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Abstract: The paper presents two novel, space-domain reconstruction algorithms for 
holographic tomography utilizing scanning of illumination and a fixed detector that is highly 
suitable for imaging of living biomedical specimens. The first proposed algorithm is an 
adaptation of the filtered backpropagation to the scanning illumination tomography. Its space-
domain implementation enables avoiding the error-prone interpolation in the Fourier domain, 
which is a significant problem of the state-of-the-art tomographic algorithm. The second 
proposed algorithm is a modified version of the former, which ensures the spatially invariant 
reconstruction accuracy. The utility of the proposed algorithms is demonstrated with 
numerical simulations and experimental measurement of a cancer cell. 
© 2016 Optical Society of America 
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1. Introduction 

Holographic-based phase tomography (HT) is a powerful, non-invasive technique, which 
enables quantitative characterization of transparent micro-objects by providing 3D 
reconstruction of refractive index distributions. The high potential of HT is widely 
appreciated in life sciences and biomedicine, where it is used for minimally invasive 3D 
imaging of unstained, living, cellular specimens [1–5]. However, to enable the study of 
sensitive biological materials, originally proposed HT technique applying the object rotation 
configuration (ORC) [2,5–10] had to be modified to minimize the risk of damaging a sample. 
Currently, with a few exceptions [5–7], the biomedical-oriented HT systems utilize a 
tomographic concept in which physical manipulation of a sample is completely eliminated. In 
those systems different sample projections are achieved by scanning an illumination beam, 
while keeping a sample and a detector fixed [1–4]. The illumination scanning configuration 
(ISC) is favorable in terms of noninvasity and high speed of data acquisition. Moreover, ISC 
offers an advantageous 3D imaging property, i.e. increased transverse resolution [11]. 
However, a downside of the method is the incomplete angular range of accessible sample 
perspectives, which is limited by numerical aperture of an applied imaging system. The 
limitation leads to the so-called missing frequency problem and poor axial resolution. The 
problem has been already addressed, e.g. in [12,13] and with a recent two-stage strategy 
based on the regularization technique [14]. 

Regardless of its pros and cons, numerous scientific publications [1,3,4,13,14] and 
commercial implementations [15,16] clearly demonstrate the potential of ISC-HT for 3D 
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imaging in various biomedical application fields. Currently, ISC-HT systems are constantly 
further improved and evaluated with increasingly demanding samples such as single living 
cells with complex shapes or cell clusters. The growing popularity as well as the new 
challenges highly motivate the need for re-examination of the capabilities of the state-of-the-
art ISC-HT reconstruction techniques. While most scientific works regarding ISC-HT focus 
mainly on the missing frequency problem, this paper primarily concerns the diffraction-
related aspects. Moreover, the work investigates an important and often ignored issue of 
spatial variations of the reconstruction accuracy. 

In ISC-HT, tomographic reconstruction is usually performed using the direct inversion 
algorithm (DI) [17], which is a direct implementation of the generalized projection theorem. 
The major disadvantage of DI is the interpolation in a 3D sample spectrum, which causes 
large computational errors. In ORC-HT, the error-prone spectral interpolation can be avoided 
by applying filtered backpropagation algorithm (ORC-FBPP) [18], which is theoretically 
equivalent to DI, although it is implemented in a space domain. Notably, ORC-FBPP has 
been developed exclusively for ORC and is not applicable for ISC [19]. This paper addresses 
this limitation by introducing a novel ISC-FBPP algorithm. 

ISC-FBPP is one of main novelties of this work. However, the proposed algorithm, 
similarly to other reconstruction techniques based on the Rytov approximation [20] (e.g. 
ORC-FBPP, DI), suffers from spatially variant accuracy of tomographic reconstructions [21], 
which is caused by errors of numerical propagation realized within the Rytov approximation 
[22]. The mentioned effect of spatially variant accuracy was demonstrated and explained in 
[21] for the case of ORC-HT. In this work, we prove that the same problem affects also ISC-
HT. Moreover, we propose a solution to the described problem by developing a novel 
tomographic algorithm, which provides spatially invariant accuracy and thus enables 
accurate, large-volume tomographic reconstructions. The proposed algorithm is an extension 
of ISC-FBPP, in which the approximated Rytov propagation is replaced with the rigorous 
one. The developed algorithm is referred to within this paper as extended-depth-of-focus 
FBPP for ISC (ISC-EDOF-FBPP). It is important to note that ISC-EDOF-FBPP is a 
generalization of ORC-EDOF-FBPP [21]. 

