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Abstract: Functional near-infrared spectroscopy (fNIRS) was used to investigate spontaneous 
hemodynamic activity in the temporal cortex for typically developing (TD) children and 
children with autism spectrum disorder (ASD). Forty-seven children participated in the 
experiments including twenty-five with ASD. Compared with TD children, children with 
ASD showed weaker bilateral resting-state functional connectivity (RSFC), but much stronger 
fluctuation magnitude in terms of oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb). 
Differentiating between ASD and TD based on a support vector machine (SVM) model 
including bilateral RSFC and the fluctuation power of HbO2 and Hb as variables could 
achieve high accurate classification with sensitivity of 81.6% and specificity of 94.6%. This 
study demonstrates optical brain imaging has the potential for screening children with risk of 
ASD. 
©2016 Optical Society of America 

OCIS codes: (170.2655) Functional monitoring and imaging; (170.3880) Medical and biological imaging; 
(170.4580) Optical diagnostics for medicine. 
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1. Introduction 

Autism Spectrum Disorder (ASD) is a developmental syndrome characterized by deficits in 
social interaction, verbal and non-verbal communication, and repetitive or stereotypic 
behaviors, and sensory abnormalities [1]. Diagnosis of ASD relies solely on behavioral 
observations, e.g., via the Autism Diagnostic Observation Schedule (ADOS), the gold 
standard standardized ASD diagnostic measure [2,3]. Several recent imaging studies [4–11] 
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have noted significant alteration in brain organization or function associated with ASD that 
may open up an avenue for imaging-based diagnostic aides in ASD. 

Among various brain imaging modalities, optical brain imaging has excellent temporal 
(~millisecond) and acceptable spatial (~centimeter) resolution [12,13]. While this imaging 
technique may be sensitive to motion within a given range, it is less sensitive than functional 
magnetic resonance imaging (fMRI). In particular, with the use of signal processing 
approaches such as signal regression or independent component analysis (ICA), the motion-
induced artifact can be suppressed. These features make optical brain imaging very suitable to 
study brain function in children and other sensitive populations. A recent study using 
functional near infrared spectroscopy (fNIRS) in ASD showed weaker resting-state functional 
connectivity (RSFC) between the bilateral language areas [10]. This finding is consistent with 
a similar study utilizing fMRI [8]. Differentiation between ASD and non-ASD based on 
RSFC was also discussed in this fMRI study, indicating that, an accurate classification could 
be achieved with a sensitivity of 72% and specificity of 82%. 

Since both fMRI and fNIRS studies have revealed that the significant alteration in RSFC 
locates in the language area of the temporal lobes (TL) [8,10], in this study we use fNIRS to 
record and compare the spontaneous hemodynamic activity from bilateral TL on children with 
ASD and typically developing (TD) children. The goal of this study has two aspects: in 
addition to confirming weaker RSFC in ASD, we investigate potential inherent features in 
hemodynamic fluctuations that may be associated with ASD. We then combine these features 
into a mathematical model to achieve a more accurate classification with both higher 
sensitivity and specificity. 

2. Methods 

2.1 Experimental setup 

A commercial continuous-wave fNIRS system (FOIRE-3000, Shimadzu Corporation, Kyoto, 
Japan) was used in this study. FOIRE-3000 is equipped with diode laser sources working at 
780 nm, 805 nm and 830 nm. It has sixteen fiber sources and sixteen fiber detectors, building 
up to fifty two detecting channels with a fixed source-detector distance of 3.0 cm. Parameters 
measured are concentration changes in oxygenated hemoglobin (HbO2), deoxygenated 
hemoglobin (Hb) and total hemoglobin (HbT) based on the modified Beer-Lambert law. A 
custom software was developed to analysis data using MATLAB (MathWorks, Natick, MA). 

2.2 Subjects and experimental protocol 

Twenty-five ASD and twenty-two age-matched TD children were recruited to participate in 
this case control study. They were all right-handed. The average age was 9.3 ( ± 1.4) and 9.5 ( 
± 1.6) years old for ASD and TD children, respectively. The ASD group consisted of 18 boys 
and 7 girls, and TD group 18 boys and 4 girls. All ASD children were diagnosed by 
experienced clinicians in hospitals according to DSM-IV-TR [14]. The IQ (measured with 
Raven’s Standard Progressive Matrices Test [15]) was 91 ± 15 for the ASD group and 106 ± 
12 for the TD group. The difference in IQ was significant between the two groups (p<<0.05). 

