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Summary

1. Presence-only records may provide data on the distributions of rare species, but 

commonly suffer from large, unknown biases due to their typically haphazard 

collection schemes. Presence–absence or count data collected in systematic, 

planned surveys are more reliable but typically less abundant.

2. We proposed a probabilistic model to allow for joint analysis of presence-only 

and survey data to exploit their complementary strengths. Our method pools 

presence-only and presence–absence data for many species and maximizes a 

joint likelihood, simultaneously estimating and adjusting for the sampling bias 

affecting the presence-only data. By assuming that the sampling bias is the same 

for all species, we can borrow strength across species to efficiently estimate the 

bias and improve our inference from presence-only data.

3. We evaluate our model’s performance on data for 36 eucalypt species in south-

eastern Australia. We find that presence-only records exhibit a strong sampling 

bias towards the coast and towards Sydney, the largest city. Our data-pooling 
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technique substantially improves the out-of-sample predictive performance of 

our model when the amount of available presence–absence data for a given 

species is scarce

4. If we have only presence-only data and no presence–absence data for a given 

species, but both types of data for several other species that suffer from the same 

spatial sampling bias, then our method can obtain an unbiased estimate of the 

first species’ geographic range.

Keywords

presence-absence; presence-only; sampling bias; spatial point processes; species distribution 
models

Introduction

Presence-only data sets (Pearce & Boyce 2006) are key sources of information about factors 

that influence the habitat relationships and distributions of plants and animals, and analysing 

them accurately is crucial for successful wildlife management policy. Examples include 

specimen collection data from museums and herbaria, and atlas records maintained by 

government agencies and non-government organizations. Often, these are the most abundant 

and freely available data on species occurrence. However, sampling bias often confounds 

efforts to reconstruct species distributions.

Recent work has shown that several of the most popular methods for species distribution 

modelling with presence-only data are equivalent or nearly equivalent to each other, and may 

be motivated by an underlying inhomogeneous Poisson process (IPP) model (Warton & 

Shepherd 2010; Aarts, Fieberg & Matthiopoulos 2012; Fithian & Hastie 2013; Renner & 

Warton 2013). In effect, all of these methods estimate the distribution of species sightings 
(i.e. of presence-only records) under an exponential family model for the species distribution 

(Fithian & Hastie 2013). Because presence-only data are commonly collected 

opportunistically, the sightings distribution is typically biased towards regions more 

frequented by whoever is collecting the data. Thus, it may be a poor proxy for the 

distribution of all organisms of that species, sighted or unsighted.

Presence–absence and other data sets collected via systematic surveys do not typically suffer 

from such bias. Even if (say) survey sites cluster near a major city, the data will contain 

more presences and more absences there. Unfortunately, if the species under study is rare, 

presence–absence data may carry little information about its species distribution. In this 

article, we consider a large presence–absence data set on eucalypts in south-eastern 

Australia. Although there are over 32 000 sites, four of the 36 species we consider are 

present in fewer than 20 of the survey sites. Presence-only data for rare species, suitably 

adjusted for bias, can supplement survey data.

We propose a natural extension of the IPP model for single-species presence-only data, with 

a view towards estimating and adjusting for sampling bias. In particular, our method brings 

other sources of data – presence-only and presence–absence data for multiple species – to 
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bear on the problem, by incorporating them into a single joint probabilistic model to 

estimate and adjust for the bias. Some of the most popular approaches to analysis of 

presence–absence or presence-only data for one species are special cases of our joint 

approach. We evaluate our model using both presence-only and presence–absence data for a 

set of eucalypt species from south-eastern Australia. An R package implementing our 

method, multi-speciesPP, is available in the public github repository wfithian/

multispeciesPP.

THE INHOMOGENEOUS POISSON PROCESS MODEL

The starting point for our model is the random set  of point locations of all individuals of a 

given species in some geographic domain . In spatial statistics, such a random set is called 

a point process, and we will call the set  the species process. Typically,  is a bounded 

two-dimensional region.

The IPP model is a probabilistic model for the random set  = {si} ⊆ . It is characterized 

by an intensity function λ(s), which maps sites in  to non-negative real numbers. 

Informally, λ(s) quantifies how many si are likely to occur near s.

For any subregion A within , let N  (A) denote the number of points si ∈  falling into A. 

If  is an IPP with intensity λ, then N  (A) is a Poisson random variable with mean

eqn 1

For non-overlapping subregions A and B, N  (A) and N  (B) are independent.

If A is a quadrat centred at s, small enough that λ is nearly constant over A, then Λ(A) ≈ 
λ(s)|A|, where |A| represents the area of subregion A. Therefore, the intensity λ(s) 

represents the expected species count per unit area near s. The integral Λ ( ) over the entire 

study region is the expectation of N  ( ), the population size.

We can normalize λ(s) to obtain the function , which integrates to one and 

represents the probability distribution of individuals. An IPP may be defined equivalently as 

an independent random sample from pλ(s) whose size N  ( ) is itself a Poisson random 

variable with mean Λ ( ). Conditional on the number N  ( ) of points, their locations s1, 

…, sN ( ) are independent and identically distributed (i.i.d.) draws from pλ(s). We call the 

intensity λ(s) of  the species intensity and the density function pλ(s) the species 
distribution. See Cressie (1993) for a more in-depth discussion of Poisson processes and 

other point process models.

The first panel of Fig. 1 shows a realization of a simulated IPP on a rectangular domain. The 

background colouring shows the intensity, and the black circles denote the si ∈ . Relatively 

more of the black circles occur in the green region where the intensity is highest.
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In modern ecological data sets each site in the domain has associated environmental 

covariates x(s) measured in the field, by satellite, or on biophysical maps. These are assumed 

to drive the intensity λ(s). It is convenient to model the intensity using a loglinear form for 

its dependence on the features:

eqn 2

The linear assumption in (2) is not nearly as restrictive as it might at first seem. The feature 

vector x(s) could contain basis expansions such as interactions or spline terms allowing us to 

fit highly nonlinear functions of the raw features [see, e.g. Hastie, Tibshirani & Friedman 

(2009)].

Unfortunately, we cannot observe the entire species process , but we can glimpse it 

incompletely in various ways. The most straightforward and reliable way to learn about  is 

with presence–absence or count sampling via systematic surveys, as depicted in the second 

panel of Fig. 1. In survey data, an ecologist visits numerous quadrats Ai throughout  (the 

blue squares) and records the species’ occurrence or count N  (Ai) at each one.