Both proposed tomographic reconstruction algorithms: ISC-FBPP and ISC-EDOF-FBPP 
are analyzed by numerical simulations and compared to the state-of-the-art reconstruction 
technique, i.e. DI. They are also applied to experimental measurement data from a pancreatic 
cancer cell that were obtained with a Mach-Zehnder digital holographic microscope utilizing 
a conical illumination scenario [14,23,24]. The ISC-HT setup with the applied illumination 
scenario is characterized in this paper by providing the analytical formulas for its 
tomographic transfer function, which represents an additional important novelty of this work. 

The paper is organized as follows. Section 2 provides principles of ISC-HT. Section 3 
describes the novel tomographic approaches, which are analyzed in Sec. 4 by numerical 
simulations. Section 5 presents the experimental results. Finally, Sec. 6 summarizes the 
findings and draws conclusions. 

2. Basics of holographic tomography with scanning of illumination 

2.1 Data acquisition 

The ISC-HT measurement is performed using a digital holographic microscope, which 
enables the acquisition of optical fields that are scattered by a sample. For a tomographic 
measurement, multiple scattered waves are captured, each for a different perspective, which is 
achieved by scanning the illumination direction (Fig. 1). Therefore, a stationary sample, 
immersed in a medium with refractive index n0, is successively illuminated with multiple 
plane waves Ui of various wave vectors ki = [kix, kiy, kiz = (n0

2k0
2- kix

2- kiy
2)1/2], where k0 = 2π/λ 

and λ is the light wavelength. The reconstructed set of scattered waves Us is then processed 
with a tomographic algorithm, which recovers the 3D refractive index distribution n(x,y,z). 
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The applied set of illumination directions may be specific for different ISC-HT systems. 
However, in all configurations, the illumination directions have to be within the acceptance 
cones of the numerical apertures of illumination (NAILL) and imaging (NAIMG) systems, 
which is a source of the missing frequency problem. 

 

Fig. 1. A scheme of ISC-HT; Ui – illuminating plane wave, Us – scattered wave. 

2.2 Tomographic reconstruction with the direct inversion method 

The stat-of-the-art tomographic reconstruction method for ISC-HT is DI [17]. DI is a direct 
implementation of the generalized projection theorem, which states that a single scattered 
field Us provides information about the object spatial frequency components that are located 
on a spherical cap, called Ewald sphere, in a 3D object spectrum [25]. This principle is valid 
under the first-order Born or Rytov approximation. The latter is known to be less strict in 
terms of the weak-scattering requirement [26]. For this reason, this work focuses solely on the 
Rytov solution. Within the Rytov approximation, the 3D scattering can be expressed as: 

 si 0 0 z i( ) 2 ( ),n k k Oϕ = ⋅ −k k k  (1) 

where ~ denotes the Fourier transformation and k = [kx, ky; kz = (n0
2k0

2- kx
2- ky

2))1/2] are spatial 
frequency components of the Rytov scattered field: 

 ( )si 0 0 s i/ ( ) unwrap ln / ,i k n U Uϕ = ⋅     (2) 

where ‘unwrap’ states for the phase unwrapping. In Eq. (1), K = k-ki is the spatial frequency 
vector of a scattering potential O, which is related to the refractive index distribution via: 

 2 2
0( , , ) 1 ( , , ) / .O x y z n x y z n= −  (3) 

Equation (1) shows that by varying the illumination direction, it is possible to cover 
considerably large volume of Õ, which theoretically ensures precise restoration of a sample. 
The outlined approach is directly adopted in DI (Fig. 2), in which a finite number of scattered 
waves is used for filling Õ. The filling process is realized with an interpolation method, most 
commonly the nearest neighbor interpolation. Afterwards, n(x,y,z) is obtained by the 3D 
inverse Fourier transformation of Õ. 

 

Fig. 2. Scheme of the direct inversion tomographic reconstruction algorithm for ISC-HT. 

                                                                             Vol. 7, No. 10 | 1 Oct 2016 | BIOMEDICAL OPTICS EXPRESS 4089                                                                               Vol. 7, No. 10 | 1 Oct 2016 | BIOMEDICAL OPTICS EXPRESS 4089 



3. Space-domain reconstruction approach for ISC-HT 

The generalized projection theorem provides an elegant solution to the problem of 
tomographic reconstruction. However, DI results suffer from the errors of interpolation in the 
Fourier domain [17]. The problem can be avoided by utilizing the concept [20] proposed by 
Devaney, who showed that mapping of the scattered fields onto the Ewald sphere is the 
Fourier-domain equivalent of propagating the data to multiple axial positions using the 
approximated Rytov propagation formula [22]. The concept was implemented in ORC-FBPP 
[18]. Additionally, in [21] it was proven that the accuracy of ORC-FBPP can be further 
improved by replacing the approximated Rytov propagation with the rigorous one, which 
yields ORC-EDOF-FBPP. 

