. 1d,e). Due to the heterogeneous nature of breast 

tumors11–13, and because proteomic analyses were performed on tumor fragments that were 

different from those used in the genomic analyses, rigorous pre-specified sample and data 

QC metrics were implemented14,15 (Supplementary Discussion and Extended Data Figures 

2, 3). Extensive analyses concluded that 28 of the 105 samples were compromised by 

protein degradation. These samples were excluded from further analysis with subsequent 

informatics focused on the 77 tumor samples and three biological replicates.

Genome and transcriptomic variation was observed at the peptide level by searching MS/MS 

spectra not matched to RefSeq against a patient-specific sequence database (Fig. 1a). The 

database was constructed using the QUILTS software package16 leveraging RefSeq gene 

models based on whole exome and RNA-seq data generated from portions of the same 

tumors and matched germline DNA (Fig. 1a, Supplementary Table 5). While these analyses 

detected a number of single amino-acid variants (SAAVs), frameshifts, and splice junctions, 

including splice isoforms that had been detected as only single transcript reads by RNA-seq 

(Fig. 1b, Supplementary Table 5), the number of genomic and transcriptomic variants that 

were confirmed as peptides by MS was low (Supplementary Discussion). Sparse detection of 

individual genomic variants by peptide sequencing has been noted in our previous studies16 

and reflects limited coverage at the single amino-acid level with current technology. 

However quantitative MS analysis of multiple peptides for each protein is used to reliably 

infer overall protein levels. This is an advantage for MS since antibody-based protein 

expression analysis is typically based on a single epitope. To illustrate this capability in the 

current data set an initial analysis of three frequently mutated genes in breast cancer (TP53, 

PIK3CA, and GATA3) and three clinical biomarkers (ER, PGR, and ERBB2) was conducted 
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(Fig. 1c, Supplementary Table 6, 7 and Supplementary Discussion). As expected, TP53 

missense mutations were associated with elevated MS-based protein levels, as observed by 

RPPA (Reverse Phase Protein Array), especially in basal-like breast cancer. TP53 nonsense 

and frame-shift mutations were associated with a decrease in TP53 protein levels that was 

particularly striking in the MS data. In contrast, the mostly C-terminal GATA3 frame-shift 

alterations did not result in decreased protein expression when measured by the median of 

all GATA3 peptides, suggesting these proteins are expressed despite truncation. No 

consistent effect of somatic PIK3CA mutation was observed at the level of protein 

expression. Good correlations between RNA-seq and MS-protein expression levels were 

found for ESR1 (r=0.74), PGR (r=0.74), ERBB2 (r=0.84) and GATA3 (r=0.83) with 

moderate correlations observed for PIK3CA (r=0.45) and TP53 (r=0.36). Lower TP53 

protein abundance levels compared to mRNA levels were especially prevalent in luminal 

tumors, suggesting post-transcriptional regulatory mechanisms such as proteasomal 

degradation. To explore this hypothesis a search was made for E3 ligases that showed 

negative correlation to p53 protein (Supplementary Table 8). These analyses identified 

UBE3A (r=−0.42; adj. pval=0.05) (Extended Data Fig. 4a), an established TP53 E3 ligase17. 

In comparing CNA, RNA, and protein levels for GATA3, copy number gains in chromosome 

10q were anti-correlated with RNA and protein levels in basal-like tumors. This observation 

prompted a search for other gains or losses that were anticorrelated with RNA and/or protein 

levels (see Extended Data Fig. 4b for further analyses). Overall, six genes were identified 

that significantly anti-correlated at an FDR<0.05 on both RNA and protein level to their 

CNA signals (Extended Data Fig. 4b). GATA3 amplification on 10q in basal-like breast 

cancer showed the strongest anti-correlation, followed by the hexosamine and glycolysis 

pathway enzymes GFPT2 and HK3, which are upregulated in basal-like breast cancer 

despite being subjected to frequent chromosomal deletion on 5q. Global analysis of the 

correlation of mRNA-to-protein yielded a median Pearson value of r=0.39, with 6,135 out of 

9,302 protein/mRNA pairs (66.0%) correlating significantly at an FDR<0.05 (Extended Data 

Fig. 4c, Supplementary Table 9 and Supplementary Discussion). Similar to the colon cancer 

analysis6 metabolic functions such as amino acid, sugar and fatty acid metabolism were 

found to be enriched among positively correlated genes18 whereas ribosomal, RNA 

polymerase and mRNA splicing functions were negatively correlated. Overall these analyses 

demonstrate the utility of global proteome correlation analysis for both confirmation of 

suspected regulatory mechanisms and identification of candidate regulators meriting further 

investigation.

Copy Number Alterations

To determine the consequences of CNA on mRNA, protein and phosphoprotein abundance, 

both in “cis” on genes within the aberrant locus and in “trans” on genes encoded elsewhere, 

univariate correlation analysis was used as previously described6. A total of 7,776 genes 

with CNA, mRNA and protein measurements were analyzed by calculating Pearson 

correlation and associated statistical significance (Benjamini-Hochberg corrected p-value) 

for all possible CNA-mRNA and CNA-protein pairs (Fig. 2a, Supplementary Table 10, 

Extended Data Fig. 5a, see Methods). For the phosphoproteome, 4,472 CNA-phosphoprotein 

pairs were analyzed (Extended Data Fig. 5b). Significant positive correlations (cis) were 
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observed for 64% of all CNA-mRNA, 31% of all CNA-protein, and 20% of all CNA-

phosphoprotein pairs Fig. 2b. Proteins and phosphoproteins correlated in cis to CNA were, 

for the most part, a subset of the cis effects observed in mRNA-to-CNA correlation (Fig. 2b, 

Supplementary Table 10). The fractional difference of well-annotated oncogenes and tumor 

suppressor genes among the significantly cis-correlated CNA-to-mRNA and -protein gene 

pairs was analyzed. Based on a reference list of 487 oncogenes and tumor suppressors 

