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Abstract

Diffusion-weighted imaging (DWI) provides invaluable information in white matter 

microstructure and is widely applied in neurological applications. However, DWI is largely limited 

by its relatively low spatial resolution. In this paper, we propose an image post-processing method, 

referred to as super-resolution reconstruction, to estimate a high spatial resolution DWI from 

the input low-resolution DWI, e.g., at a factor of 2. Instead of requiring specially designed 

DWI acquisition of multiple shifted or orthogonal scans, our method needs only a single DWI 

scan. To do that, we propose to model both the blurring and downsampling effects in the image 

degradation process where the low-resolution image is observed from the latent high-resolution 

image, and recover the latent high-resolution image with the help of two regularizations. The 

first regularization is 4-dimensional (4D) low-rank, proposed to gather self-similarity information 

from both the spatial domain and the diffusion domain of 4D DWI. The second regularization is 

total variation, proposed to depress noise and preserve local structures such as edges in the image 

recovery process. Extensive experiments were performed on 20 subjects, and results show that 

the proposed method is able to recover the fine details of white matter structures, and outperform 

other approaches such as interpolation methods, non-local means based upsampling, and total 

variation based upsampling.

1 Introduction

Diffusion-weighted magnetic resonance imaging (DWI) is a key imaging modality for non-

invasive and in vivo characterization of brain white matter microstructure. DWI has been 

used in early detection of stroke and characterization of neurological disorders, such as 

multiple sclerosis and epilepsy, where abnormal diffusion changes on specific white matter 

regions could be useful clues for disease diagnosis [1–5]. However, DWI is largely limited 

by its relatively low spatial resolution. For example, the resolution of current typical DWI 

data is 2×2×2 mm3, which means its voxel is 8 times larger than that in the standard 

T1-weighted structural data (1×1×1 mm3). It has been reported that the scan needs to be 

repeated 64 times for averaging in order to increase the DWI resolution from 2×2×2 mm3 to 

1×1×1 mm3 while keeping the similar signal-to-noise ratio [6].
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Besides improving MRI scanner hardware to higher magnetic fields or using stronger 

gradients, image post-processing methods are considered as a promising alternative for 

resolution enhancement. Interpolation methods (e.g., with nearest neighbor or spline) 

are widely used to increase the resolution, but their results often show blurry edges 

and blocking artifacts. Recently, super-resolution reconstruction (SRR) methods attract 

increasing research attention, aiming to estimate a high-resolution image from one or more 

low-resolution inputs [7]. The term super-resolution refers to the consideration of image 

degradation process where the underlying high-resolution image is translated, blurred, and 

downsampled to be observed as the low-resolution image. For example, Yuan et al. proposed 

to minimize total variation (TV) to regularize the recovery of natural images [8]. Manjón 

et al. used non-local means (NLM) to recover the high-frequency information in SRR of 

structural MR images on a patch-by-patch basis [9]. Basically, NLM recovers a voxel using 

a weighted mean of all other similar voxels, with the weights calculated according to the 

similarity of patches around voxels.

There are only a handful of studies on SRR methods for DWI. In these methods, multiple 

shifted or orthogonal DWI scans were acquired and then fused into a high-resolution output 

[10, 11]. However, their methods are hampered for general applications due to two reasons. 

First, a specially designed image acquisition scheme is needed in these methods to acquire 

multiple image scans, with longer scanning time. Second, subject motion and eddy current 

effects in different scans could largely affect the final result. Some other methods attempted 

to learn the mapping from low resolution to high resolution through training sets using 

random forests [12] or sparse representation [13]. Here, we focus on the SRR problem for 

single input image with no training sets. Currently, existing single image SRR methods 

are generally proposed for 3D structural MR images, while not developed and evaluated in 

DWI [8, 9, 14, 15]. Note that diffusion-weighted images are in 4-dimensional (4D) space, 

and more sensitive to noise, especially for the images with large diffusion factor b-value. 

Directly applying them to DWI may fail or compromise the performance.