The outlined space-domain reconstruction approaches are applicable only to ORC-HT. 
The aim of this section is to provide the analogical solutions for ISC-HT. This is achieved by 
introducing two key modifications to the original ORC reconstruction techniques:  
1) application of accurate and efficient methods for propagation of highly off-axis fields (Sec. 
3.1); 2) development of a general solution for merging the backpropagated views, which can 
be applied for arbitrary illumination scenario of ISC-HT (Sec. 3.2). 

3.1 Backpropagation of highly off-axis fields 

Rytov backpropagation for off-axis fields 

In the case of ORC-FBPP, where the on-axis illumination is applied (kix = kiy = 0), the Rytov 
backpropagation process is expressed as [18]: 

 { }
0 0

R

ORC-FBPP si x y x y x y x y2

e
( , ; ) ( , ) ( , ; z) exp ( ) d d ,

(2 )

in k z

x y z k k H k k i k x k y k kϕ
−

Π = ⋅ +
π    (4) 

where the propagation kernel H = exp(izkz). The key challenge in developing ISC-FBPP is an 
extension of Eq. (4) to the case of off-axis propagation directions. According to the 
Devaney’s work [22], the approximated Rytov propagation approach is sufficiently accurate 
only if the input field can be considered as a small deviation from a plane carrier wave. In 
ORC-HT, a weakly scattering sample and the on-axis plane wave illumination are assumed, 
thus the Rytov’s deviation condition is satisfied and Eq. (4) holds. In ISC-HT, the Rytov 
deviation condition is also satisfied, however, in this case the plane carrier wave of φsi is 
highly off-axis prohibiting direct application of Eq. (4). That is because the division step 
(Us/Ui) in Eq. (2), which is evaluated before Eq. (5), erases information about the off-axis 
propagation direction. Notably, accounting for the off-axis carrier requires modification of the 
Rytov propagation formula by using the shifted spectral coordinates [kxꞌ, kyꞌ] = [kx-kix, ky-kiy]: 

 { }
0 iz

R

ISC-FBPP si x y x y x y x y2

e
( , ; ) ( ', ') ( ', '; ) exp ' ' d ' d ' .

(2 )

in k z

x y z k k H k k z i k x k y k kϕ
−

Π = ⋅ +
π

     (5) 

The applicability issue of the standard and proposed Rytov propagation formula is 
illustrated in Fig. 3 for a cylindrical sample and the off-axis propagation direction tilted by 
30° against the optical axis. The invalid use of the standard Rytov propagation [Eq. (4)] 
results in erroneous propagation of the field in on-axis direction (Fig. 3(a)-3(b)), while 
application of the formula with shifted coordinates [Eq. (5)] maintains the proper propagation 
direction. 
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Fig. 3. The results 
R
ISC-FBPPΠ obtained using (a,b) standard and (c,d) frequency-shifted Rytov 

propagation formulas for a cylinder sample of diameter 10µm and propagation direction tilted 
by 30° against the optical axis. 

Rigorous angular spectrum backpropagation for off-axis fields 

The accuracy of ORC-FBPP can be significantly improved [21] by replacing the 
approximated Rytov propagation with the rigorous angular spectrum (AS) propagation 
method [28], which enables obtaining ORC-EDOF-FBPP. While in [21] the solution is 
provided for ORC-HT, in this paper it will be shown that the same principle holds also for 
ISC-HT. In ISC-EDOF-FBPP, the rigorous backpropagation process can be performed in two 
theoretically equivalent ways: 

1) By propagating the original off-axis scattered wave Us using the conventional AS [28] 
with non-shifted coordinates: 

 { }
0 i z

ISC EDOF s x y x y x y x y2

e
( , ; ) ( , ) ( , ; ) exp ( ) d d .

(2 )

in k z

x y z U k k H k k z i k x k y k k
−

−Π = ⋅ +
π    (6) 

In this approach, the carrier plane wave component of Us has to be removed after the 
backpropagation step by dividing by Ui. 

2) Using the frequency-shifted AS propagation method [29], where the input field is the 
scattered wave with removed off-axis plane wave component Usi = Us/Ui: 

 { }
0 i z

ISC EDOF si x y x y x y x y2

e
( , ; ) ( ', ') ( ', '; ) exp ( ' ' ) d ' d ' .