During the experiment, subjects were sitting in a comfortable chair in a dark room, and 
asked to close their eyes and remain silent. The optodes were secured on the scalp by a 
headgear to ensure tight sensor-scalp contact. To identify locations of TL, the international 
10-10 system for electroencephalography (EEG) was referenced with an EEG cap, in which 
T3 and T4 correspond to the left and right TL. The location of each optical channel is 
schematically shown in Fig. 1. Twenty-four channels (twelve for each hemisphere, covering 
TL) were used for recording 8 minutes of spontaneous cerebral hemodynamic fluctuations 
with a 70 ms temporal resolution. Prior to the experiment, subjects were informed about the 
measuring procedure and written consent was obtained from the parents of the children. The 
study protocol was approved by the University’s Ethical Review Board. 
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2.3 Data analysis 

Among the three hemodynamic variables (HbO2, Hb and HbT), only two are independent 
(HbT = HbO2 + Hb). In this study with focus on ASD classification, two variables were 
analyzed (i.e., HbO2 and Hb), since overlapped information cannot provide better 
classification. The raw time series of hemodynamic signals (HbO2 and Hb) were first 
detrended by using a second order polynomial fit to remove the slow drift [16], and then a 
zero-phase 2nd order Butterworth filter with a pass-band of 0.009 to 0.08 Hz was applied 
[17,18,20,23]. After the filter, most systemic hemodynamic components were filtered out, 
such as those originated from cardiac cycles (~1 Hz), venous pressure waves due to 
respiration (~0.2 Hz) and arterial pressure oscillations (Mayer waves ~0.1 Hz). 

 

Fig. 1. Schematic representation of the brain showing the location of each measurement 
channel. 

Artifact induced by head movement has been demonstrated to have conspicuous impact on 
fMRI RSFC, i.e., it can result in increased short-range connectivity and decreased long-range 
connectivity [19]. To overcome this problem, several approaches have been used to remove 
the artifact in fMRI RSFC such as global signal regression [20] and ICA-based nuisance 
removal [21]. During the fNIRS data acquisition, though the optodes were tightly fixed to the 
scalp and subjects were asked to keep head as motionless as possible, still there might be 
some motion artifacts remained in the signal that could not be completely removed by the 
filter. This artifact should be removed or suppressed before further analysis. In addition to the 
motion artifact, the measured signal at each channel might have contained a global component 
whose frequency located in the band pass of the filter. To suppress these two types of 
components, an independent component analysis (ICA) algorithm [22] was employed. We 
assumed the global component made similar contribution to each channel, one independent 
component is estimated as the global component as long as the all elements of its 
corresponding column in the mixing matrix A of ICA (Z = A × ICAs) have the same sign, 
and least variation [23]. Motion artifact in the signal usually manifests itself as a sudden drop 
(or rise) that can also be reflected in the independent components (ICs) showing the similar 
temporal behavior. These ICs can be visually identified and then removed from the 
reconstruction of signal Z. Since in most of cases, our experience showed an IC could be 
identified as being associated with the head movement as long as the peak magnitude was 
over 10 times of the standard deviation of the IC. An automated identification algorithm based 
on this criterion was used to remove these motion-related ICs. Figure 2 serves as an example 
to show the efficacy of the algorithm in suppressing the motion-induced artifact. Head 
movement plausibly occurred, which induced artifacts at around 170 s, 245 s and 380-390 s, 
as visually seen from the raw time traces of two neighboring channels in Fig. 2(a). The band-
pass filter could remove high frequency noises and some systemic oscillations, but could not 
effectively eliminate the artifacts (see the black traces in Fig. 2(b)). The red traces are signals 
after the ICA, in which the artifacts were suppressed to a significant extent. 

After the detrending, band-pass filter and ICA, the remained signals (HbO2 and Hb) were 
used to compute RSFC and signal (HbO2 and Hb) power for each channel. The RSFC 
between two cortical sites is measured by the temporal correlation coefficient of the signals 
from these two sites. To display the overall correlation pattern, the correlation matrix was 
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employed in which each element was the Pearson correlation coefficient of the corresponding 
channel pair. To intuitively show the correlation pattern in a measured area, a correlation map 
was also adopted. To make a correlation map, first, a seed is selected, and then the temporal 
correlation coefficients between the seed and the all other channels in the areas of interest are 
calculated. The seed can be a channel or an average over several channels (e.g., a region of 
interest). In this study, we chose three seeds locating at the left superior, middle and inferior 
temporal gyrus, respectively. Finally a false color correlation map was made where the color 
value for each pixel represented the correlation coefficient between this pixel (channel) and 
the seed. The correlation matrix was also visually displayed in a false color map. 

