Skip to main content
. Author manuscript; available in PMC: 2016 Nov 9.
Published in final edited form as: Comput Diffus MRI. 2016 Apr 9;2015:15–25. doi: 10.1007/978-3-319-28588-7_2

Algorithm 1.

Super-Resolution Reconstruction of Diffusion Weighted Images

Input: Low-resolution 4D diffusion-weighted image T;
Initialize the desired high-resolution image X(0) by upsampling T with nearest neighbor interpolation. Set redundant variables Mi(0)=0,Ui(0)=0i=1,2,3,4;
For each iteration k,
 Update Xk by using gradient descent:
argminXn=1NDSXn(k1)Tn2+i=14ρ2X(k1)Mi(k1)+Ui(k1)2+λtνn=1N|Xn(k1)|dxdydz (7)
 Update Mi(k) by using Singular Value Thresholding (SVT) [18]:
Mi(k)=foldi[SVTλrankαi/ρ(X(i)(k)+Ui(i)(k1))]withfoldi(Mi(i))=Mi (8)
UpdateUi(k)by:Ui(k)=Ui(k1)+(X(k)Mi(k)) (9)
 Until difference between iterations ||Xk − Xk−1||/||T||ε;
End
Output: Reconstructed high-resolution 4D diffusion-weighted image X.