(2 )

in k z

x y z U k k H k k z i k x k y k k
−

−Π = ⋅ +
π    (7) 

In ISC-EDOF-FBPP, after the backpropagation process, the successive distributions ПISC-

EDOF undergo the Rytov transformation: 

 ( )R
ISC EDOF 0 0 ISC EDOF/ ( ) unwrap ln .i k n− −Π = ⋅ Π    (8) 

The shifting property of Fourier transformation (FT) of an optical field: 

 1
s x ix y iy s ix i y siFT { ( , )} ( , ) exp{ ( )} ( , )U k k k k U x y i k x k y U x y− − − = − + =  (9) 

guarantees that Eqs. (6) and (7) are theoretically equivalent. However, in practice, their 
computation results differ significantly due to the numerical implementation issues. The off-
axis backpropagation with Eq. (7) is more advantageous because the flat phase distribution of 
Usi provides favorable boundary conditions for Fast Fourier Transform, which is used in 
numerical implementation of Eqs. (6) and (7). Hence, the typical border errors are avoided. 
The effect of the border error reduction is demonstrated in Fig. 4 by a comparison of the 
backpropagated distributions that were obtained with standard [Eq. (6)] and the frequency-
shifted [Eq. (7)] method (Fig. 4(a), 4(b) and 4(c), 4(d), respectively). The off-axis propagation 
with the standard method causes strong artefacts, which limit the effective reconstruction 
area. In this case, to separate the artefacts from the object, it is necessary to extend the 
computational matrix, e.g. by zeropadding, which increases the computation load. In contrast, 
for the frequency-shifted propagation, the obtained distribution is free of the border errors. 
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Fig. 4. The backpropagated views obtained with standard (a,b) and the frequency-shifted (c,d) 
propagation formula. 

Note that in the case of the Rytov propagation approach, the backpropagation process can 
be done only using the frequency-shifted formula [Eq. (5)]. In this case, modification of  
Eq. (5) to non-shifted coordinates is not possible because: 

 1
s x ix y iy s ix i y siFT { ( , )} ( , ) exp{ ( )} ( , ),k k k k x y i k x k y x yϕ ϕ ϕ− − − = − + ≠  (10) 

where φs is the Rytov field without removed plane wave carrier: φs = i/(k0n0)ln(Us). 

3.2 Merging of the backpropagated contributions 

The second step of the elaborated space-domain tomographic algorithms is merging of the 
obtained backpropagated distributions ПR corresponding to successive illumination 
directions. In ORC-FBPP, the merging process is achieved by a simple summation of all 
distributions ПR. However, the summation of ПR, which is equivalent to summation of the 
corresponding Ewald spheres, leads to over-representation of the sample spatial frequency 
components that are located in the areas of overlapping of multiple Ewald spheres. In ORC-
FBPP, this problem is addressed by high-pass filtering of the scattered fields before the 
backpropagation [18]. However, this method is not effective [19] for ISC-HT as its 
geometrical conditions are completely different than for ORC-HT. 

Here, to deal with the frequency over-representation problem for ISC-HT, we propose a 
new, more general solution, which can be used for arbitrary illumination scenario of ISC-HT. 
We propose to, firstly, sum all contributions ПR and, then, normalize the spectrum of the 
initial reconstruction using a function c, which expresses the local density of Ewald spheres in 
the sample spectrum: 

 norm ( ) ( ) / ( ).O O c=K K K   (11) 

The function c in Eq. (11) can be regarded as a tomographic transfer function that depends on 
the applied illumination scenario, the light wavelength, the refractive index of the immersion 
liquid and the numerical aperture of the imaging system. The flows of both reconstruction 
algorithms are presented in Fig. 5 (ISC-FBPP) and Fig. 6 (ISC-EDOF-FBPP). 

 

Fig. 5. Schematic illustration of the proposed ISC-FBPP. 
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Fig. 6. Schematic illustration of the proposed ISC-EDOF-FBPP. 

The key element of the proposed reconstruction algorithms is calculation of c. This can be 
achieved basing on the geometrical interpretation of Eq. (1), which states that c is the sum of 
multiple Ewald spheres. In this approach, the influence of the limited numerical aperture of 
the imaging system can be also considered by taking into account that the individual Ewald 
contributions are not full spheres but parts of the spherical caps. This geometrical approach 
was adapted by Kou and Sheppard [27], who provided analytical expressions for c for a linear 
illumination scenario, where the illumination vector is varied only in one plane containing the 
optical axis. Although the experimental implementation of the linear illumination scenario is 
relatively simple, its transfer function is highly anisotropic, which leads to strong artefacts in 
tomographic reconstructions. In this paper, we calculate c for another popular and more 
beneficial tomographic system, which applies conical illumination scenario [14,23,24] (see 
Appendix), where the illumination vector with a fixed inclination angle rotates around the 
optical axis in a full angle. The comparison of c for both illumination scenarios is presented in 
Fig. 7. The figure shows that the conical illumination provides larger and more symmetric 
frequency support than the linear one, thus it provides better 3D imaging capabilities. 