 

Fig. 2. Raw time traces of HbO2 (a) and those after the band-pass filter and further after the 
ICA (b) of two neighboring channels (Ch4 and 5) from a subject. The black traces are signals 
only after the filter, while the red traces are those further after the ICA. 

To effectively differentiate between ASD and TD, a support vector machine (SVM) model 
was employed [24,25]. In the SVM model, variables were selected from the bilateral RSFC 
and fluctuation power (for HbO2 and Hb) that showed most statistically significant difference 
between the two groups. To determine the sensitivity and specificity of the classification, half 
the number of each group (i.e., 12 ASD and 11 TD children) was randomly selected for the 
training and the rest half for the testing. 1000 runs were conducted for this cross-validation 
procedure to determine the classification accuracy. We used MATLAB build-in functions 
(svmtrain.m and svmclassify.m) in the bioinformatics toolbox for these calculations. The 
kernel function for the SVM was linear. In the present study, we employed Wilcoxon rank 
sum test for all hypothesis tests. 

3. Results 

Figure 3(a) and 3(b) illustrate the average HbO2 and Hb Pearson correlation coefficient 
matrices for TD and ASD group. Visual observation shows the correlation patterns for these 
two hemodynamic variables are quite similar in both TD and ASD group. Consistent with our 
hypothesis, ASD children experienced weaker RSFC. These characteristics are more 
intuitively shown in seed-based correlation maps (Fig. 4). Since language production and 
comprehension rely mainly on the left hemispheric networks [26], three seeds, locating 
respectively at the left superior (Ch4), middle (Ch6) and inferior (Ch8) temporal gyrus, were 
selected for generating correlation maps. The weaker RSFC in ASD revealed here is in line 
with a previous fNIRS study but where less number of subjects were involved (i.e., 10 ASD + 
10 TD) [10]. 
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Fig. 3. False color maps of the correlation matrices for TD (a) and ASD (b). Each number (1-
24) in x- or y-axis denotes the numbering of optical channels. Color bar indicates the value of 
Pearson correlation coefficient. 

 

Fig. 4. Correlation maps of HbO2 and Hb for TD and ASD children. Three seeds locating at the 
left superior (Ch4), middle (Ch6) and inferior (Ch8) gyrus were selected for generating 
correlation maps. The seed region can be visually recognized by the maximal color value in 
each map. The mapping area in each hemisphere was about 6 cm × 6 cm. 

Bilaterally symmetric pair wise correlation values for HbO2 and Hb were also calculated 
for each group and illustrated in Fig. 5. ASD shows clearly weaker inter-hemispheric RSFC in 
HbO2 and Hb. The statistical hypothesis test was performed on the difference of the two 
groups, showing the differences in HbO2 for 5 channel pairs were significant, i.e., p<0.05 
after the false discovery rate (FDR) correction. These 5 channel pairs were (3,17), (11,24), 
(10,20), (8,22) and (9,21), with the corrected p value being 0.0069, 0.0111, 0.0117, 0.0137, 
and 0.0431, respectively. 
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Fig. 5. Correlation coefficients of HbO2 and Hb for each channel pair located symmetrically on 
the left and right TL. The digit pair in the parenthesis indicates the corresponding channel pair, 
e.g., r(1,14) is the temporal correlation coefficient between channel 1 and 14. The symbol of 
asterisk indicates the difference between ASD and TD is statistically significant (p<0.05 after 
FDR correction). The error bar is the standard error of mean. The top 5 channel pairs with the 
smallest p values are (3, 17), (11, 24), (10,20), (8, 22) and (9, 21). 

To investigate atypical features of the spontaneous fluctuations for ASD, the fluctuation 
power for HbO2 and Hb were also calculated and compared for each group and shown in Fig. 
6. It is very interesting to note that for almost all channels ASD experienced significantly 
larger (p<0.05 after FDR correction) power than TD for both HbO2 and Hb, demonstrating the 
low frequency spontaneous hemodynamic activity was much stronger in the temporal lobes of 
ASD children. This could also be revealed by the group average of time traces and power 
spectra, in other words, both time- and frequency-domain data support this observation. To 
exemplify this, Fig. 7 shows a representative of time traces and power spectra for HbO2 and 
Hb. 