In this paper, we proposed a novel SRR algorithm for DWI from single scan. We aim 

to increase the resolution of input low-resolution DWI to a high-resolution DWI, e.g., 

at the factor of 2. Our contributions are three-fold: 1) we model both the blurring 

and downsampling effects in the image degradation process to recover the latent high-

resolution image; 2) we propose a novel 4D low-rank regularization to gather self-similarity 

information from both the spatial domain and the diffusion domain of 4D DWI; 3) we 

employ total variation to further preserve local structures such as edges from noise. 

Extensive experiments were performed on 20 real subjects, by comparing the proposed 

method with the interpolation methods, NLM-based up-sampling, and also TV-based up-

sampling method.

2 Method

We introduce below the proposed method for super-resolution reconstruction of diffusion-

weighted images. First, an observation model is provided to formulate the reconstruction 

as a minimization problem for the input low-resolution image and to-be-recovered high-

resolution image. Second, we propose a novel low-rank approximation in 4D space on DWI, 
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for helping retrieve the remote self-similarity information. Third, total variation is adopted 

to further preserve local structures. Finally, we summarize the total cost function and also 

provide an efficient optimization scheme.

2.1 Observation Model

DWI requires the acquisition of a number of diffusion-sensitized images to probe the 

diffusion of water molecules in various directions and scales. Denote the latent 4D high-

resolution DWI as X, which is composed of N 3D diffusion volumes {Xn|n = 1,2,… N}. 

Similarly, we denote the observed low-resolution 4D image T containing 3D diffusion 

volumes {Tn}. Note that T is acquired from a single scan. In image acquisition, a 

degradation process is involved in to obtain a degraded low-resolution image from the latent 

high-resolution image:

T n = DSXn + z (1)

where D is a 3D downsampling operator, S is a 3D blurring operator, and z represents the 

observation noise. In the spirit of super-resolution reconstruction, we estimate the latent 

high-resolution 4D image X by minimizing the following cost function:

min
X

∑n = 1

N ‖DSXn − T n‖2 + λℜ X (2)

where the first term is a data fidelity term used for penalizing the difference between the 

degraded high-resolution image X and the observed low-resolution image T. The second 

term is a regularization term introducing prior information to help solve the ill-posed 

problem. Weight λ balances the contributions of the fidelity term and regularization term. 

Next we introduce two regularization terms, 4D low-rank and total variation, respectively.

2.2 4D Low-Rank Regularization

Rank is a measure of matrix complexity, corresponding to the number of linearly 

independent rows or columns of the matrix, or the number of nonzero singular values 

[16]. In natural and medical images, self-similarity is widely observed, where many rows 

or columns in the matrix could be linearly represented by other rows or columns, showing 

redundant information. This gives us the idea that diffusion weighted images could also be 

closely approximated by their low-rank components.

Here we use low rank as a regularization term to help retrieve useful information from all 

image regions. To compute the rank for a 4D image X, we first unfold it into a 2D matrix 

along each dimension [16]. Specifically, suppose the size of X is V1×V2×V3×N, we unfold it 

into four 2D matrices {X(i), i = 1,2,3,4} with size of V1× (V2×V3×N), V2× (V1×V3×N), V3× 
(V1×V2×N), and N× (V1×V2×V3), where X(i) means unfold X along dimension i. Then we 

compute the sum of the singular values in each matrix for their trace norms X i tr. Finally, 

the rank of X is approximated as the combination of trace norms of all unfolded matrices:

ℜrank(X) = ∑i = 1

4 αi X i tr (3)
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where {αi} are parameters satisfying αi ≥ 0 and ∑i = 1
4 αi = 1. By minimizing this term, we 

could obtain a low-rank approximation of X. Note that the low rank is applied in 4D image, 

which means we could retrieve useful information for the reconstruction task from both 

spatial domain and diffusion domain.

2.3 Total Variation Regularization

Total variation is defined as integrals of absolute gradient of the signal [14]. For a 4D 

diffusion-weighted image X:

ℜtν X = ∑n = 1

N ∫ ∇Xn dxdydz (4)

where the gradient operator is performed in 3D spatial space. Here we use TV in 3D space 

instead of 4D space based on the notion that there is no explicit neighborhood consistency 

across different diffusion volumes and thus TV in diffusion domain may not be effective. 