(Supplementary Table 10), these cancer relevant genes occur 37.6% more frequently in the 

subset of genes that correlate both on CNA/mRNA and CNA/protein levels than in the 

subset that only correlate on CNA/mRNA but not on CNA/protein level (Fisher exact p-

value=0.02). This suggests that CNA events with a tumor promoting outcome more likely 

lead to cis regulatory effects on both the protein and mRNA level, whereas CNA events with 

no documented role in tumorigenesis are more likely to be neutralized on the protein level 

than on the RNA level. Trans effects (Fig. 2a) appear as vertical bands, with accompanying 

frequency histograms (in blue) highlighting “hot spots” of significant trans effects. Using a 

minimum threshold of 50 trans-affected genes, 68% of the tested genes were associated with 

trans effects on the mRNA level, whereas only 13% were associated with effects on the 

protein level and 8% on the phosphoprotein level. Importantly, CNA-protein correlations 

appeared to be a reduced representation of CNA-mRNA correlations. Furthermore, for many 

CNA regions correlations were more directionally uniform on the protein level than on the 

mRNA level. CNA regions exhibiting the most trans associations at the protein level were 

found on chromosomes 5q (LOH in basal; gain in LumB), 10p (gain in basal), 12 (gain in 

basal), 16q (LumA deletion), 17q (LumB amplification), and 22q (LOH in luminal and 

basal) (Extended Data Fig. 5a).

Trans associations are not necessarily direct consequences of the chromosomal aberration. 

For example since 5q loss occurs in at least 50% of basal-like breast cancers19, many of the 

trans effects involve genes that mark the basal-subtype. To identify candidate driver genes 

whose copy number alterations are direct drivers of trans effects, results were compared with 

functional knock-down data on 3,797 genes in the Library of Integrated Cellular Signatures 

(LINCS) database (http://www.lincsproject.org/)20–22. For any given gene with copy number 

alterations (“CNA-gene”), sets of genes were identified corresponding to proteins that 

changed where there was gain (“CNA-gain trans gene set”) or loss (“CNA-loss trans gene 

set”). These gene sets were then compared to the effects of gene knock down in the LINCS 

database (see Methods). Queries for 502 different CNA-genes meeting the criteria defined 

above identified 10 CNA-genes that could be functionally connected to both CNA-gain and 

CNA-loss trans protein-level effects (Extended Data Fig. 5c, Supplementary Table 11). A 

permutation-based approach implemented to test significance (see Supplementary Methods) 

yielded an FDR < 0.05 for 10 genes affected by both CNA gains and losses (Fig. 2c). These 

proteins were defined as potential regulatory candidates for the CNA trans effects observed 

on the proteome level in this study, since in a gene-dependent manner on average 17% of 

these trans effects were consistent with the knockdown profiles. Notably, the established 

oncogenic receptor tyrosine kinase ERBB2 was functionally connected only to CNA gain 

trans effects (Supplementary Table 11). The E3 ligase SKP123 and the ribonucleoprotein 

export factor CETN3, both located on chromosome arm 5q with frequent losses in basal-like 

breast cancer and less frequent gains in luminal B breast cancer, were detected as potential 
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regulators affecting the expression of the tyrosine kinase and therapeutic target EGFR, and 

SKP1 also was linked to SRC (Extended Data Fig. 5d). Another potential regulator, FBXO7, 

(a substrate recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 

ubiquitin ligase complex), was affected mostly by LOH events on chromosome 22q. 

Interestingly, in a recent human interaction proteome study SKP1 and FBXO7 were listed as 

interaction partners24.

Clustering and Network analysis

Transcriptional profiling has converged on four major breast cancer subtypes: Luminal A 

and B, basal and HER2-enriched1,9. To investigate the extent to which the PAM50 

“intrinsic” breast cancer classification scheme is reflected or refined on the proteome level in 

the CPTAC samples, clustering analyses were first restricted to the reduced set of PAM50 

genes. When RNA data for the 50 PAM50 genes were clustered directly (without using a 

classifier), the clustering was similar to the TCGA PAM50 annotation (second annotation 

bar in Fig. 3a). Restricting both the RNA and proteome data to the set of 35 PAM50 genes 

observed in the proteome produced a similar result (bottom two annotation bars in Fig. 3a), 

and all the major PAM50 groups were recapitulated in the proteome almost as well as in the 

RNA data. This indicates that although different tissue sections of the same tumors were 

used for RNA-seq and protein analysis, very similar subtype-defining features can be 

observed in both data types. Global proteome and phosphoproteome data were then used to 

identify proteome subtypes in an unsupervised manner. Consensus clustering identified 

basal-enriched, luminal-enriched, and stromal-enriched clusters (Extended Data Figs. 6a–d, 

7a). Unlike the clustering observed with PAM50 genes, mRNA-defined HER2-enriched 

tumors were distributed across these three proteomic subgroups. The basal-enriched and 

luminal-enriched groups showed a strong overlap with the mRNA-based PAM50 basal-like 

and luminal subgroups, whereas stromal-enriched proteome subtype represented a mix of all 

PAM50 mRNA-based subtypes, and has a significantly enriched stromal signature 

(Extended Data Fig. 3e). Among the stromal-enriched tumors there was strong 

representation of reactive type I tumors as classified by RPPA (Supplementary Table 12), 

showing agreement between the RPPA and mass spectrometry-based protein analyses for the 

detection of a tumor subgroup characterized by stromal gene expression1.