Presence-only data is a less reliable but often more abundant source of information about . 

We discuss our model for presence-only data in the next section.

THINNED POISSON PROCESSES

The presence-only process  comprises the set of all individuals observed by opportunistic 

presence-only sampling. Assuming they are identified correctly (not always a given),  is 

the subset of  that remains after the unobserved individuals are removed – or thinned, in 

statistical language.

We propose a simple model for how  arises given : an individual at location si ∈  is 

included in  (is observed) with probability b(si) ∈ [0,1], independently of all other 

individuals. The function b(s), which we call the sampling bias, represents the expected 

fraction (typically small) of all organisms near location s that are counted in the presence-

only data. As a result of the biased thinning, individuals in areas with relatively large b(s) 

will tend to be over-represented relative to areas with small b(s).

It can be shown that marginally

eqn 3

For a formal proof, see Cressie (1993) section 8.5.6, p. 689. Informally, a small subregion A 
centred at s contains on average |A|λ(s) individuals, of which on average |A|λ(s) b(s) are 

observed. If two sites s1 and s2 have the same intensity λ(s1) = λ(s2), but b(s1) = 2b(s2), then 

(3) means the presence-only data will have about twice as many records near s1 as s2.
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The third panel of Fig. 1 displays a thinning of the Poisson process shown in the first two 

panels. The thinned process , consisting of the solid blue triangles, is shown against a heat 

map of the biased intensity λ(s) b(s).

Sampling bias in presence-only data is not a subtle phenomenon. By our estimates in 

Eucalypt data, b(s) ranges from about 3 × 10−3 near Sydney to about 3 × 10−7 in the more 

rugged inland areas of south-eastern Australia – a dynamic range of 10 000.

Some of the most popular methods for analysing presence-only data are based explicitly or 

implicitly on fitting a loglinear IPP model for the process . It is clear from (3) that this 

approach effectively yields an estimate of the presence-only intensity λ(s) b(s) and not the 

species intensity λ(s). These estimates may be dramatically inaccurate if treated as estimates 

of the species intensity or species distribution.

In the case of presence-only data, b(s) typically depends on the behaviour of whoever is 

collecting the presence-only data. When sampling bias is thought to depend mainly on a few 

measured covariates z(s) (such as distance from a road network or a large city), several 

authors have proposed modelling presence-only data directly as a thinned Poisson process 

(Chakraborty et al. 2011; Fithian & Hastie 2013; Hefley et al. 2013b; Warton, Renner & 

Ramp 2013). A similar method was proposed in Dudık, Schapire & Phillips (2005) in the 

context of the Maxent method, and Zaniewski, Lehmann & McC Overton (2002) similarly 

propose weighting background points in presence-background GAMs according to a model 

for their likelihood of appearing as absences in presence–absence data.

If both λ and b are modelled as loglinear in their respective covariates, then we have

eqn 4

Modelling the bias as above amounts to estimating the effects of the variables x(s) in a 

generalized linear model (GLM) for the Poisson process , while adjusting for control 

variables z(s). We will refer to it as the ‘regression adjustment’ strategy.1

IDENTIFIABILITY, ABUNDANCE AND THE ROLE OF γ

Modelling presence-only data as a thinned Poisson process as in (4) sheds light on why it is 

so difficult to obtain useful estimates of presence probabilities: at best, presence-only data 

reflect relative intensities and not properly calibrated probabilities of occurrence. If the 

covariates comprising x and z are distinct and have no perfect linear dependencies on one 

another, then β, δ, and the sum α + γ are identifiable, but individually α and γ are not.

To see why, consider

1Because b(s) is a probability, readers familiar with logistic regression may wonder why we model b(s)= eγ+δ′z(s) instead of 

. When b(s) is close to zero, the denominator 1 + eγ+δ′z(s) ≈ 1 and the two models roughly coincide. We use 
the loglinear form because it leads to the convenient loglinear form for the presence-only intensity in (4).
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1. A presence-only process governed by species process parameters (α, β) 

and thinning parameters (γ, δ) and

2. An alternative process with α replaced by α̃ = α + log 2 (trees are twice as 

abundant overall) and γ replaced by γ̃ = γ − log 2 (the chance of 

observing any given tree is halved overall).

(4) means that the probability distribution of the thinned process  is identical in these two 

cases. Therefore, no matter how much data we collect, we can never distinguish parameters 

(α, β, γ, δ) from (α̃, β, γ̃, δ) on the basis of presence-only data alone.

Because β is identifiable, we can use presence-only data alone to obtain an estimate for λ(s) 

up to the unknown proportionality constant eα; in other words, we can estimate the species 

distribution pλ but not the species intensity λ. If the model is correctly specified, then 

likelihood estimation gives an asymptotically unbiased estimate of the model’s parameters 

(see e.g. Lehmann & Casella 1998).

The species intensity λ(s) is the product of the species distribution pλ(s) and the overall 

abundance Λ ( ). Predicting the probability that a species is present in some new quadrat A 
requires information about both. Considerable attention has focused on whether or not we 

can obtain plausible estimates of abundance or of presence probabilities based on presence-

only data alone. Methods like Maxent and presence-background logistic regression explicitly 

estimate pλ(s), but require an externally given specification of the overall abundance if 

presence probabilities are required (for example, Maxent’s ‘logistic output’, see Elith et al. 
2011). Other methods attempt to estimate presence probabilities (Lele & Keim 2006; Royle 

et al. 2012), but estimates can be highly variable and non-robust to minor misspecifications 

of the modelling assumptions (Ward et al. 2009; Hastie & Fithian 2013).

One of the purported advantages of the IPP as a model for presence-only data is that it does 

yield an estimate of overall abundance because its intercept term is identifiable (Renner & 

Warton 2013). However, Fithian & Hastie (2013) show that the maximum-likelihood 

estimate of Λ̂ ( ) obtained from that model is exactly the number of presence-only records 

in the data set, so it should not be regarded as an estimate of the overall abundance.

CHALLENGES FOR REGRESSION ADJUSTMENT USING PRESENCE-ONLY DATA

Regression adjustment works best when the control variables z(s) are not too correlated with 

x(s), the covariates of interest. If, for example, x1(s) and z2(s) are highly correlated, then we 

can increase β1 and decrease δ2 without altering the model’s predictions much. As a result, 

we may need a great deal of data to distinguish the effects of β1 and δ2 and hence to tease 

apart λ and b.