 

Fig. 7. a) d) 3D distributions and b-c) e-f) cross-sections of tomographic transfer functions for 
the ISC-HT systems with: upper row – linear illumination scenario (the illumination vector ki 
rotates around y-axis in a range of ± 60°); lower row – conical illumination scenario (ki is 
inclined with respect to the optical (z) axis by 60°). 
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4. Performance characterization by numerical simulations 

The aim of this section is to test the proposed tomographic algorithms, i.e. ISC-FBPP and 
ISC-EDOF-FBPP (the version with frequency-shifted propagation) with numerical 
simulations, and to compare the results with the state-of-the-art algorithm, i.e. DI. The test 
object is a cylindrical phantom of a diameter 10µm and refractive index ns = 1.01. The 
simulation investigates three sample locations zs = {-20µm, 0µm, 20µm} with respect to the 
central plane of the reconstruction, which allows us to study spatial changes in the 
reconstruction accuracy. For simplicity, the simulation is two-dimensional and represents an 
ISC-HT system with the linear illumination scenario (scanning range ± 60° with a step 1°). 
Other simulation parameters: n0 = 1, λ = 0.5µm. The scattered waves were obtained using the 
wave propagation method [30]. 

Note that this paper does not address the missing frequency problem, which is caused by a 
limited angular range of accessible illumination directions and which leads to incomplete, 
anisotropic support of the ISC-HT transfer function. We do not intend to fill in the missing 
information as it is done in [12–14]. Instead, the paper focuses on the ability of the 
tomographic algorithms to properly recover those object frequencies that are directly 
accessible to a given ISC-HT system. Therefore, in this paper, we evaluate the accuracy of the 
tomographic algorithms by comparing their reconstruction results to the reference refractive 
index distribution (Fig. 8(a)), which represents the original sample distribution, whose 
spectrum outside the support of c is set to zero. We refer to this distribution as the ideal 
reconstruction. 

 

Fig. 8. (a) Ideal reconstruction; (b-j) tomographic reconstructions of a cylindrical sample. 

The refractive index distributions that were recovered with the considered tomographic 
algorithms are presented in Fig. 8(b)-8(j) (the images show only small regions of the obtained 
reconstructions located around the sample). Let us first consider the reconstructions in Fig. 
8(e)-8(g), which correspond to zs = 0 when the sample is located at the central slice of the 
reconstruction and the scattered fields are in-focus. The DI reconstruction (Fig. 8(e)) is 
intensively blurred, which is caused by the errors of interpolation in the Fourier domain. 
Notably, in this study, the most popular type of DI that applies the nearest neighbor 
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interpolation was used and with more accurate interpolation the blurring should decrease. 
Nonetheless, the reconstructions obtained with ISC-FBPP and ISC-EDOF-FBPP (Fig. 8(f), 
8(g)) appear much sharper than the result of DI. The ISC-FBPP result is slightly distorted, 
while the distribution obtained with ISC-EDOF-FBPP well resembles the ideal 
reconstruction. 

Let us now consider the case in which the sample is located far from the central plane and 
the scattered waves are strongly defocused (Fig. 8(b)-8(d), 8(h)-8(j)). In this case, the 
accuracy of DI and ISC-FBPP is significantly decreased. This is caused by the fact that the 
Rytov approximation does not hold for strongly defocused fields [22]. Notably, the character 
of the deformation for DI and ISC-FBPP is very similar, which is in accordance with the fact 
that both algorithms are theoretically equivalent. Interestingly, the deformation has the 
focusing-like nature i.e. the reconstructions are broaden/shrunk in size and 
decreased/increased in refractive index value for positive/negative zs. The described effect is 
very disadvantageous because it hinders proper evaluation of size and refractive index value 
of a specimen. The adverse effect can be avoided by using ISC-EDOF-FBPP, which provides 
the same, high reconstruction accuracy for all three investigated sample positions. The 
described effect of the z-variant performance of DI and ISC-FBPP can be also observed in 
Fig. 9, which shows central, transverse cross-sections through the refractive index maps in 
Figs. 8(b), 8(e), 8(h) (Fig. 9(a)), Figs. 8(c), 8(f), 8(i) (Fig. 9(b)) and Figs. 8(d), 8(g), 8(j) (Fig. 
9(c)). 

To further investigate this effect, we repeated the described simulation for multiple 
sample locations zs. For each zs, we computed the root-mean-square-error: 

 ( )2 / ,n nrec idealRSME N Δ −Δ=  (12) 

where Δnrec and Δnideal are the reconstructed and ideal refractive index variation and N denotes 
the reconstruction area in pixels. 