Since the basal- and luminal-enriched proteome subgroups are coherent, pathway analyses 

were conducted on these two subtypes, using the stromal-enriched subgroup as a control to 

assess specificity. (Fig. 3c, Extended Data Fig. 7b, Supplementary Table 13). The luminal-

enriched subgroup was exclusively enriched for estradiol and ESR1-driven gene sets. In 

contrast, multiple gene sets were enriched and upregulated specifically in the basal-like 

tumors. Particularly extensive basal-like enrichment was seen for MYC target genes; for cell 

cycle, checkpoint, and DNA repair pathways including regulators AURKA/B, ATM, ATR, 

CHEK1/2, and BRCA1/2; and for immune response/inflammation, including T-cell, B-cell, 

and neutrophil signatures. The complementarity of transcriptional, proteomic, and 

phosphoproteomic data was also highlighted in these analyses (Extended Data Fig. 7c, d).

Using phosphorylation status as a proxy for activity, phosphoproteome profiling can 

theoretically be used to develop a signaling pathway-based cancer classification. K-means 
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consensus clustering was therefore performed on pathways derived from single sample 

GSEA analysis of phosphopeptide data (Methods, Supplementary Tables 14 and 15). Of four 

robustly segregated groups, subgroups 2 and 3 substantially recapitulated the stromal- and 

luminal-enriched proteomic subgroups, respectively (Fig. 3d, Extended Data Fig. 8a). 

Subgroup 4 included a majority of tumors from the basal-enriched proteomic subgroup, but 

was admixed particularly with luminal-enriched samples. This subgroup was defined by 

high levels of cell cycle and checkpoint activity. All basal and a majority of non-basal 

samples in this subgroup had TP53 mutations. Consistent with high levels of cell cycle 

activity, a multivariate kinase-to-phosphosite abundance regression analysis highlighted 

CDK1 as one of the most highly connected kinases in this study (Extended Data Fig. 8b, 

Supplementary Table 16). Subgroup 1 was a novel subgroup defined exclusively in the 

phosphopeptide/pathway activity domain, with no enrichment for either proteomic or 

PAM50 subtypes. It was defined by G-protein, G-protein coupled receptor, and inositol 

phosphate metabolism signatures, as well as ionotropic glutamate signaling (Fig. 3d). Co-

expression patterns among genes/proteins across different subgroups were also analyzed 

using a Joint Random Forest (JRF) method25 that identified network modules, such as an 

MMP9 module, with different interaction patterns between basal-enriched and luminal-

enriched subgroups. These latter patterns appeared specific to the proteome-level data 

(Extended Data Fig. 8 c–f, Supplementary Table 17 and Supplementary Methods).

Phosphosite markers in PIK3CA and TP53 mutant breast cancer

TP53 and PIK3CA are the most recurrently mutated genes in breast cancer, with frequencies 

for PIK3CA at 43% in luminal tumors and for TP53 at 84% in basal-like tumors1. Most of 

the PIK3CA missense mutations were gain of function mutations and therefore expected to 

lead to an activation of the PI3K signaling cascade, but the extent to which this occurs has 

been controversial and there is uncertainty which pathway components are effectors26,27. 

Marker selection analysis was therefore performed for upregulated phosphosites in PIK3CA-

mutated tumors. In total, 62 phosphosites were identified that were positively associated 

with PIK3CA mutation (FDR<0.05), including the kinases RPS6KA5 and EIF2AK4 

(Extended Data Fig. 9a, Supplementary Table 18). Calculating the average phosphorylation 

signal of these marker phosphosites provided a read-out for PI3K pathway activity in 

PIK3CA-mutated tumors, with 15 of the 26 mutated tumors (58%) exhibiting an activated 

PIK3CA mutation signature. Of note, the identified PIK3CA mutant phosphoproteome 

signature was activated in all tumors harboring helical domain PIK3CA mutations but only 2 

of 10 tumors harboring kinase domain mutations. To test if the identified differences in the 

phosphoproteome of PI3K mutant versus wild-type tumors could be explained by mutation 

of PIK3CA, the tumor data were compared to phosphosite signatures derived from isogenic 

PIK3CA mutant cell lines28 (Extended Data Fig. 9b, Supplementary Table 18). There was an 

enrichment of signatures derived from helical domain-mutated isogenic cell lines, but not 

from kinase domain-mutated cells, supporting the observations in primary tumors.

The same strategy was used to identify phosphorylation signaling events connected to TP53 

mutation. A total of 56 phosphosites upregulated in TP53 mutant tumors were identified that 

were independent of basal-like subtype association (Extended Data Fig. 9c, Supplementary 

Table 18). Using the average phosphorylation signal of these marker phosphosites as a proxy 
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for TP53 mutation-driven cell cycle control, 22 of 41 mutated tumors (54%) showed 

upregulated signals. This TP53 mutant phosphosignature was somewhat enhanced in tumors 

in which mutations occurred almost exclusively in the DNA binding region compared to 

those with non-sense/frameshift mutations. In addition to the well-described checkpoint 

kinase CHEK2, significantly upregulated phosphosites were identified for the kinases 

MASTL and EEF2K in TP53-mutated tumors. Single sample GSEA analysis of isogenic 

p53-mutant phosphosignatures showed an enrichment of a phosphosignature derived from 

R273H mutated isogenic cells (Extended Data Fig. 9d), confirming the pronounced effect of 

missense mutations in the DNA-binding region on phosphorylation pathways.

Identification of gene amplification and breast cancer subtype-specific 

activated kinases in human breast cancer

CNA spans many driver gene candidates and RNA expression has been frequently used to 

narrow candidate nominations. Proteogenomic analysis should further promote this 

nomination process. In this candidate refinement a focus on protein kinases is warranted, 

since many are drug targets. An in-depth proteogenomic pipeline was developed that flagged 

kinases, expression levels of which were at least 1.5 interquartile ranges higher than the 

median (Supplemental Table 19). A proteogenomic circos-like29 plot (termed a “pircos” 

plot) was used to map these outlier kinase values onto the genome (Fig. 4a,b, Extended Data 

Fig. 10a). The ERBB2 locus showed the strongest effect of increased phosphoprotein levels 

associated with gene amplification-driven RNA and protein over expression (Fig. 4a). 

