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Occupational musculoskeletal disorders, particularly chronic low back pain (LBP), are ubiquitous due to prolonged static sitting or
nonergonomic sitting positions. Therefore, the aim of this study was to develop an instrumented chair with force and acceleration
sensors to determine the accuracy of automatically identifying the user’s sitting position by applying five different machine learning
methods (Support VectorMachines, Multinomial Regression, Boosting, Neural Networks, and Random Forest). Forty-one subjects
were requested to sit four times in seven different prescribed sitting positions (total 1148 samples). Sixteen force sensor values and
the backrest angle were used as the explanatory variables (features) for the classification. The different classification methods were
compared by means of a Leave-One-Out cross-validation approach. The best performance was achieved using the Random Forest
classification algorithm, producing a mean classification accuracy of 90.9% for subjects with which the algorithm was not familiar.
The classification accuracy varied between 81% and 98% for the seven different sitting positions. The present study showed the
possibility of accurately classifying different sitting positions by means of the introduced instrumented office chair combined with
machine learning analyses. The use of such novel approaches for the accurate assessment of chair usage could offer insights into
the relationships between sitting position, sitting behaviour, and the occurrence of musculoskeletal disorders.

1. Introduction

Nowadays, approximately 75% of all employees in industrial
countries have jobs that require working in a seated position
[1], resulting in prolonged spinal postures that are thought
to be associated with an increased risk of musculoskeletal
disorders in the back, neck, shoulders, arms, and legs [2, 3].
Chronic low back pain (LBP) is one such musculoskeletal
disorder that is commonplace, with almost everyone expe-
riencing it at one time or the other [4]. Prolonged periods of
sitting hinder or restrict themovement of the lower spine and,
therefore, prevent changes in the hydrostatic pressure in the
intervertebral discs and seem to be detrimental for nutrition
of the vertebral disc [5–7]. Krämer [8] reported that periodic
changes in the loads of the intervertebral discs are critically
important for not only their nutrition but also resistance
against pathological changes, since frequent changes between
high and low disc loads are able to induce an effective pump

mechanism in the vertebral discs [9]. Studies have shown
that lumbar disc pressure is strongly dependent on the sitting
position [10, 11].These authors also highlighted the difference
in muscular activity in the back between the different sitting
positions and the different inclination angles of the backrest
[10]. Furthermore, while changing position from an upright
to a reclined as well as to a forward inclined sitting position,
the chair user can adapt the position of the intervertebral
discs [12, 13]. Thus, most chair manufacturers now provide
sitting facilities that incorporate a variety of sitting positions.
However, the relationship between the sitting behaviour (e.g.,
change frequency, number of seating positions, time in each
specific sitting position, etc.) and the occurrence of LBP is not
well understood [6]. Furthermore, office workers often use
only a few potential sitting positions and it is unusual formost
people to check their sitting behaviour and posture during
concentratedworking [14–16]. Additionally, sitting behaviour
can also contain information about the actual level of comfort
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or discomfort of the chair user [17]. Therefore, it would be
of great benefit to have an instrumented office chair that is
able to make the user aware of their sitting position as well
as provide feedback in cases of excessive periods in the same
working position. This idea led us to the development of
an instrumented office chair with acceleration and pressure
sensors integrated into the backrest and seat pan cushions as
well as the armrests in order to analyse sitting behaviour.

The concept of instrumented or sensing chairs was first
introduced by Tan and coworkers in 1997 [18–20]. The
authors placed surface-mounted pressure distribution sensor
mats over the seat pan as well as over the backrest to obtain
real-time information of the chair-user interaction. Within
the project the authors addressed different possible long-term
goals such as the possibility of directly controlling a video
camera in a remote conference room, of gathering sitting
position information to give a feedback to the user, or of help-
ing furniture designers evaluate their new chairs by observing
sitting behaviour over a certain period of time. Beyond
these potential applications in the office environment, it is
also conceivable to monitor the pressure distribution on
wheelchairs or driver’s or passenger’s seats to automatically
adjust or redistribute the pressure distribution on the chair
surface so as to improve seating comfort, to adjust the airbag
force in case of an accident, to provide navigation guidance,
or to make the driver aware of the traffic situation in order to
prevent accidents.