 

Fig. 9. Central transverse cross-sections through the refractive index difference maps in Figs. 
8(b)-8(j). 

The obtained results (Fig. 10) allow three conclusions: 

1) The accuracy of DI and ISC-FBPP decreases significantly with increasing |zs|, which is 
caused by invalid application of the Rytov approximation to strongly defocused 
fields. This prohibits accurate, large-volume tomographic reconstruction with those 
methods. 

2) The reconstruction errors for DI are generally larger than for the two other methods, 
which is caused by inaccuracies of spectral interpolation. Note that for large negative 
propagation distances (zs<-10µm), the DI error is slightly smaller than for ISC-
FBPP. This is probably the result of the blurring property of DI, which to some 
extent compensates the focusing-like (shrinking) distortion that is related to invalid 
use of the Rytov approximation. 
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3) ISC-EDOF-FBPP provides the lowest reconstruction error of all investigated methods. 
Only for this method, the reconstruction error is z-invariant, which is achieved by 
introducing the rigorous propagation instead of the approximated one. Thus, ISC-
EDOF-FBPP offers the highest possibility for successful restoration of large-volume 
objects. 

 

Fig. 10. The reconstruction errors for various sample locations. 

The computation times of the investigated algorithm were 0.7s, 22s and 65s for DI, ISC-
FBPP and ISC-EDOF-FBPP, respectively. The reconstruction parameters were: the scattered 
field size Nx = 2048, number of the illumination directions Nill = 121, the reconstruction size 
Px × Pz = 2048 × 2048. The computations were run in Matlab on PC with Intel® Core i7 
3.40GHz and 16 GB RAM without any advanced optimization like parallel nor GPU 
computing. The main cause for the increased computation time of ISC-EDOF-FBPP are 
multiple unwrapping operations: Nunwrap = Nill × Nz [21] (in DI and ISC-FBPP: Nunwrap = Nill). 

5. Tomographic imaging of a pancreatic cancer cell 

In this section the proposed reconstruction algorithms are applied for a tomographic 
measurement of a pancreatic tumour cell (PaTu 8988 T pLXIN E-Cadherin [31]). For the 
measurements, PaTu 8988 T pLXIN E-Cadherin cells were seeded subconfluently into 
microscopy Petri dishes (ibidi μ-Dish, ibidi GmbH, Munich, Germany), fixed with 
paraformaldehyde, covered with a glass cover slip (thickness: 170 µm) and observed at room 
temperature in phosphate buffered saline (PBS, refractive index n0 = 1.337). The holographic 
data was obtained with a scanning-mirror-based ISC-HT system with a conical illumination 
scenario (Fig. 11).  

 

Fig. 11. The ISC-HT measurement setup. Here, the vertical setup is demonstrated horizontally. 

The system consists of a collimated, coherent light source (Ti:Sapphire; 488nm), which is 
split into reference and object beam. The object beam is reflected off the dual-axis 
galvanometer mirror (GM) and focused in the front focal plane of a microscope objective 
(O1; 100x, NA1.3) by the L2 lens so that the measured object is illuminated by a plane wave. 
The sample is then imaged by an identical microscope objective (O2) and a tube lens (TL) 
onto a CCD camera (1/3”, 2048x2456, pixel size: 3.45µm), where it interferes with the 
reference beam generating an off-axis holograms. The conical illumination scenario applied 
here allowed 360 illumination directions with an angular step of 1°. The illumination 
directions were titled with respect to the optical axis by an angle of 42°. For each illumination 
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direction, an off-axis hologram was registered and reconstructed using the Fourier Transform 
hologram reconstruction method [32]. During this step, the plane wave carrier components of 
the off-axis scattered fields were removed, giving the frequency-shifted distributions Usi. The 
data was then processed with three discussed tomographic reconstruction algorithms. 

In order to provide an insight into the structure of the investigated sample, in Fig. 12, we 
present two transverse (xy) cross-sections of the PaTu 8988 T pLXIN E-Cadherin cell 
refractive index tomogram obtained with ISC-EDOF-FBPP (Fig. 12(a) - the upper region of 
the cell; Fig. 12(b) - the region near to the Petri dish bottom). The outer cell borders, the 
nucleus, the nucleoli and vacuoles inside the cytoplasm are clearly resolved. 

 

Fig. 12. Transverse cross-sections of ISC-EDOF-FBPP reconstruction of the PaTu cell (See 
Visualization 1). 