CDK12 is a positive transcriptional regulator of homologous recombination repair genes 

with its partner Cyclin K30, and is often encompassed by the ERBB2 amplicon. This gene 

was also found to be upregulated at the RNA, protein and phosphosite level indicating that 

CDK12 is highly active in the majority of ERBB2 positive tumors (Fig. 4a). The analysis of 

the ERBB2 amplicon also uncovered co-outlier phosphorylation status for MED1, GRB7, 

MSL1, CASC3 and TOP2A, all previously described in association with ERBB2 

amplification. To better understand the downstream effects of ERBB2 amplification, 

additional phosphosite outliers were identified in 41 known ERBB2 signaling genes for the 

15 samples that had ERBB2 phosphosite outlier expression (Extended Data Fig. 10b).

These canonical findings stimulated a proteogenomic analysis to identify additional outlier 

kinases in the breast cancer genome. A proteogenomic dissection of chromosome 11q based 

on PAK1 amplification (Fig. 4b,c), a breast cancer driver kinase31, illustrated that PAK1 is 

hyperphosphorylated in PAK1 amplified tumors, along with CLNS1A, RFS1 and GAB232. 

Additional examples of outlier kinases included PTK2 and RIPK2 in association with 

amplification of chromosome 8q (Fig. 4c; Extended Data Fig. 10a,c). PAK1 and TLK2 

(17q23) appear to be luminal breast cancer specific events Fig. 4c; Extended Data Fig. 10c). 

To further examine whether outlier kinases were breast cancer subtype-specific, independent 

of amplification status, the BH-corrected probability was calculated of finding that number 

of phosphosite outliers within a subtype, given the total number of outliers across all 

subtypes, the subtype sample size and the total sample size. (Fig. 4d). These analyses led to 

the expected identification of ERBB2 in the HER2-enriched subtype at the 5% FDR level, as 

well as the new finding of CDC42BPG (MRGKG), an effector kinase for RHO-family 
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GTPases33. In basal-like breast cancer, two kinases, PRKDC and SPEG, were significant at 

the 5% FDR level. PRKDC is a non-homologous end-joining (NHEJ) factor that can be 

phosphorylated by ATM kinase, and is therefore a logical finding in this disease subset34. 

However SPEG, a kinase associated with severe dilated cardiomyopathy when suppressed35, 

has not been previously reported in association with breast cancer. A larger number of 

subtype-specific kinases were detected at the 10% FDR level, several of which have recently 

described relevance in breast cancer, including PRKD3 in basal-like breast cancer36, the 

LKB-regulated SIK3 in luminal A breast cancer37 and CDK13 in luminal B breast cancer, 

which, similar to CDK12, can interact with Cyclin K30.

Discussion

The analytic breadth and depth of proteomic and phosphoproteomic analyses displayed in 

this study demonstrates the strengths of mass spectrometry-based proteomics, but also some 

of the limitations inherent in proteolytic peptide sequencing (see Supplementary 

Discussion). An example of how high-dimensional proteomic analysis provides insight into 

unresolved genomic issues concerns the study of loss of the long arm of chromosome 5 (5q). 

Analysis of RNA and protein correlations narrowed the list of potential trans-deregulated 

proteins. Orthogonal candidate screening using functional genomics methods identified loss 

of CETN3 and SKP1 as potential transregulators, with upregulation of EGFR as a 

downstream consequence in basal-like breast cancers. While further experimental evidence 

must be sought for these proposed regulatory relationships, SKP1/Cullin complex has 

already been linked to EGFR activation in Glioma38. Unfortunately EGFR targeting has not 

to date proven to be effective therapy in basal-like breast cancer39. This might be due to the 

fact the SKP1 loss deregulates multiple targets requiring a much broader inhibitory strategy.

It is recognized that PIK3CA mutations do not strongly activate canonical downstream 

effectors28. Mass spectrometry-based phosphoproteomics provides an opportunity for 

unbiased examination of downstream signaling events consequent upon PIK3CA mutational 

activation. These studies revealed that common PIK3CA mutations affect a large number of 

targets with diverse functionalities including the kinases RPS6KA5 and EIF2AK4. Thus, the 

data and analyses reported here extend our knowledge of the effectors that promote 

tumorigenesis in response to constitutive activation of PI3 kinase. Similarly, TP53 mutation-

associated phosphopeptides point towards novel functionalities, including regulation of the 

kinases MASTL and EEF2K.

A central goal in breast cancer research has been the identification of druggable kinases 

beyond HER2. Candidate genes that exhibited similar gene amplification-driven 

proteogenomic patterns to HER2 included CDK12, TLK2, PAK1 and RIPK2. The 

proteogenomic link with gene amplification was particularly strong for CDK12, in keeping 

with its location in the ERBB2 amplicon, while the strengths of correlation between DNA 

amplification, RNA, protein and phosphoprotein for the other examples were more variable. 

The presence of activated CDK12 in the ERBB2 amplicon might explain why tumors arising 

in BRCA1 carriers are usually ERBB2 negative. As a positive transcriptional regulator of 

BRCA1 and multiple FANC family members, CDK12 promotes DNA repair by homologous 

recombination. CDK12 amplification would, therefore, oppose the functional effects of 
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BRCA1 haploinsufficiency during tumor evolution30. Overall, multiple outlier kinases 

generate testable therapeutic hypotheses for which enabling inhibitors are in development. 

For example PAK1 has recently been confirmed to be a therapeutic target and poor 

prognosis factor in luminal breast cancer40.

Although incomplete outcome data and the remarkable heterogeneity of breast cancer are 

additional relevant constraints, the number of TCGA specimens analyzed here is insufficient 

to support conclusive clinical correlations. Only 8 deaths occurred among the 77 patients, 

which are too few samples to provide sufficient statistical power for association analysis. 