Unfortunately, correlation between x and z is all too common, in part because humans 

respond to many of the same covariates as other species do. For example, in south-eastern 

Australia, major population centres lie along the eastern coastline, but many important 

climatic variables are also correlated with distance from the coast. Figure 2 plots the mean 

diurnal temperature range over a region of south-eastern Australia, juxtaposed against our 

fitted bias from the model we will fit in the section Eucalypt data. The bias is almost 

Fithian et al. Page 6

Methods Ecol Evol. Author manuscript; available in PMC 2016 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



perfectly confounded with temperature range, making estimation highly variable even if the 

model is correctly specified.

Another difficulty of regression adjustment in real-world settings is that our functional form 

is always misspecified. In particular, it may be difficult to obtain good features in modelling 

the bias. Suppose, for example, that x1(s) is highly correlated with z2(s)2, which (unbeknown 

to us) is an important bias covariate. If we fit our model without including z2(s)2, then the 

β1x1(s) term may serve as a proxy for the missing quadratic effect, biasing our estimate β̂1.

In practice we expect there to be missing variables as well as unaccounted for nonlinearities 

and interactions in our models for both the species intensities and the bias alike. We can 

mitigate this sort of problem by adding more basis functions to z(s), but as the dimension of 

the model increases, the standard errors of our estimates will tend to increase along with it.

If any bias covariates coincide with x variables – for example, if rugged terrain is 

undersampled due to inaccessibility and has an effect on a species’ abundance – then, the 

corresponding coordinates of β and δ are unidentifiable no matter how much presence-only 

data we collect.

For all its difficulties, regression adjustment on presence-only data is often preferable to no 

adjustment and may be the best option when unbiased survey data is unavailable. Still, when 

some components of x are nearly or completely confounded by z, a small quantity of 

unbiased data can go a long way, because it may provide the only solid information to 

distinguish true effects from bias effects (see, e.g. Fig. 3). This motivates a method that can 

combine both biased and unbiased data to exploit the strengths of each.

A unifying model for presence–absence and presence-only data

The above discussion motivates a natural unifying model to explain both presence–absence 

and presence-only data for many species at once, which we discuss in detail here.

Assume we are equipped with a real-valued environmental covariate function x(s), which 

takes values in ℝp, and bias covariate function z(s), which takes values inℝr. x(s) and z(s) 

represent features thought respectively to influence habitat suitably and heterogeneity in 

sampling effort. In general, some variables may appear in both x and z.

Let m denote the total number of species for which we have data. Let k and k denote the 

species and presence-only processes for species k = 1,…,m. Our data set consists of two 

distinct types of observations for each species, presence–absence or count survey sites and 

presence-only sites. By modelling each of the two sampling schemes in terms of the latent 

species processes, we can use likelihood methods to pool data from each. We adopt the 

convention of indexing observations by the letter i, variables by the letter j and species by 

the letter k.

Each observation i is associated with a site si ∈ , as well as covariates xi = x(si) and zi = 

z(si). For survey sites, si represents the centroid of a quadrat Ai. At survey site i we observe 
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counts Nik = N k (Ai) or binary presence/absence indicators yik, with yik = 1 if Nik > 0 and 

yik = 0 otherwise.

JOINT LOGLINEAR IPP MODEL FOR MULTISPECIES DATA

For species k, we propose to model k ~ IPP(λk (s)), with k ~ IPP(λk (s) bk (s)) obtained 

by thinning k via bk(s). Both k and k are assumed to be independent across species 

with loglinear intensity λk and bias bk:

eqn 5

eqn 6

Note that δ is the only model parameter not allowed to vary across species – in other words, 

the functions b1(s),…,bm(s) are all assumed to be proportional to one another. We call this 

the proportional-bias assumption, and it lets us pool information across all m species to 

jointly estimate the selection bias affecting the presence-only data. When m is large, this 

affords us the option of working with a more expansive model for the bias term, reducing the 

resulting bias in our estimates for the αk and βk, which are typically of greater scientific 

interest.

Scientifically, the proportional-bias assumption corresponds to a belief that the biasing 

process has more to do with the behaviour of observers than of plants and animals. Put 

simply, if one species is oversampled near Sydney by a factor of five relative to another 

region with similar features, the most likely explanation is that observers spend one fifth as 

much time in the second region as they do in Sydney. In that case, we should expect other 

species to be undersampled in the second region by roughly the same factor relative to 

Sydney.

The proportional-bias assumption could well be violated if, for example, most of the 

observers collecting samples for species 1 reside in Sydney and those collecting samples for 

species 2 reside in Newcastle. Even under the best of circumstances, this modelling 

assumption (like the other assumptions we have made) is an idealization of the truth, but it 

can be a very useful one if it is not too badly wrong. In Eucalypt data we provide evidence 

that the proportional-bias model improves out-of-sample reconstruction of the species 

intensity.

We allow γk, the proportionality constant of the sampling bias, to vary by species, 

representing a species-dependent effect on overall sampling effort. This allows us to account 

for observers systematically oversampling some species relative to others. For example, if an 

ecologist is collecting samples in a forest, she may preferentially collect samples from rarer 

species. In the section Eucalypt data we give some evidence that sampling effort does indeed 

vary significantly by species in just this way. The cost of letting γk vary by species is that αk 

is unidentifiable unless we have some presence– absence data for species k. Consequently, 
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we can estimate the species distribution pλ(s), but not the overall abundance Λ ( ), unless 

we have some presence–absence or count data for species k.

While this paper was in press we learned of concurrent and independent work by Giraud 

(2014) and Dorazio (2014) which use similar Poisson thinning models to combine survey 

and collection data.

INDUCED MODEL FOR SURVEY DATA

Survey data provides information about the species process k restricted to the survey 

quadrats. If the point locations of each individual within quadrat Ai are recorded, we can 

directly model those locations as a loglinear IPP over the entire surveyed domain ∪i Ai. 

Often, we do not have access to such granular data, and only the count Nik = NSk (Ai) or 

presence/absence yik is recorded. In such cases, the IPP model still induces a GLM 

likelihood for the available summary statistics Nik or yik, so that we can maximize likelihood 

for the available data.