Figure 12 demonstrates the ability of ISC-HT to produce high-resolution refractive index 
images in transverse cross-sections of a sample. However, the true ambition of ISC-HT is to 
provide high-quality axial sample images. One obstacle in achieving this goal is the missing-
frequency problem, which results in poor axial resolution. However, other important yet often 
ignored obstacle is the z-variant accuracy of the standard reconstruction algorithms. To 
investigate this issue, in Fig. 13 we present axial (xz) cross-sections of the 3D reconstructions 
obtained with three tomographic algorithms: DI, ISC-FPP, ISC-EDOF-FBPP. The location of 
the cross-sections is marked in Fig. 12 with a dashed line. The first observation is that the DI 
reconstruction (Fig. 13(a)) is more blurred than other results. This is presumably caused by 
the errors of interpolation in the Fourier domain. Secondly, ISC-EDOF-FBPP (Fig. 13(c)) 
indeed seems to provide improved reconstruction accuracy for non-zero axial distances. This 
can be observed in the marked area of the cell (a dotted ellipse), where ISC-EDOF-FBPP 
enables proper restoration of the cell membrane, which is not achieved with the other two 
algorithms. 

Figure 13 proves that the z-variant accuracy of DI and ISC-FBPP can be a problem even 
for a relatively small sample, such as a thin biological cell. However, the shortcomings of DI 
and ISC-FBPP should become even more evident for larger samples or for groups of 
distributed samples. To demonstrate this effect, we numerically simulated the situation in 
which the investigated cell is located at zs = {-20µm, 0µm, 20µm}. To achieve this, we 
numerically refocused the original scattered fields by 20µm, 0µm, −20µm, respectively. For 
each sample location, tomographic reconstructions were performed. The obtained results are 
displayed in Fig. 14, in which we present a small area of the reconstructions containing the 
cell nucleolus. 
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Fig. 13. Axial cross-sections of the PaTu cell reconstructions obtained with DI, ISC-FBPP, 
ISC-EDOF-FBPP (see Visualization 2). 

The obtained images are in agreement with the simulation results (Fig. 8), i.e. the 
peripheral reconstructions obtained with DI and ISC-FBPP suffer from the focusing-like 
distortions, which lead to significant changes in size and refractive index values of the cell 
structure. In order to provide a quantitative comparison of the z-variant performance of the 
algorithms, RMSE was calculated according to Eq. (13), in which we assume that, for a given 
algorithm, the ideal distribution Δnideal is the reconstruction obtained for the central (zs = 0) 
location of the sample. The RMSE error, expressing the discrepancy between in-plane and 
out-of-plane reconstructions, is similarly large for DI and ISC-FBPP (RMSE≈2.x10−3), while 
for ISC-EDOF-FBPP, it is approx. 30 times smaller, which proves its z-invariant character. 

 

Fig. 14. Fragments of the reconstructions of a PaTu cell obtained for different sample locations 
(zs); the RMSE error denotes discrepancy between the in-plane (zs = 0) and out-of-plane (|zs|>0) 
reconstructions. 

The computation times of the investigated algorithm were 5min., 1.5h and 5.5h for DI, 
ISC-FBPP and ISC-EDOF-FBPP, respectively. The reconstruction parameters were Nx × Ny = 
800 × 800, Px × Py × Pz = 800 × 800 × 401, Nill = 360. 
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6. Conclusions 

We presented two novel tomographic reconstruction algorithms for ISC-HT: ISC-FBPP and 
ISC-EDOF-FBPP. The developed algorithms have three major advantages: 

1) They are implemented in the space domain, therefore, the error-prone interpolation in 
the object spectrum is avoided; 

2) The algorithms are general, i.e. they can be applied for arbitrary illumination scenario; 

3) ISC-EDOF-FBPP, unlike DI and ISC-FBPP, provides z-invariant performance, which 
enables maintaining high accuracy of reconstruction in a large measurement volume. 

The development of the space-domain reconstruction algorithms posed two major 
challenges: 1) the need for accurate and efficient numerical propagation of highly off-axis 
fields; 2) the problem of over-representation of some spectral components in a reconstruction. 
Challenge 1 was approached with the specialized off-axis propagation methods utilizing 
shifted coordinates. Challenge 2 was addressed with a general method of the spectrum 
equalization using a tomographic transfer function of a given ISC-HT system. The additional, 
important novelty of the work is a formula for tomographic transfer function for ISC-HT with 
conical illumination scenario. 