Adequately powered MS-based clinical investigation will require targeted approaches41, 

especially given the highly limited amount of patient material available from clinical trials 

and the mostly formalin-fixed nature of the specimens. The current analysis is therefore 

centered on biological findings and correlations, with orthogonal validation and false 

discovery concerns addressed through an examination of cell-line databases of the effects of 

individual gene perturbations. Typical of a multi-tiered analysis of this complexity, there are 

many hypotheses to test, and many findings that require further investigation.

In conclusion, this study provides a high-quality proteomic resource for human breast cancer 

investigation and illustrates technologies and analytical approaches that provide an important 

new opportunity to connect the genome to the proteome. Larger-scale exploration of 

discovery proteomics in the clinical setting will require improvements in clinical 

investigation, including acquisition of adequate amounts of optimally collected tumor tissue 

both before and during therapy as well as advances in MS proteomics to reduce sample input 

and increase sensitivity for low abundance proteins and modified peptides.
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Extended Data

Extended Data Figure 1. Experimental and data analysis workflows and longitudinal data 
generation quality control
a, iTRAQ 4-plex global proteome and phosphoproteome analysis workflow. 105 TCGA 

breast tumors were analyzed in 35 iTRAQ 4-plex experiments (plus 1 replicate and 1 normal 

sample experiment), with three tumors of different subtypes compared to a fourth common 

internal reference sample in each experiment. The reference sample comprised 10 individual 

tumors of each of the 4 major breast cancer intrinsic subtypes and served as an internal 
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standard for all proteins and phosphoproteins quantified in this study. Each iTRAQ MS/MS 

spectrum measures a peptide from 4 samples (3 individual patients and the reference sample 

mix of 40 patients). More than 400,000 distinct peptides were identified and quantified in 

~14 million MS/MS spectra. Personalized tumor-specific protein databases were generated 

in the QUILTS software package using whole exome sequencing-derived variant calls and 

RNAseq-derived transcript information. All mass spectrometry data was analyzed using the 

Spectrum Mill software package. b, Overview of proteome and phosphoproteome datasets. 

The table provides a summary of the datasets used in specific analyses, including the filters 

applied to derive the proteins and phosphosites/phosphoproteins that constitute each dataset; 

the protein, phosphosite or phosphoprotein count; and the methods that employ the 

respective datasets. c, Distribution of sequence coverage of the identified proteins with 

tryptic peptides detected by MS/MS, whiskers show the 5–95 percentiles. d and e, Robust 

and accurate proteome/phosphoproteome platform. Longitudinal performance was tested by 

repeated proteome and phosphoproteome analysis of patient-derived xenograft tumors. 

Scatterplots, histograms and Pearson correlations comparing individual replicate 

measurements are shown.
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Extended Data Figure 2. Tumor sample quality control (I)
a, Remark diagram showing sample processing and partitioning. Initial quality review 

encompassed histopathological examination of H&E stained tissue slices. *For 3 samples no 

tumor cells were seen on histopathology (BH-A0E9, BH-A0C1, A2-A0SW). These samples 

were nevertheless included in the proteome analysis since other quality control standards 

were met (see below) and samples with 0% tumor cellularity on top or bottom sections were 

included in TCGA analyses. b, correlation of TCGA (top or bottom sections) and CPTAC 

histological assessment of neoplastic cellularity for samples (n = 105). The average and 
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range of neoplastic cellularities were identical for CPTAC and TCGA histological 

assessments. Averages (standard deviations) for neoplastic cellularity were 76% (+/− 17) for 

CPTAC, 76% (+/− 15) for TCGA_Top, and 75% (+/− 18) for TCGA_Bottom histopathology 

slides (Supplementary Table 2). Note that in three CPTAC cases where no tumor cells were 

identified by histopathological assessment, numbers of protein-level somatic variants were 

similar to all other tumors. The identified mutated proteins were TP53_R273C, 

NOP58_Q23E, TAGLN2_G154R, TUBA1B_D116H, and MRPL48_I173K (Supplementary 

Table 5), indicating presence of tumor cells in these samples. c, Proteome iTRAQ tumor/

internal reference ratio heatmap for all CPTAC samples (8,028 proteins without missing 

values) including passed and failed proteomic quality control (QC) samples. d, Global 

tumor/reference proteome ratio distributions for samples that passed and failed proteomic 

quality control analysis. e, Degradation-related gene sets were enriched in tumors that failed 

proteomic quality control analysis. f, Variant allele frequency (VAF) analysis of re-

sequenced CPTAC tumors and comparison to original TCGA data. Overall VAFs for failed 

QC samples were lower compared to passed samples suggesting lower purity.
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Extended Data Figure 3. Tumor sample quality control (II)
a, There was high concordance (94.6%) between DNA variants reported by TCGA and 

CPTAC re-sequenced tumors. Most point mutations reported by TCGA could be identified 

across the 8 re-sequenced samples used in the study. b, A high overall correlation 

(mean=0.77) was observed for the CPTAC Variant Allele Fraction (VAF) (X-axis) and 

TCGA VAF (Y-axis) across the 8 samples used in the study. c, Agglomerative hierarchical 

clustering (Supplementary Methods Section 3.8) used to co-cluster protein and RNA tumor 

expression data after filtering to retain 4,291 proteins and genes with moderate to high 
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protein-RNA correlation (Pearson correlation > 0.4) with results displayed as a circular 

dendrogram (fanplot). The proteome (.P) and RNA (.R) components of each sample are 

labeled using the same color. The outer ring shows proteome samples in light grey and RNA 

samples in dark grey. High concordance between RNA and protein expression is evident 

from the color adjacency in the inner ring and alternating color in the outer ring showing that 

RNA and protein components co-cluster for a large proportion of samples (62/80). d, Co-

clustering of MS and RPPA tumor data. 126 RPPA readouts were mapped to gene names. 