Differences between ASD and TD were observed in three quantities: channel pair 
correlation of HbO2, fluctuation power of HbO2 and Hb. For each of these quantities, there 
were several components (corresponding to channel pairs or channels) in which the two 
groups were significantly different, for example, 5 components for channel pair correlation, 
24 for HbO2 power and 22 for Hb power, thus 51 components in total. 
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Fig. 6. Group (ASD vs. TD) average of signal power of HbO2 and Hb for each channel. For all 
channels except for channel 12 and 20 of Hb, ASD show significantly larger than TD in the 
signal power (p<0.05 after FDR correction). The error bar is the standard error of mean. The 
top 4 channels with the smallest p value are 6, 8, 3, 22 for HbO2, and 8, 6, 19, 14 for Hb. 

 

Fig. 7. A representative time trace and power spectra of HbO2 and Hb for TD and ASD. Data 
were taken from Ch 5. 

A straightforward way for differentiating between ASD and TD is to include all these 51 
components as variables into the SVM model. For simplifying the setup and data acquisition 
for the future measurements, we chose using fewer optical channels, while still achieving a 
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sufficient accuracy for differentiation between the groups. To evaluate the accuracy of the 
classification, three indices were considered [8,27]: sensitivity, specificity and positive 
predictive value (PPV). The sensitivity means the percentage of identified ASD to the all 
ASD to be diagnosed, while the specificity indicates the ratio of the identified TD children to 
the all TD children to be tested. The PPV defines the proportion of correct diagnoses among 
all diagnoses [27]. 

Table 1 lists the differentiation with various selected component combination in the SVM 
model. The idea to choose these component combinations for the SVM model was that firstly 
more complimentary information were taken into account, e.g., channel pair correlation of 
HbO2, HbO2 and Hb signal power, and secondly fewer optical channels were used. Therefore 
we chose channel pairs and channels for which the correlation and power showed most 
significantly different between the two groups, and meanwhile a small number of channels 
were involved in the model. 

A differentiation with the smallest number of channels (Combination 8 in Table 1, two 
channels used only: channel 3 and 17) gives sensitivity of 72.2%, specificity of 88.0% and 
PPV of 79.4%. With three channels (Combination 4 in Table 1, channel 3, 6, and 17), the best 
differentiation results in sensitivity of 81.6%, specificity of 94.6% and PPV of 87.5%. 

Table 1. Differentiation with various component combinations in the SVM model 

Combination Channel pairs 
HbO2 Correlation 

Channels for 
HbO2 power 

Channels for 
Hb power 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

1 (3, 17) 
(11,24) 
(10,20) 
(8,22) 
(9,21) 

All channels All channels 
except for 12 
and 20 

75.2 83.2 78.9 

2 (3,17) 
(11,24) 

6, 8 6, 8 79.4 94.6 86.3 

3 (3,17) 
(11,24) 

3, 11, 17, 24 3, 11, 17, 24 70.8 87.7 78.5 

4 (3, 17) 6 6 81.6 94.6 87.5 
5 (3, 17) 8 8 66.2 93.3 78.6 
6 (11,24) 6 6 73.7 98.3 84.9 
7 (11,24) 8 8 66.8 93.6 79.1 
8 (3, 17) 3, 17 3, 17 72.2 88.0 79.4 
9 (3, 17) 6, 19 6, 19 79.2 95.3 86.6 
10 (11,24) 11, 24 11, 24 52.2 89.4 69.2 

4. Discussion 

Weaker RSFC in ASD has been revealed and well documented in previous studies with fMRI, 
e.g [4,6,8], as well as fNIRS, e.g [10]. In the present study, in addition to observing weaker 
RSFC between bilateral TL, significantly stronger power of the low frequency fluctuation was 
also observed in ASD for the two hemodynamic variables (HbO2 and Hb). This difference 
between ASD and TD is more pronounced as compared to RSFC. To our best knowledge this 
observation has so far not been reported in literatures. 