If the features are continuous, then for a small quadrat Ai the species count at the site is

eqn 7

Thus, our joint IPP model induces a Poisson loglinear model for survey count data. The 

probability of yik=1 is

eqn 8

a Bernoulli GLM with complementary log-log link (McCullagh & Nelder 1989; Baddeley et 
al. 2010). The complementary log-log link has been used before to study presence–absence 

data in ecology (e.g. Yee & Mitchell 1991; Royle & Dorazio 2008; Lindenmayer et al. 
2009). If the expected count η = |Ai|λk (si) is very small, then there is not much difference 

between the complementary log-log link, the logistic link and the log link, since

eqn 9

For simplicity assume quadrat sizes are constant and work in units where |Ai| = 1. When this 

is not the case, log |Ai| enters as an offset in the GLM for observation i.

Importantly, we make no assumption that the survey quadrats Ai are distributed evenly 

across  in any sense. However, our model does assume that, given the locations of Ai, the 

responses yik for the presence–absence data are in no way impacted by b(s), the sampling 

bias of the presence-only data.

Informally, if the Ai tend to cluster near some population centre, then we will see many 

presences yik = 1 and absences yik = 0 there, so we will not be fooled into believing the 
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species is more prevalent there. Because we are only modelling the distribution of yik, the 

presence–absence data do not suffer from selection bias even if the geographic distribution 

of quadrats is very uneven.

TARGET-GROUP BACKGROUND METHOD

Phillips et al. (2009) suggested another method of using many species’ presence-only data to 

account for sampling bias. Using a discretization of  into grid cells, they propose sampling 

background points only from grid cells where at least one species was sighted, guaranteeing 

that completely inaccessible areas play no role in estimation. This method, dubbed the 

‘target-group background’ (TGB) method, can tackle sampling bias with only presence-only 

data, and without requiring specification of its functional form.

However, the TGB method does not distinguish between inaccessible regions and regions in 

which all the species are not very prevalent. Moreover, because it samples background 

points equally from all accessible grid cells, the TGB method does not adjust for biased 

sampling from one accessible region relative to another. Our method can leverage presence–

absence data to directly estimate sampling bias and predict absolute prevalence. We will 

empirically compare our method’s out-of-sample predictive performance to several 

competitors including the TGB method.

MAXIMUM-LIKELIHOOD ESTIMATION

In this section, we discuss estimation of our joint model. As we will see, maximum-

likelihood estimation amounts to fitting a very large generalized linear model to all of the 

data. Moreover, several familiar methods for single-species distribution modelling amount to 

exactly or approximately maximizing our model’s likelihood for a specific subset of our 

joint data set.

Because we have various sorts of observation sites si we introduce notation to allow for 

summing over relevant subsets of them. Let IPA denote the set of indices i for which si are 

presence–absence survey quadrats, and let IPOk denote the indices for presence-only sites si 

∈ k. Let nPA be the total number of survey quadrats.

For species k, the log-likelihood for the presence–absence data is

eqn 10

If ℙ(yi = 1) is small for each quadrat, then ℓk,PA is very close to the log-likelihood for logistic 

regression on presence–absence data. In other words, applying our method to a single 

presence–absence data set with no other data reduces to something very close to presence–

absence logistic regression for that species.

The log-likelihood for the presence-only data is
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eqn 11

eqn 12

In general, we cannot evaluate the integral in (12) exactly. As usual, we replace the integral 

with a weighted sum over nBG background sites si ∈ . For weights wi, we obtain the 

numerical approximation

eqn 13

where IBG are the indices corresponding to background sites. In the simplest case, the 

background sites are sampled uniformly from  and all the , but other sampling 

schemes are possible (for a review of techniques see Renner et al. 2014). Popular procedures 

like Maxent and presence-background logistic regression approximately maximize (13).

Maximizing (13) for a single species k with the γk + δ′zi terms included reduces to the 

regression adjustment strategy discussed the section in Challenges for regression adjustment 

using presence-only data. If we do not include γk + δ′zi terms (i.e. if we assume there is no 

bias) we obtain the unadjusted fit (i.e. the usual fit) to the biased presence-only intensity 

λk(s) bk(s).

The presence–absence and presence-only data sets for all m species together represent 2m 
independent data sets.2 Maximizing likelihood for all the data means maximizing the sum

eqn 14

where θ represents the full complement of coefficients

eqn 15

2Technically, the portion of k that coincides with survey quadrats Ai is not independent of the presence–absence data for species k. 
We could repair this by discarding all presence-only and background sites occurring in survey quadrats, but in practice this is 
unnecessary because the Ai represent a miniscule fraction of the domain.
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With a bit of work, we can massage the form of (14) into one large GLM in terms of a 

common set of m(p + 2) + r predictors corresponding to the entries of θ. We do so by 

introducing auxiliary predictor variables uk, a binary indicator that we are predicting for 

species k, and v, an indicator that we are predicting for presence-only instead of presence–

absence data. In terms of these variables, αk is the coefficient for uk, βk,j for ukxj, γk for ukv 
and δj for vzj. More details are given in Appendix S1.

The result is a very large GLM with m(p + 2) + r total parameters and m(nBG + nPA) total 

observations (one per species for each survey site and background site). Because both the 

number of observations and number of parameters scale linearly with m, the computational 

cost of standard approaches to estimation scales as m3p2(nBG + nPA).

For our eucalypt example, we have m = 36 species, nBG = 40 000 background sites, nPA = 

32,612 survey quadrats and p = 38 predictors (including interactions and nonlinear terms), 

so m3p2(nBG + nPA) ≈ 5 × 1012. This is a very high computational load even for modern 

computers.

Fortunately, there is a great deal of structure in the design matrix, and if we exploit it 

properly, our computations need only scale linearly with m, cutting the cost by a factor of 

roughly 362 ≈1000. Appendix S1 also details our efficient computing scheme.

FITTING PROPORTIONAL-BIAS MODELS INR

As a companion to this article, we have released an R package, multispeciesPP, that can 

efficiently fit the models described here. The method requires formulae for the species 

intensity and the sampling bias and carries out maximum likelihood as described in 

Maximum-likelihood estimation. For example, the code

would fit a multispecies Poisson process model with presence–absence data set PA, list of 

presence-only data sets PO and background data BG. The R function maximizes likelihood 

under the model

eqn 16

eqn 17

and returns fitted coefficients and predictions.
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Simulation

Thus far, we have discussed several distinct data sources we can bring to bear on estimating 

λk(s), the intensity for the kth species process. A simple simulation illustrates the interplay 

of the different data types.