The utility of the proposed algorithms was demonstrated by numerical simulations and an 
experimental measurement of a pancreatic tumor cell. The obtained results proved that the 
proposed space-domain algorithms prohibit the blurring effect, which is typical for DI. 
Moreover, it was proven that ISC-FBPP and DI suffer from the z-variant accuracy, which 
origins from the invalid use of the Rytov approximation. The experimental results showed 
that the z-variant accuracy is an important problem even for relatively small samples, such as 
a single biological cell, whose size in z direction is less than 15µm. Moreover, the z-variant 
performance of DI and ISC-FBPP results in significant distortions, i.e. the reconstructions at 
nonzero |z| suffer from focusing-like deformation, which hinders evaluation of size and 
refractive index values of a specimen. This problem is overcome with ISC-EDOF-FBPP, 
which uses rigorous AS propagation instead of the approximated one, and therefore provides 
uniform accuracy in a large reconstruction volume. Notably, the price for the improved 
reconstruction accuracy of ISC-FBPP and ISC-EDOF-FBPP is increased computational load. 

Appendix 

Holographic tomography with conical illumination scenario utilizes rotation of an inclined 
illumination direction around the optical (z) axis. In the system, the inclination angle αill of the 
illumination direction with respect to the z axis is fixed while the azimuth of illumination θ is 
varied with a constant step in a full angle. Tomographic transfer function c of such a system 
can be represented as a sum of multiple spherical Ewald caps corresponding to successive 
illumination directions (Fig. 15(a)). Due to the symmetry of the illumination scenario, the 
function c is symmetric around the frequency axis Kz. 

Let us first focus on the transverse cross-section of c, which contains the centers of 
curvature: S=[KSx, KSy, KSz]=[k0n0sinαill cosθ, k0n0sinαill sinθ, -k0n0cosαill] of the Ewald 
spheres (Fig. 15(b)). The function c is symmetric around Kz, thus, it is sufficient to find the 
values of c along a single transverse direction, e.g. along the Ky axis. 
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Fig. 15. The single Ewald sphere contribution: a) 3D view; b) cross-section at Kz = -k0n0cosαill. 

The value of c at the frequency point A (Fig. 15(b)), which is located on the Ky axis, can 
be evaluated from the contribution of Ewald sphere with the inclination angle θ. The 
corresponding coordinate KyA is given by: 

 2 2 2
yA 1 2 St Stsin sqrt( cos ),K l l K R Kθ θ= + = + −  (14) 

where R = k0n0 is a radius of curvature of the Ewald sphere and KSt = sqrt(KSx
2 + KSy

2) = 
Rsinαill denotes a transverse coordinate of the sphere centre. Contribution from the current 
Ewald sphere at the point A to the tomographic transfer function is proportional to 1/cosβA 
[27], where βA is an angle between directions TA and NA, where TA indicates the direction of 
local translation of the cap with a change of θ and NA is a vector that is normal to the 
spherical surface at the point A. This is related to the fact that 1/cosβA is proportional to 
volume of a chunk of the Ewald sphere of infinitesimal thickness δR at the point A (Fig. 
15(c)): 

 A yA zA AV · ·  / cos .K k Rδ δ δ β=    (15) 

The value of cosβA in the function of KyA can be found from Eq. (14) and: 

 A Stcos cos / ,K Rβ θ=  (16) 

giving: 

 A
2 2 2 2 2 2 4 4 42( ) 2yA yA St St yA St yAcos .K R K K R K K K R K Rβ + + − − −=  (17) 

The distribution c is symmetric around the Kz axis. Therefore, replacing the coordinate KyA in 
Eq. (17) with a transverse coordinate Kt = (Kx

2 + Ky
2)1/2 allows finding the contributions from 

all Ewald spheres and evaluate the tomographic transfer function c: 

 t
t z 0 0 ill 2 2 2 2 2 2 4 4 4

tt t St St t St

2
( , cos )

22( )

K R L
c K K k n

KK R K K R K K K R
α

π
= − = ⋅

+ + − − −
(18) 

for the middle section, where L is a number of the applied illumination directions. Equation 
(18) can be generalized to other Kz slices, which leads to: 

 
2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4

t t St St z t z St z St z

,
2( )

t

RL
c

K R K k R K K R K K K K K K R Kπ
=

′ ′ ′ ′+ + + − − − − − −
 (19) 

where K’z = Kz + Rcosαill. Obviously, c is nonzero only in the region, which is occupied by 
the Ewald spheres: 
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 ( ) ( )2 22 2
t St z t Stcos cos .ill illR K K R K R K K Rα α− − − > > − + −  (20) 

Lastly, in the real-life experimental setups, size of the Ewald caps is limited by a semi-
aperture angle αimg (Fig. 15(a)), which is related to numerical aperture NAimg of an imaging 
system: αimg=asin(NAimg/n0). Therefore, the distribution c is zero for K’z<Rcosαimg. The result 
of the calculation of c for NAimg=1 and αill=60° is presented in Fig. 7(d)-7(f). 
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