These genes were intersected with the genes observed in the MS proteome, filtered to 48 

proteins with moderate or higher RPPA-MS protein correlation, and analyzed for co-

clustering as in c. 47 of 80 RPPA-MS protein pairs co-cluster. While this is a smaller 

proportion than for RNA-protein analysis, the number of genes used in the clustering is 

significantly smaller for RPPA (48 vs. 4,291 for RNA). e, ESTIMATE tumor purity 

comparison between mRNA, RNAseq, and proteome data. ANOVA is used to assess the 

difference in distribution (−log10(p-value)) of ESTIMATE, stromal, immune, and tumor 

purity scores across mRNA (microarray), RNA-seq and proteome data. The only significant 

p-value (=0.02) is for the Cluster 3 stromal score, and higher stromal scores for the proteome 

drive that difference. f, Ischemia score analysis. Comparison of ischemia scores of 77 

CPTAC tumors, 3 normal samples, and patient-derived xenografts. CPTAC tumors had 

generally lower ischemia scores than PDX samples subjected to 30 minutes of cold 

ischemia. Median ischemia scores are less than 30 minutes for each subtype and no 

significant differences were observed across subtypes. Effects due to cold ischemia therefore 

appear to be negligible in this CPTAC sample collection.
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Extended Data Figure 4. Protein-to-Protein, -CNA, and -mRNA correlation analyses
a, Identification of UBE3A as an E3 ubiquitin ligase that negatively correlates to p53 on the 

protein level. Pearson correlation and Benjamini-Hochberg corrected p-value are shown. b, 

Analysis of counter-regulated genes with negative correlation of CNA-to-RNA as well as 

CNA-to-protein levels. Negative Pearson correlations are shown with Benjamini-Hochberg 

corrected p-values for CNA-to-protein correlations. Depicted genes have significant negative 

correlations at FDR<0.05 in the CNA-to-RNA and CNA-to-protein analyses. c, Global 

mRNA-to-protein correlation and gene set enrichment analysis.
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Extended Data Figure 5. Global CNA effects and comparison of CNA TRANS effects to 
knockdown signatures in the LINCS database
a, CNA landscape in the CPTAC tumor collection. The segment-based CNAs of 77 samples 

were downloaded from TCGA Firehose, including 18 Basal, 12 Her2, 23 Luminal A and 24 

Luminal B subtypes. Copy number amplifications were marked in red and deletions in blue. 

The bottom color key represents the log2 transformed copy number value, with CNA=2 

centered at 0. Specific CNA events are seen for chromosome 5q and 10p regions in basal-

like tumors. b, Correlations of copy number alterations (x-axis) to phosphoprotein levels (y-

axis) highlight new CNA cis and trans effects. Significant (FDR<0.05) positive (red) and 
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negative (green) correlations between CNA and phosphoproteins are indicated. Histograms 

show the fraction [%] of significant CNA trans effects for each CNA gene. c, LINCS CMap 

analysis facilitates identification of novel functional candidates for CNA trans effects. 

Knockdown profiles were compared with CNA/protein trans effects for 502 genes. Genes 

with a connectivity score >|90| were considered connected and significant cis effects were 

annotated at an FDR<0.05. d, Basal-like tumor-specific CNAs are candidate regulatory 

events for EGFR and SRC expression levels. Oncogenic kinases with significant CNA/

protein trans effects (left panel), that were regulated in LINCS shRNA experiments (right 

panel; 4 cell lines,) and directly measured as LINCS landmark genes, are shown alongside 

candidate regulatory genes CETN3 and SKP1. Clinical ER, PR, and HER2 annotation and 

PAM50 classification are shown in the header rows of each column.

Extended Data Figure 6. Proteome cluster heatmap and stability analysis
a, K-means consensus clustering of proteome and phosphoproteome data identifies three 

subgroups: basal-enriched, luminal-enriched, and stromal-enriched. The heatmap represents 
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all 1,521 proteins used for clustering (Dataset G8). b, Identification of optimal proteome 

clusters for QC-passed CPTAC breast cancer tumors. Proteome clusters were derived using 

consensus clustering based on 1000 resampled datasets, exploring the range of 2 to 6 k-

means clusters. Visualization of consensus matrices from k-means consensus clustering for 

k=3, 4, 5 and 6 target clusters. Consensus clustering was performed on 1,521 proteins with 

no missing values and SD>1.5. c, Silhouette plots were generated to evaluate the coherence 

of the clustering. Silhouette plots for k=3 and k=4 clusters showing a cleaner separation of 

clusters for k=3. d, Based on both visual inspection of the consensus matrix and the delta 

plot assessing change in consensus cumulative distribution function (CDF) area, three 

robustly segregated groups were observed. Consensus cumulative distribution function 

(CDF) and delta area (change in CDF area) plots for 2–6 clusters.
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Extended Data Figure 7. Proteome cluster markers and enriched pathways
a, Markers (based on SAM analysis; FDR<0.01) discriminate between proteome clusters 1, 

2 and 3 (compare to heatmap of proteins used to derive clusters depicted in Extended Data 