We simulate from the model (4) with covariates (x1, x2, z) following a trivariate normal 

distribution with mean zero and covariance

eqn 18

and the coefficients for species 1 equal to:

eqn 19

Presence–absence data for species 1 are the most reliable reflection of λ1(s), but are 

available only in small quantities. Presence-only data for species 1 are abundant, but biased, 

as they are sampled from the intensity

eqn 20

Because z is independent of x1 but highly correlated with x2, a presence-only data point is 

mainly informative about β1,1 and β1,2 + δ. Without supplementary data, it carries almost no 

information about β1,2 itself.

If presence-only and presence–absence data are available for many other species, then they 

all contribute information helping us to precisely estimate δ. This makes species 1’s 

presence-only data much more useful: given a precise estimate of δ from other species’ data, 

information about β1,2 + δ is equivalent to information about β1,2.

Figure 3 and the accompanying commentary show what each data set contributes to 

estimating β1,1 and β1,2 by plotting the 95% Wald confidence ellipse for each of several 

models.

Eucalypt data

We have just seen how the various sources of data can work in concert to give far more 

precise estimates than we could obtain from any one data set by itself. Additionally, we 

evaluate our model’s performance on a data set of 36 species of genera Eucalyptus, 
Corymbia and Angophora in south-eastern Australia.

The presence–absence data consist of 32 612 sites where all the species were surveyed, with 

an average of 547 presences per species. The species exhibit a great deal of variability with 
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respect to their overall abundance, with four species having fewer than 20 total observations, 

and eight having more than 1000.

The presence-only data consist of 764 observations on average per species, supplemented 

with 40 000 background points sampled uniformly at random from the study region. More 

information on data sources may be found in Appendix S3. The rarest species in the 

presence-only data, Eucalyptus stenostoma, has 90 observations.

We use 15 environmental covariates in our model for the species process, allowing for 

nonlinear effects in four of them: temperature seasonality, rainfall seasonality, precipitation 

in June/July/August, moisture index in the lowest quarter and annual precipitation overall. 

Our model for the bias includes nonlinear effects for predictors including distance to road, 

distance to the nearest town, distance to the coast, ruggedness, whether the locale has extant 

vegetation and the number of presence–absence sites nearby. Appendix S2 discusses the 

model form in more detail.

The four panels of Fig. 4 contrast our model’s fit for a single species, Eucalyptus punctata, 

with the fit that we would obtain by using presence-only data alone with no bias adjustment. 

A satellite image of the same region is provided for comparison and orientation. The top left 

panel displays the fitted intensity we obtain by modelling E. punctata’s presence-only data 

as an IPP whose intensity is driven by environmental variables. We obtain an estimate of the 

presence-only intensity, which in this case is concentrated mostly near Sydney and the coast.

The top right and lower left panels show our model’s estimates b̂k (s) of the bias and λ̂
k (s) 

of the species intensity. Unsurprisingly, distance from the coast, and from Sydney, is strong 

driver of our model’s fitted sampling bias. In the lower left panel, the intensity is shifted 

significantly towards the western hinterland.

To evaluate our model quantitatively, we ask two questions: first, how well do the data agree 

with the assumption of proportional sampling bias? Secondly, do we obtain better 

predictions when pooling multiple data sets across multiple species?

CHECKING THE PROPORTIONAL-BIAS ASSUMPTION

We can check the proportional-bias assumption within the context of our GLM. To check 

whether the bias coefficient corresponding to some zj should vary by species, we can 

estimate the same model as before, but now allowing that coordinate of δ to vary by species.

In terms of the large GLM described in the section Maximum-likelihood estimation, we can 

estimate our model as before by augmenting the design matrix with interactions between the 

species identifiers uk and the bias variable zj. These variables then have coefficients δk,j. In 

this model, the proportional-bias assumption corresponds to the null hypothesis of no 

interaction effects, which we can test using standard likelihood-based methods.

As usual, it is rather unlikely that the proportional-bias assumption – or any other aspect of 

our model – holds exactly. Even if the assumption holds for some true functions λk(s) and 

bk(s), we may still see spurious correlations when we fit a complex model using a 

misspecified loglinear functional form. Nevertheless, it is of interest to identify whether 
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some interactions stand out strongly compared to the noise level, and if so how large they 

are.

Because of spatial autocorrelation in both the presence–absence and presence-only data, 

traditional likelihood-based confidence intervals for the interaction effects δk,j are likely to 

be anticonservative, as are bootstrap intervals based on i.i.d. resampling. To account properly 

for the spatial autocorrelation, we use the block bootstrap to compute confidence intervals 

for the coefficients (Efron & Tibshirani 1993). We separate the landscape into a 

checkerboard pattern with 261 rectangular regions with sides of length 1/3-degree of 

longitude and latitude (approximately 31 km × 37 km at latitude 33° South). In each of 400 

bootstrap replicates, we resample 261 whole regions with replacement.

Dependence of δ on species—We test our assumption explicitly for the variable 

‘distance to coast’, which is the most important predictor of bias. The evidence in the data 

regarding our assumption is somewhat mixed, but on the whole, it does not appear that the 

proportional-bias model fits the data perfectly. For some species, there is sufficient evidence 

to reject H0.

Figure 5 shows the 95% bootstrap confidence interval for the idiosyncratic sampling bias of 

Eucalyptus punctata, as a function of distance to coast. We see that, even after accounting 

for the overall bias that affects the other 35 species, we still have too many coastal presence-

only observations of punctata. This could be linked to the fact that the punctata data are 

concentrated near Sydney, which is more heavily populated than other coastal regions, but 

with many confounding factors at play it is hard to know. Appendix S2 has more detailed 

results for more species.

If interactions like these are strong, we can allow some of the coordinates of δ to vary by k 
and others not. There is a bias-variance trade-off, however, as the proportional-bias 

assumption is what allows us to share information across species. We will see in the section 

Predictive evaluation of the model that even when the model is an imperfect fit, it can 

nevertheless sub-stantially improve predictive performance on held-out presence–absence 

data.

Dependence of γ on species—By default, our model allows γ to vary by species, but 

we need not always do so. In fact, if we assumed γ does not vary by species, then we would 

only need joint presence–absence and presence-only data for one species to obtain an 

estimate for γ. Therefore, we could estimate abundance (and therefore presence 

probabilities) for every species given presence–absence and presence-only data for a single 

species and presence-only data for every other species.