In images, the latent signals without excessive and possibly spurious details generally have 

low total variation. Accordingly, minimizing the total variation of the signal could generate a 

close match to the original signal, and removes unwanted noise whilst preserving important 

details such as edges. In this work, minimizing total variation will reinforce local spatial 

consistency and preserve edges in the recovered high-resolution image.

2.4 Cost Function and Optimization

The proposed super-resolution reconstruction is thus formulated as below:

min
X

∑n = 1

N ‖DSXn − T n‖2 + λrankℜrank X + λtν∑n = 1

N ℜtν Xk (5)

We employ the alternating direction method of multipliers (ADMM) algorithm to minimize 

the cost function in Eq. (5). ADMM has been proven efficient for solving optimization 

problems with multiple non-smooth terms [17]. Briefly, we first introduce redundant 

variables Mi i = 1
4  with equality constraints X(i) = Mi(i), and then use Lagrangian dual 

variables Ui i = 1
4  to integrate the equality constraints into the cost function:

minX, Mi i = 1
4 , Ui i = 1

4 ∑n = 1
N ‖DSXn − T n‖2 + λrank∑i = 1

4 αi Mi i tr

+ ∑i = 1
4 ρ

2 ‖X − Mi + Ui‖2 − ‖Ui‖2 + λtν∑n = 1
N ∫ ∇Xn dxdydz (6)

We break the cost function into subproblems for X, M, and U, and iteratively update them. 

The optimization scheme is summarized in Algorithm 1 as below:

3 Experiments

3.1 Data

The resolution of routine DWI images is of 2 to 3 mm. The goal of experiments is to 

evaluate the resolution enhancement performance of the proposed method on this resolution 
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level. To make the evaluation in a controlled manner, as a general approach in super-

resolution studies [2–4,6], we simulate a group of data with such resolution. In this way, 

the ground truth data could be used to compare with the recovered results for quantitative 

performance evaluation.

We used a public dataset from WU-Minn Human Connectome Project (HCP) consortium 

[19, 20], where high-resolution images were acquired by using novel gradient hardware on 

a 3T Siemens Connectome scanner. We randomly selected 20 subjects (9 males and 11 

females) with the age ranges from 22 to 30 years. Diffusion-weighted image were obtained 

for 145 axial slices with resolution of 1.25×1.25×1.25 mm3. A total of 288 diffusion 

volumes were acquired, in which 18 without diffusion gradient (b=0), 90 at b=1,000 s/mm2, 

90 at b=2,000 s/mm2, and 90 at b=3,000 s/mm2.

To evaluate the resolution recovery performance, we use HCP data to simulate a group 

of routine-resolution DWI. To do that, we apply blurring and downsampling operators to 

the original high-resolution images. Specifically, a Gaussian kernel with standard deviation 

of 1 voxel was performed to simulate blurring effect. Downsampling was carried out by 

averaging every 8 voxels in an image to reduce the resolution at a factor of 2. Finally, we 

obtain DWI with resolution of 2.5×2.5×2.5 mm3, which is at the similar level with current 

typical DWI resolution.

3.2 Experimental Setting

Parameters were defined experimentally. We set α1 = α2 = α3 = α4 = 1/4, λrank = 0.01, λTV 

= 0.01. The program stopped when the difference in iterations was less than ε = 1e − 5.

To evaluate the image recovery performance, we employ two metrics to compare the 

recovered high-resolution image to the original image, namely the peak signal-to-noise ratio 

(PSNR) and the structural similarity (SSIM) [21]. PSNR is measured in decibels (dB), and 

ranges from 0 to infinity. Higher PSNR generally means better reconstruction performance. 

SSIM ranges from 0 to 1, and 1 means perfect recovery.