Fig. 6a). b, Applying a Fisher exact test-based enrichment analysis to the proteome, 

phosphoproteome and mRNA data, gene sets from MSigDB were identified that were 

unique for each proteome cluster. Heat map showing specific pathways comprising 

dominant biological themes that are significantly differential by enrichment analysis 

between basal-enriched and luminal-enriched tumors (Fisher Exact Test Benjamini-
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Hochberg corrected p-values are shown; enrichment test performed on marker sets identified 

using SAM analysis; see Methods; compare to Figure 3c). c, Heatmap showing a selection 

of gene sets significant in basal-enriched or luminal-enriched tumors exclusively by mRNA, 

protein or phosphoprotein expression. Cytokine signatures, for example, were strongly 

captured at the mRNA level, but were seen to only a limited degree at the global protein 

level, likely because of their typically low protein abundance. By contrast, the vast majority 

of significant gene sets annotated as "signaling" were enriched only at the phosphoprotein 

level. d, Global heat map representing all gene sets significantly enriched in at least one of 

the proteomic breast cancer subtypes. The stromal-enriched group was characterized by 

breast cancer normal-like, adipocyte differentiation, smooth muscle, toll-like receptor 

signaling and endothelin gene sets, supporting the clustering-based annotation of high 

stromal and/or adipose content in these tumors (see Supplemental Table 13).
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Extended Data Figure 8. Phosphoproteome pathway clustering, kinase-phosphosite multivariate 
regression, and protein co-expression networks
a, Phosphoproteome pathway clustering. Using phosphorylation state as a proxy for activity, 

deep phosphoproteome profiling allows development of a breast cancer molecular taxonomy 

based on signaling pathways. K-means consensus clustering was performed on pathways 

derived from single sample GSEA analysis of phosphopeptide data (908 pathways shown). 

Of four robustly segregated groups, subgroups 2 and 3 substantially recapitulated the 

stromal- and luminal-enriched proteomic subgroups, respectively. Subgroup 4 included a 

significant majority of tumors from the basal-enriched proteomic subgroup, but was 
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admixed particularly with luminal-enriched samples. This subgroup was defined by high 

levels of cell cycle and checkpoint activity. All basal and a majority of non-basal samples in 

this subgroup had TP53 mutations. Subgroup 1 was a novel subgroup defined exclusively in 

the phosphopeptide / pathway activity domain, with no enrichment for either proteomic or 

PAM50 subtypes. It was defined by G-protein, G-protein coupled receptor, and inositol 

phosphate metabolism signatures, as well as ionotropic glutamate signaling. b, Analysis of 

the regulatory relationship between outlier kinases (see Supplementary Table 19) and 

phosphopeptides by regulatory multivariate regression analysis (see Methods) identified 

CDK1 as the most highly connected of the outlier Cyclin-Dependent Kinases, with highest 

centrality (based on node-degree; see Methods) among the outlier CDKs and seventh highest 

centrality among all the outlier kinases considered in the remMap analysis. Each line 

represents a phosphosite-kinase relationship. c–f, Analysis of differences in the co-

expression patterns among genes/proteins across different subgroups. A Joint Random 

Forest (JRF) method was applied to simultaneously build gene co-expression and protein co-

expression networks (Supplementary Table 17, and Methods). Modules in these networks 

revealed different interaction patterns between basal-enriched and luminal-enriched 

subgroups. c, Network module P1 of the protein co-expression network, defined chiefly in 

the proteome space. This module contained 12 genes connected by 39 edges, among which 

34 were protein-specific and 5 were shared by both the protein and mRNA co-expression 

networks. Many edges were supported by published information and were contained in the 

STRING database. Edges in red are specific to the protein co-expression network; edges in 

green are shared by both protein and gene co-expression networks; edges indicated by 

double lines are contained in the STRING database with confidence score greater than 0.15. 

MMP9, one of the central proteins in this module, contributes to metastatic progression and 

is a potential target for anti-metastatic therapies for basal-like / triple negative breast cancer. 

d, Heatmaps of the absolute correlation across each pair of genes in module P1 (shown in 

Panel c), based on either protein or gene expression data for samples in the basal-enriched 

and luminal-enriched subgroups, respectively. The MMP9 protein was strongly co-expressed 

with the other members of the module only in the basal-enriched subgroup. Notably, this 

observation is dependent on protein data; the correlation at the mRNA level for this module 

was consistently low in both the basal-enriched and luminal enriched subgroups indicating 

that these events coherently occur at the proteomic level. e, Co-expression network based on 

proteomics data. The network contains 693 proteomic network-specific edges (grey) and 792 

edges shared with the RNAseq network (green). For each module, the most enriched 

category and corresponding Benjamini-Hochberg adjusted p-value is reported. Pie charts 

adjacent to each module show the proportion of proteomics-specific edges (grey area) and 

edges shared between proteomics and RNAseq data (green area). f, RNAseq network.
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Extended Data Figure 9. Phosphoproteome signatures of PIK3CA (a,b) and TP53 (c,d) mutated 
tumors highlight activated key regulators and indicate frequency of activation
a and c, Phosphosites upregulated in mutated tumors (SAM FDR<0.05 across all tumors and 

independently also across luminal tumors; average phosphosite signal for all markers shown 

as bar graph). To avoid confounding by intrinsic subtype-specific distinctions, only markers 

that were significantly identified both in analyses covering all tumors and analyses restricted 

to luminal tumors were selected (FDR <0.05). Color bars in the margins indicate FDRs for 

grouped analysis of different mutation classes and indicate kinase substrates of known 

kinases in the respective pathways. Significantly regulated kinase phosphosites are 
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annotated. The average phosphorylation signal of the marker phosphosites provides a read-

out for PI3K and TP53 pathway activity in mutated tumors (histogram below heatmap). A 

95% prediction confidence interval (indicated by dashed lines) across the average signal in 

non-mutated tumors was chosen in order to discriminate active from non-active tumors. The 

most strongly activated PIK3CA kinase domain mutant tumor differed from the other 9 

kinase domain mutant tumors, as it contained an amino acid side chain charge neutral 

H1047L instead of the more common positively charged H1047R mutation. Among the 62 

phosphosites identified that were significantly upregulated in PIK3CA mutated tumors, 13 

phosphosites were found on phosphoproteins that are known substrates of well-annotated 

kinases in the PIK3CA pathway (panel a, right column). In the mutant TP53 analysis a total 

20 phosphosites were found on phosphoproteins that are known substrates of well annotated 

kinases in the p53 pathway (panel c, right column). b and d, Upregulated phosphosite sets 

were derived from isogenic PIK3CA and TP53 mutant versus wild-type cell line pairs and 

tested for enrichment within mutant versus wild-type CPTAC tumors using single sample 