Define relative sampling effort as the ratio

eqn 21
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so that ρk = 1 for all k if and only if the γk are all equal.

Figure 6 shows our model’s estimates ρ̂k, plotted against the total number of presence–

absence observations. For the eucalypt data, it appears that the assumption of a common γ 
for every species is probably not reasonable. It appears the presence-only intercept γ varies 

systematically by species, with effort being substantially higher for the rarer species. Thus, 

the data appear to support our decision to allow γ to vary by species.

PREDICTIVE EVALUATION OF THE MODEL

Our goal in pooling data was to supplement the presence–absence data for a given species 

with multiple other more abundant sources of data, to allow for more efficient estimation of 

the species intensity λk(s) and its coefficients. One measure of our success is whether this 

data pooling actually improves predictive performance on held-out presence–absence data.

For comparison, we also estimate our joint model using (i) both the presence-only and 

presence–absence data for species k and (ii) presence-only and presence–absence data for all 

36 species combined.

Note that in all three cases, we are estimating the exact same joint model with three nested 

data sets:

PA data alone for species k. The most natural competitor to our method is to fit the Bernoulli 

complementary log-log GLM model with the same predictors, but only on species k’s 

presence–absence data. This is a special case of the joint method, for which only presence–

absence data are available for species k.

PA and PO data for species k. Augmenting the presence–absence data with presence-only 

data for the same species improves our coefficient estimates for environmental variables that 

are independent of sampling bias. When there is no presence–absence data, we are fitting the 

thinned Poisson process model to PO data alone. This is regression-adjusted analysis of PO 

data, discussed in the section Challenges for regression adjustment using presence-only data.

Pooled data for all species. Using data for all species gives better estimates of the predictors 

that are badly confounded by sampling bias.

In addition, we introduce two more competitors that use presence-only data alone:

PO data alone for species k, unadjusted for bias: Using species k’s presence-only data alone, 

and ignoring sampling bias, is the most common method for analysing presence-only data. It 

estimates the presence-only intensity and then makes predictions as though that were the 

same as the species intensity. This method can suffer dramatically from bias.

PO data for all species, using the TGB method: We implement the TGB method with pixel 

size 9 arc seconds (the resolution level of our covariates).

Our evaluation method effectively treats the presence–absence data as a ‘gold standard’, 

unaffected by bias. This point of view may not always be reasonable, but eucalypts are 

relatively large and hard for surveyors to miss, so the presence–absence data probably do 
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reflect the true presence or absence of trees in their respective quadrats, notwithstanding 

identification errors.

We emphasize that we are comparing the different methods with respect to their 

performance on held-out presence–absence data and not on held-out presence-only data. 

This distinction is important, because our goal is to reconstruct the species intensity and not 

the presence-only intensity. All three methods train on the same amount of presence–

absence data for species k. The data-pooling methods can only beat the simpler method if 

the other data sets carry useful information about the species intensity of species k, and if 

our joint model effectively processes that information without biasing our estimate too 

badly.

We then use ten-fold block cross-validation to evaluate each method with respect to its 

predictive log-likelihood. Using the same rectangular regions as in Checking the 

proportional-bias assumption, we randomly assign the 261 whole regions to ten-folds, with 

each fold containing 26 random regions and the one left-over region excluded. Figure 7 

shows one training-test split used for our procedure. Importantly, all data taken from the test 

region – presence–absence, presence-only and background – is held out of the training set.

The gains from data pooling are greatest when the presence–absence data for a species of 

particular interest (say, species k) are either scarce or non-existent. To emulate estimation 

with presence–absence data sets ranging from scarce to abundant, we further downsampled 

the presence–absence training data for species k.

We fit all the models with a ridge penalty on all of the coefficients except the intercepts α 
and γ. That is, we minimize

eqn 22

with penalty multiplier ν = 100. Penalizing the coefficients in this way is known as 

regularization, and it allows for efficient estimation of parameters in complex models. For 

more details, see for example Hastie, Tibshirani & Friedman (2009).

Figures 8 and 9 show the results of block cross-validation for two species in the data set: 

Eucalyptus punctata and Eucalyptus dives. Results for the other species are qualitatively 

similar and can be found in Appendix S2. We evaluate the various methods according to two 

metrics of predictive performance: predictive log-likelihood (left panel) and area under the 

predictive ROC curve, averaged over the ten test folds (AUC, right panel). Lawson et al. 
(2014) contrast prevalence-dependent metrics like log-likelihood, which measure the 

accuracy of absolute out-of-sample presence probabilities, with prevalence-independent 
metrics like AUC, which depend only on the ordering of predictions.

Doing well in predictive log-likelihood requires a good estimate of the intercept αk – that is, 

of the absolute intensity λk(s). Because αk is confounded with γk in presence-only data, and 

because γk varies by species, the two data-pooling methods cannot estimate absolute 
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intensities without a little presence–absence data from species k. By contrast, AUC only 

depends on estimates of relative intensity , which is invariant to α̂
k and can be 

estimated with no presence–absence data for species k. Estimates without any presence–

absence data for species k are shown above the label ‘0’ on the horizontal axis.

As we have seen in Fig. 4, E. punctata suffers dramatically from sampling bias because 

Sydney, the largest city, lies on the eastern edge of its habitable zone. As a result, the 

unadjusted presence-only method performs very poorly compared to the methods that 

account for bias. By contrast, the habitable zone of E. dives lies mainly in the western part of 

the study region where the sampling bias function log bk has a much gentler gradient. As a 

result, the unadjusted presence-only analysis does relatively well. The method that pools 

across all 36 species does even better: its AUC using none of E. punctata’s presence–

absence data (and only the presence–absence data for the other 35 species) is 

indistinguishable from its AUC using all of the presence–absence data. See Appendix S2 for 

the corresponding plots for all species.

Table 1 compares the four best methods using a moderate value, 1000, for the number of 

non-missing presence–absence sites. Our method pooling presence–absence and presence-

only data for all species performs well consistently, coming within 0·01 of the best method 

for all but one species. Interestingly, the TGB method performs second best despite its 

having no access to the presence–absence data.

Discussion

We have proposed a unifying Poisson process model that allows for joint analysis of 

presence–absence and presence-only data from many species. By sharing information, we 

can obtain more precise and reliable estimates of the species intensity than we could obtain 

from either data set by itself.

Moreover, we have seen in Eucalypt data that the proportional bias can be a reasonable fit 

for some real ecological data sets. In this data set, and we suspect in many others, sampling 

bias can have a major effect on fitted intensities if not appropriately accounted for.