3.3 Results

Experiments were performed on all 20 HCP subjects. We quantitatively measured the 

performance of the proposed method by comparing the reconstruction results with the 

original high-resolution images. The performance was further compared with other four 

methods, including nearest neighbor interpolation (NN), spline interpolation (Spline), non-

local means upsampling (NLM), and total variation based upsampling (TV). Due to the 

availability of NLM implementation on 3D images [9], we run it on each diffusion volume 

to form the 4D output. TV was implemented through the proposed method by setting λrank = 

0.

Fig. 1 demonstrates representative reconstruction results of a subject, where coronal views 

of DWI with different gradients are shown for b=0, 1000, 2000, and 3000, respectively. It 

can be observed that the results of NN, Spline, and NLM show severe blurring artifacts. TV 

shows deblurred results while the results of the proposed method show best signal contrast 

and preserve most fine structural details.
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We then estimated diffusion parameters using diffusion tensor model from the reconstructed 

multi-shell data (i.e., multiple b-values). Fractional anisotropy (FA) maps are shown in 

the top row of Fig.2. Close-up views of three selected regions are also color-coded and 

presented for better visualization. As pointed by yellow arrows, the top row shows bilateral 

cingulum appearing as the symmetric red dots on the top of genu of the corpus callosum. 

The middle row shows the fine folding of hippocampus layers, and the bottom row shows 

small white matter structures. The proposed method outperforms other comparison methods 

with best reconstruction results in preserving both FA magnitude and white matter shapes.

Quantitative results of DWI reconstructions and parameter maps on 20 HCP subjects are 

shown in Fig. 3. Both PSNR and SSIM values are provided for showing reconstruction 

performances on DWI with different gradients (left panel) and diffusion measures (right 

panel) such as FA, mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). 

Similar to the observations from Figs. 1–2, the proposed method achieved significant higher 

PSNR than the comparison methods in most of measures.

We further performed a streamline fiber tractography on the estimated diffusion tensor 

parameters of these five reconstruction results using inhouse software, with minimal seed-

point FA of 0.3, minimal allowed FA of 0.25, maximal turning angle of 45°, minimal fiber 

length of 20 mm, and maximal fiber length of 300 mm. Here one fiber orientation was 

estimated for each voxel. Genu and corticospinal tract (CST) were used as regions of interest 

(ROIs), respectively. Results in Fig. 4 show that the proposed method best preserves the 

fiber tracts that are the closest to those from the original image. Less or excessive fiber tracts 

could be observed on results from other methods.

4 Conclusion

We have presented a novel SRR method for 4D DWI from single scan. We sufficiently 

utilized the self-similarity of DWI in both spatial and diffusion domains, in terms of 

4D low-rank and total variation regularizations in the model based resolution recovery. 

Comprehensive experiments were performed on 20 HCP subjects. NN, Spline, and NLM 

show inferior performance, which may be because the image degradation is not explicitly 

modeled in these methods. The proposed method has better performance in recovering both 

white mater properties and fiber tracts than that of TV, which confirms the usefulness of 

the inclusion of 4D low-rank in image reconstruction. In future work, we intend to acquire 

paired low- and high-resolution images from same subjects to further evaluate the proposed 

method, and further improve the performance by considering more factors such as the 

influence of diffusion gradient orientations.
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Fig. 1. 
Reconstructed DWI of a typical subject using five different methods. PSNR values were 

provided, where higher PSNR indicating better reconstruction results.

Shi et al. Page 8

Comput Diffus MRI. Author manuscript; available in PMC 2016 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Illustration of FA maps of a typical subject, as well as close-up views of color-coded FA 

maps in three brain regions. Red indicates high FA value, and blue indicates low FA value.
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Fig. 3. 
Grouped boxplots of PSNR (top) and SSIM (bottom) results in recovering 20 HCP subjects 

using five different methods. * indicates the proposed method significantly outperforms the 

comparison methods (p<0.01 in two-sample t-tests).
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Fig. 4. 
Illustration of fiber tracking results from original image and five reconstruction methods. 

Gene (left panel) and CST (right panel) were used as ROIs, shown as orange rectangles in 

the results of original images. Only the fibers pass through ROIs are shown. Yellow arrows 

indicate the fiber tracts best preserved by the proposed method.
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