GSEA. Significantly enriched phosphosite sets are shown (p<0.05).
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Extended Data Figure 10. PIRCOS plots, kinase outliers and outliers in the ERBB2 pathway
a, Pircos (Proteogenomics CIRCOS) plots for 8q and 17q showing median CNA, RNA, 

protein, and phosphosite expression for 20 tumors with amplification in 8q based on RIPK2 

CNA>1; 23 tumors with amplification in 8q based on PTK2 CNA>1; 15 tumors with 

amplification in 17q based on CDK12 CNA >1; and 10 tumors with amplification in 17q 

based on TLK2 CNA>1. Red indicates expression >1, blue < −1, and grey between −1 and 

1. Genes with both copy number amplification (CNA>1) and increased phosphosite 

expression (p-site>1) are labeled. b, Phosphosite outliers in known ERBB2 signaling genes. 
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To better understand the downstream effects of ERBB2 amplification, phosphosite outliers 

in known ERBB2 signaling genes (MSigDB pathway set, KEGG_ERBB_SIGNALING 

PATHWAY) were identified for the 15 samples that had ERBB2 phosphosite outlier status. 

Forty-one genes were identified as having a phosphosite outlier in at least one of the ERBB2 

amplified samples. PAK4 and ARAF phosphosite outlier status were found in seven of the 

15 ERBB2 kinase outlier samples; GSK3B outliers were found in 6 samples; and 

EIF4EBP1, MAP2K2, ABL1 and AKT1 outlier status was found in 5 of the 15 samples. c, 

Proteogenomic outlier expression analysis for TLK2 and RIPK2. Samples with outlier 

phosphosite (red), protein (yellow), RNA (green) and copy number (purple) expression are 

shown. Phosphosite squares indicate per-sample outlier phosphosites.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Proteogenomic analysis of human breast cancer. Direct effects of genomic alterations 
on protein level
Overlap of a, protein coding single amino acid variants (SAAVs) and b, RNA splice 

junctions not present in RefSeq v60 detected by DNA exome sequencing, RNA-seq, and 

LC-MS/MS. Proportions of novel variants are noted. c, Heatmap of mutations/CNA and 

their effects on RNA and protein expression of breast cancer-relevant genes across tumor 

and normal samples. ER, PR, HER2 and PAM50 status are annotated. Median iTRAQ 

protein abundance ratio and the most frequently detected and differential phosphosite ratio 

are shown for each gene. Pearson correlations between MS protein vs RNA-seq and MS 

protein vs RPPA are indicated.
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Figure 2. Effects of copy number alterations (CNA) on mRNA, protein, and phosphoprotein 
abundance
a, Correlations of CNA (x-axes) to RNA and protein expression levels (y-axes) highlight 

new CNA cis and trans effects. Significant (FDR<0.05) positive (red) and negative (green) 

correlations between CNA and mRNAs or proteins are indicated. CNA cis effects appear as 

a red diagonal line, CNA trans effects as vertical stripes. Histograms show the fraction [%] 

of significant CNA trans effects for each CNA gene. b, Overlap of cis effects observed at 

RNA, protein, and phosphoprotein levels (FDR<0.05). c, Trans-effect regulatory candidates 

identified among those with significant protein cis-effects using LINCS CMap. Bars indicate 

total numbers of significant CNA/protein trans effects (gray; FDR<0.05) and overlap with 

regulated genes in LINCS knock-down profiles (red; 4 cell lines; moderated T-test 

FDR<0.1).
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Figure 3. Proteomic and phosphoproteomic subtypes of breast cancer and subtype-specific 
pathway enrichment
a, Unsupervised clustering of RNA-seq and proteomics data restricted to PAM50 genes and 

subset of 35 detected proteins reveal high similarity to PAM50 (TCGA) sample annotation. 

b, K-means consensus clustering of proteome and phosphoproteome data identifies basal-

enriched, luminal-enriched, and stromal-enriched subgroups. c, Gene set enrichment 

analysis highlights sets of pathways significantly differential between basal-enriched and 

luminal-enriched tumors (detailed in Extended Data Fig. 7b). d, K-means consensus 

clustering performed on pathways derived from single sample GSEA analysis of 

phosphopeptide data identifies four distinct clusters.
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Figure 4. Example analyses of aberrantly regulated kinases in human breast cancer
a and b, PIRCOS (Proteogenomics CIRCOS) plots showing CNA, RNA, protein and 

phosphosite expression for 17 tumors with amplification in 17q (ERBB2 CNA>1) and 8 

tumors with amplification in 11q (PAK1 CNA>1). Labeled genes have CNA>1 and 

phosphosite>1. c, Proteogenomic outlier expression analysis for ERBB2, CDK12, and 

PAK1. Samples with outlier phosphosite (red), protein (yellow), RNA (green) and copy 

number (purple) expression are shown. Phosphosite squares indicate per-sample outlier 

phosphosites. d, Outlier kinase events by PAM50 subtype (>35% of subtype samples contain 

a phosphosite outlier; <10% FDR using Benjamini-Hochberg adjusted p-values).

Mertins et al. Page 34

Nature. Author manuscript; available in PMC 2016 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Summary
	Introduction
	Proteogenomic analysis of TCGA samples
	Copy Number Alterations
	Clustering and Network analysis
	Phosphosite markers in PIK3CA and TP53 mutant breast cancer
	Identification of gene amplification and breast cancer subtype-specific activated kinases in human breast cancer
	Discussion
	Extended Data
	Extended Data Figure 1
	Extended Data Figure 2
	Extended Data Figure 3
	Extended Data Figure 4
	Extended Data Figure 5
	Extended Data Figure 6
	Extended Data Figure 7
	Extended Data Figure 8
	Extended Data Figure 9
	Extended Data Figure 10
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