BENEFITS OF DATA POOLING

Throughout we have focused mainly on the way that pooling presence–absence and 

presence-only data from many species can help address selection bias. Even when selection 

bias is not a major concern, data pooling can still be beneficial.

In the simplest case, presence–absence data can be fruitfully supplemented by more 

abundant presence-only data from the same species. In Fig. 9, we see that the presence-only 

data for E. dives is not very biased, as evidenced by the good performance of the unadjusted 

fit. In this case, combining the presence–absence data with presence-only data still led to a 

substantial improvement in predictive performance, and combining with data from other 

species helped even more. In other cases, we may have presence-only data for many species 
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but no presence–absence data. In that case, our method still provides a means for pooling 

data to estimate δ more efficiently.

COMMON MISSPECIFICATIONS OF THE IPP MODEL

Aside from the proportional-bias assumption, we should be mindful of several other sources 

of misspecification. The most obvious is that our loglinear functional form is almost 

certainly incorrect in any given case. Three others that merit special consideration are spatial 

autocorrelation in the data, biased detection of presence–absence data and spatial errors in 

environmental covariates and point observations.

Spatial autocorrelation—The Poisson process model assumes that, given the covariates 

for a given site, an individual is no more or less likely to occur simply because there is 

another individual nearby. In ecological data, this assumption is rather tenuous; for example, 

trees of the same species often occur together in stands; or different species may compete 

with each other for resources. Renner & Warton (2013) discuss goodness-of-fit checks and 

present empirical evidence against the Poisson assumption. For a more general discussion of 

alternatives to the Poisson process model, see Cressie (1993); Gaetan & Guyon (2009).

Similarly, for systematic survey data, we should proceed with caution in modelling count 

data as Poisson, because actual counts may be overdispersed due to autocorrelation within a 

quadrat, or correlated with counts for nearby sites because of longer-range autocorrelation. 

When autocorrelation is present, nominal standard errors computed under the Poisson 

assumption can be much too small, as can i.i.d. cross-validation estimates of prediction error 

or i.i.d. bootstrap standard errors. Resampling methods such as the bootstrap or cross-

validation can be made much more robust to autocorrelation if they resample whole blocks 

at a time (Efron & Tibshirani 1993), and in the section Eucalypt data, we use the block 

bootstrap and block cross-validation to analyse our eucalypt data set. Discussion of 

alternative block bootstrap procedures and choosing block size may be found in Hall, 

Horowitz & Jing (1995); Nordman, Lahiri & Fridley (2007); Guan & Loh (2007).

Imperfect detection—Even in presence–absence and other systematic survey data, 

surveyors may not have the time or resources to exhaustively survey a given quadrat, and 

thus, some organisms may be missed in the surveys.

Suppose, for example, that an organism at s is detected by surveyors with probability q(s). 

Then, the count y in quadrat A centred at s is not distributed as Pois(λ(s)|A|), but rather as 

Pois(q(s)λ(s)|A|). If q(s) is constant, all our estimates of αk will be biased downward by 

exactly log q. This would bias estimates of abundance but not the estimated species 

distribution, which depends only on βk̂.

If q(s) is a non-constant function of s – for example, if non-detection is a bigger problem in 

heavily forested sites – then we may incur bias for both αk and βk. If sites are visited 

repeatedly, then under some assumptions an estimate of non-detection may be obtained, by 

methods discussed in, for example, Royle & Nichols (2003); Dorazio (2012). Estimates of 

detection probability can sometimes be obtained without repeat observations under stronger 

modelling assumptions (Lele, Moreno & Bayne 2012; Sólymos, Lele & Bayne 2012)
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Non-detection in presence–absence data is largely analogous to the sampling bias problem 

for presence-only data, and we could in principle model and adjust for it using similar 

methods to the ones we propose for addressing biased presence-only data.

Spatial errors—Opportunistic presence-only data may also suffer from errors in the 

recorded locations of point observations. Similarly, environmental covariates are often 

measured at a relatively coarse scale, in which case the covariates attributed to point si may 

be inaccurate. If important environmental covariates fluctuate on a fine scale compared to 

the scale of these errors, the errors may lead to attenuated effect size estimates (see e.g. 

Graham et al. 2008). Hefley et al. (2013a) propose methods to correct for spatial errors in 

presence-only records.

A similar issue can arise in the analysis of presence–absence or count data, when we use the 

centroid of a presence–absence quadrat as a proxy for the integral ∫Ai λ(s)ds, which may 

not be appropriate if the variables fluctuate on a fine scale relative to quadrat size. In such 

cases, it is especially helpful to record point locations within quadrats rather than recording 

only presence–absence or count data summarized at the quadrat level.

EXTENSIONS

As discussed elsewhere, there are many useful ways to extend GLM fitting procedures. 

GAMs, gradient-boosted trees and other forms of regularization on model parameters are all 

immediate extensions of the approach we have outlined here. Like other methods, our 

method’s results on a given data set will depend on making good choices regarding 

featurization and regularization.

Finally, in our approach, we are forced to assume a functional form for the sampling bias, 

and if our model is wrong, we will not account correctly for the sampling bias. Studies 

quantifying patterns of sampling bias in relation to spatial covariates are currently scarce, 

but could help to justify a more accurate model of sampling bias than one based on intuitive 

selection of covariates, as applied here. Nonetheless, in future work, we plan to investigate 

models that treat the sampling bias nonparametrically, imposing no assumptions on its 

functional form.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A Poisson process with two different sampling schemes representing our models for 

presence–absence and presence-only data. The top panel represents the species process 

against a heat map of the species intensity λ(s). The second panel depicts presence–absence 

or other systematic survey methods: quadrats (blue squares) are surveyed and organisms 

counted in each one. The third panel depicts biased presence-only sampling, with the blue 

triangles indicating the presence-only process, a small and unrepresentative subset of the 

species process. The heat map shows the presence-only intensity λ(s) · b(s).
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Fig. 2. 
Mean diurnal temperature range in a coastal region of south-eastern Australia, juxtaposed 

against our model’s fitted sampling bias. Because most people live near the coast, sampling 

bias is highly correlated with distance from the coastline. Unfortunately, so are many 

important climatic variables. Because these variables are almost perfectly confounded with 

bias, it is very difficult to correct for sampling bias using presence-only data alone.
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Fig. 3. 
Ninety-five percent Wald confidence regions for β1, the species distribution coefficients for 

species 1, obtained by using five different methods. The plot illustrates the precision and 

accuracy with which the coefficients are estimated by each method. The black star denotes 

the true values of the parameters of interest. The different model types are described below: 