A concern one may raise is the stronger power (or magnitude) of HbO2 and Hb for ASD 
could arise from artifact of head movement, which may be more prominent in the ASD group. 
Though visually we did not observe more head movement in ASD during measurements, we 
quantified and performed a comparison of motion artifact between the two groups. Motion 
artifact in signal induced by head movement occasionally occurs at certain channels when the 
optode fixations are poor. The signal containing motion artifact usually shows larger temporal 
variation. Therefore if motion artifact makes significant contribution in some channels in a 
subject, the relative variation of the power for all channels (i.e., the standard deviation of the 
power across all channel/the average of the power) is supposed to be larger than others who 
suffer less motion artifact. To address this issue, we calculated the relative variances for all 
subjects (25 ASD and 22 TD) for HbO2 and Hb, as shown in Fig. 8. Statistic analysis shows 
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there is no significant difference (p>0.05) in the relative variances between the two groups for 
either HbO2 or Hb, demonstrating the motion artifact has no discriminative effect between 
ASD and TD. In other words, the motion artifact (if exists) makes similar contribution to ASD 
and TD data, implying the difference in the spontaneous fluctuation power cannot originate 
from the motion artifact. Noise may be another concern. However, in general noise is 
Gaussian showing rather flat spectra across frequency band, which is not the case as seen in 
Fig. 7 (note: y-axis is in log scale). Taken together, the larger spontaneous fluctuation power 
in the TLs might be an intrinsic feature for ASD. 

Two recent studies on ASD with magnetoencephalography (MEG) [28,29] revealed that 
ASD experienced larger power of spontaneous MEG signal in a variety of frequency bands 
from low frequency delta wave (1-4 Hz) to very high frequency oscillations. In particular, 
higher power delta wave was observed in ASD in the TL [29]. A previous study on animal 
(rat) with electrophysiological recordings and resting-state fMRI measurements has 
demonstrated that the low frequency (i.e. <0.1 Hz) resting-state fMRI signal correlates with 
the delta band spontaneous electric signal recorded from brain [30]. Given that HbO2 and Hb 
are correlated with fMRI signal [31], the higher power of HbO2 and Hb fluctuations recorded 
from ASD in the present work is in line with the MEG studies. 

 

Fig. 8. Relative variance of HbO2 and Hb for each subject of the two groups (ASD and TD). 
This variance (for either HbO2 or Hb) shows no significant difference (p>0.05) between the 
two groups. 

In an effort to improve previous efforts at functional imaging diagnostic classification, we 
constructed a SVM model using salient components of our findings including bilateral 
correlation coefficients of HbO2, HbO2 power and Hb power to differentiate between ASD 
and TD. In the present study, the selecting procedure was based solely on those components 
in which most significant differences were observed, however, in future studies with larger 
sample sizes a use of an optimization routine such as a genetic searching algorithm with 
multiple objectives may result in higher yields. The objective function may consist of higher 
sensitivity, higher specificity, higher PPV and fewer optical channels, depending on which 
index is of high priority. 
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Studies with various imaging modalities have already revealed significant functional or 
structural alterations associated with ASD in brain regions [4–11,32]. However, there is a 
vigorous debate on the clinical use of diagnostic imaging for ASD [27]. A major concern is a 
false diagnosis can do harm to people, because low specificity of differentiation implies a 
portion of TD is falsely diagnosed to ASD. Relatively low specificity may happen if the 
differentiation depends on only an imaging contrast, for example, fMRI signal in response to 
a speech-stimulation gives the specificity of 83% [7], fMRI RSFC results in the specificity of 
84% [8]. In the present study, three variables (RSFC of HbO2, power of HbO2, power of Hb) 
were used for the differentiation, with each variable reflecting different (or complimentary) 
aspect of the underlying nature of ASD in spontaneous activity. Using only three optical 
channels the specificity can be achieved as high as 94.6%, implying multiple imaging 
contrasts may greatly improve the specificity for classification. 

5. Conclusions 

Functional near infrared spectroscopy (fNIRS) was used to rapidly acquire spontaneous 
hemodynamic fluctuations from the temporal lobes of ASD and TD children. In ASD 
subjects, we were able to confirm previous functional imaging findings of weaker RSFC 
between bilateral TL and at the same time demonstrate significantly larger fluctuation power 
of HbO2 and Hb. These observations support a scenario in which a resting state autistic brain 
works with a greater intensity, but more independently in each hemisphere. With these 
features, we included bilateral RSFC of HbO2, HbO2 power, and Hb power into a SVM model 
to achieve a good differentiation between ASD and TD with the sensitivity of 81.6%, and 
specificity of 94.6%. Our results suggest multi-parameter imaging may provide more accurate 
differentiation between ASD and TD, thus have potential application in the future for 
screening children with ASD. 
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