PA data alone (Green): The most straightforward method when PA data for species 1 is to 

maximize likelihood for it alone. Our estimates of both coefficients are unbiased but less 

precise than they could be. z plays no role in the PA data or our model for it, so the 

precisions for the two coordinates of β1 are about the same;PO data alone, no regression 
adjustment (Red): The most common use of presence-only data is to maximize likelihood 

using only the presence-only data for species 1, making no adjustment for sampling bias. In 

that case, we are effectively estimating the presence-only intensity instead of the species 

intensity. Here, x1 proxies for the confounding variable z and β̂1,1 is severely biased, 

whereas β̂1,2 is unaffected; PO data alone, with regression adjustment (Blue): We can 

address sampling bias by attempting to estimate the effect of the confounder z. Our 

estimates are now unbiased, but β̂1,1 is noisy and its interval is very wide. It is quite hard to 

tease apart the effects of x1 and z given only PO data; PA and PO data for species 1 (Black): 
The PO data carry solid information about β1,2, whereas the PA data carry the only usable 

information about β1,1. When we combine both data sources for species 1, the precision of 

β̂1,2 roughly matches the methods using PO alone (blue and red), and the precision of β̂1,1 

matches the method using PA alone (green); Pooled data for all species (Purple): We obtain 

the best results by pooling both presence–absence and presence-only data sets for many 

different species. Species 2,3,…,m all contribute to estimating δ to high precision. As a 
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result, the presence-only data for species 1 becomes much more useful for estimating β1,1, 

because we know how to correct for the sampling bias.
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Fig. 4. 
Model fits for Eucalyptus punctata in south-eastern Australia. Top left panel: estimate of 

presence-only intensity in units of 1/km2, using presence-only data alone and making no 

adjustment for bias. Top right: fitted sampling bias b̂k (s) in our proportional sampling bias 

model. Lower left: fitted species intensity λ̂
k (s) for our model, in units of 1/km2. Lower 

right: satellite image from Google Earth. In the presence-only data, many more trees were 

observed in near Sydney than in the western hinterland, but our model infers a higher 

intensity in the undersampled western region.
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Fig. 5. 
Idiosyncratic sampling bias for E. punctata and E. dives as a function of distance to coast in 

km. The dashed lines show 95% block-bootstrap confidence intervals. It appears that after 

adjusting for the bias δ′z(s) that is shared across all species, there is some residual bias left 

over for punctata. By contrast, for E. dives, there is no significant interaction. Even though 

the proportional sampling bias model is misspecified for E. punctata, it still substantially 

improves out-of-sample predictive accuracy, as we will see in Predictive evaluation of the 

model. The corresponding curves for all the species can be found in Appendix S2.
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Fig. 6. 
Our model’s estimate of relative sampling effort ρk, plotted vs. the total abundance of each 

species, with each variable plotted on a log scale. It appears that more effort is made to 

sample rare species.
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Fig. 7. 
Depiction of our block cross-validation scheme for the eucalypt data. Entire rectangular 

blocks are sampled together to help account for spatial autocorrelation.
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Fig. 8. 
Block cross-validated log-likelihood and AUC for E. punctata (higher is better). Pooling data 

from other sources gives a substantial boost to predictive performance when the presence–

absence data set is small, but only when we make an adjustment for the bias. In the right 

panel, the leftmost blue triangle (‘1 species: PA + PO’ with no PA data), we are fitting the 

thinned IPP model to PO data alone. This is the regression adjustment strategy discussed in 

the section Challenges for regression adjustment using presence-only data. Note that using 

presence-only data without any adjustment for bias performs quite poorly compared to the 

other methods. Because the habitable zone for E. punctata includes Sydney as well as more 

inaccessible regions to its west, ignoring the sampling bias can wreak havoc on our 

estimates.
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Fig. 9. 
Block cross-validated log-likelihood and cross-valid AUC for the species E. dives (higher is 

better). Pooling data from other sources gives a substantial boost to predictive performance 

when the presence–absence data set is small. Because E. dives occurs in the southwestern 

part of the study region, where the bias function has a relatively gentle gradient, the 

sampling bias plays a less vital role. In the right panel, the leftmost blue triangle (‘1 species: 

PA + PO’ with no PA data), we are fitting the thinned IPP model to PO data alone. This is 

the regression adjustment strategy discussed in the section Challenges for regression 

adjustment using presence-only data.
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Table 1

AUC cross-validation results for all species with at least 100 presence–absence data points. The first three 

methods are evaluated with 1000 non-missing presence– absence data points for the species under study. In 

each row, numbers are bolded for methods coming within 0·01 of the best method. Our method pooling 

presence–absence and presence-only data for all species performs well consistently, coming within 0·01 of the 

best method for all but one species

PA Only
1 Species

PA + PO
1 Species

PA + PO
36 Species

TGB
36 Species

A. bakeri 0·893 0·915 0·932 0·933

C. eximia 0·921 0·947 0·952 0·952

C. maculata 0·783 0·778 0·785 0·742

E. agglomerata 0·801 0·834 0·820 0·808

E. blaxlandii 0·904 0·934 0·944 0·934

E. cypellocarpa 0·861 0·852 0·867 0·825

E. dalrympleana (S) 0·873 0·910 0·926 0·931

E. deanei 0·811 0·855 0·906 0·894

E. delegatensis 0·971 0·971 0·981 0·982

E. dives 0·920 0·934 0·941 0·929

E. fastigata 0·905 0·900 0·916 0·907

E. fraxinoides 0·920 0·935 0·963 0·963

E. moluccana 0·881 0·909 0·911 0·881

E. obliqua 0·870 0·914 0·918 0·906

E. pauciflora 0·874 0·897 0·928 0·928

E. pilularis 0·807 0·807 0·805 0·811

E. piperita 0·889 0·844 0·886 0·871

E. punctata 0·882 0·893 0·896 0·901

E. quadrangulata 0·835 0·843 0·840 0·823

E. robusta 0·878 0·883 0·892 0·894

E. rossii 0·957 0·966 0·965 0·962

E. sieberi 0·857 0·813 0·881 0·875

E. tricarpa 0·969 0·970 0·971 0·965
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