In previous studies, the use of pressure sensormats on the
seat pan and on the backrest has allowed the detection of ten
different static sitting positions with an overall classification
accuracy of 79% for subjects with which the pattern learning
system is not familiar [19]. Mota and Picard [21] used the
same measuring system but in a dynamic setup to analyse
nine different sitting positions. In order to teach the pattern
recognition algorithm, two observers labelled the different
sitting positions by means of video analysis, producing an
overall classification accuracy of 87.6% in new subjects. In
a similar manner, Meyer and coworkers [22] used a textile
pressure sensormat with 96 elements on the seat pan and one
element on the backrest in order to classify 16 different static
sitting positions. By applying the 16 best features, selected by
the sequential forward selection algorithm [23], to a Näıve
Bayes classifier the authors reported a classification accuracy
of 82%. The Smart Cushion system [24] introduced by Xu
and coworkers consists of a 16 × 16 textile pressure sensor
mat placed at the seat pan of a conventional chair. By firstly
converting the 2D pressure map into a 1D pressure profile
sequence and applying a time warping-based classification
algorithm, an accuracy of almost 86% was achieved for seven
different postures. These studies [19, 21, 22, 24] demonstrate
that it is possible to detect different sitting positions in both
static and dynamic setups with considerable accuracy by
means of conventional as well as textile pressure sensor mats.

In order to reduce the complexity as well as the cost of
the measurement system, some studies aimed to analyse the
sitting position using several single axis force or pressure
sensors. For example, Mutlu and coworkers [25] evaluated
the pressure distribution data of Tan and coworkers [19] in
order to place 19 pressure sensors on the seat pan and the

backrest of an office chair as close as possible to the optimal
position for the recognition of the same ten different sitting
positions. By means of the SimpleLogistic classifier from
the Weka library [26] they achieved a mean classification
accuracy of 78%. Daian and coworkers [15] placed one
force sensor on the seat pan and one on the backrest to
detect if somebody is sitting. With the use of this system,
the authors were able to determine (a) whether the chair
had been used or not, (b) whether the person was sitting
in an adequate position, (c) or whether the person was
sitting in an inadequate position. However, the sensor system
was not validated and therefore it is difficult to assess the
accuracy of the classification approach. In a similar manner,
instrumenting the seat pan of a conventional office chair with
four force sensors located at each corner under the seating
surface has allowed the classification of eight different sitting
postures [16]. As in the previous case, however, this study
did not provide the accuracy of the classification approach
and it is therefore difficult to interpret the quality of the
reported seating posture classification. Hu and coworkers
[27] presented their PoSeat, a smart seat cushion with the aim
of preventing chronic back pain. In order to keep the costs
low, they experimented with multiple placement schemes
with 16 pressure sensors. Finally, the authors came up with
a solution using six pressure sensors (four at the backrest and
two at the seat pan) and one accelerometer within the cushion
covering the backrest. By using Support Vector Machines the
PoSeat was able to detect five different sitting positions with
an unspecified classification accuracy.

To our knowledge, there is no other study that has
analysed sitting behaviour by means of classifying the sitting
positions using force or pressure sensors. Therefore, there
is a lack of knowledge about the possibility of classifying
sitting behaviour by means of integrated pressure sensors
in office chairs. Nevertheless, studies have shown that feed-
back devices (graphical, physical, or vibrotactile interruption
feedback) have an enormous potential to motivate chair
users to improve their sitting behaviour [16], to make chair
users become more aware of their sitting posture [15], and
to promote the adoption of beneficial postures which can
be effective in preventing workplace-related musculoskeletal
disorders [28].Therefore, the aim of this study was to develop
an instrumented office chair with force and acceleration
sensors in order to assess the frequency of different sit-
ting positions in office chairs. Moreover, different pattern
recognition algorithms were applied and their performances
compared by analysing the mean and the subject-specific
and the position-specific classification accuracy. Finally an
assessment of sensor importance was performed in order to
rate the requirement for each sensor and location.

2. Materials and Methods

2.1.Measuring System and Subjects. In order to analyse sitting
behaviour of subjects during office work, three conventional
office chairs (ID� chair, Vitra AG) were equipped with
a custom built Motion-Module (accelerometer, gyroscope,
and magnetometer; MPU-9250 Nine-Axis, MEMS Motion-
Tracking� Devices, InvenSense, California, USA) attached
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to the rear of the backrest to assess global chair movement
and backrest angle of the office chair (Figure A1, in Sup-
plementary Material available online at http://dx.doi.org/
10.1155/2016/5978489). Furthermore, ten pressure sensors
were fixedwithin the seat pan, fourwere fixed on the backrest,
and three were fixed on each armrest.The latter three sensors
were connected in series; hence the equipped office chair
provided 16 different pressure sensor signals. The pressure
sensors (FSR� 406, Interlink Electronics; 43.69mm square
sensor, thickness: 0.45mm) changed their resistance as a
function of the loading. The sensors were attached using
a double-sided adhesive tape onto the chair padding and
the plastic armrests and additionally fixed with tape at the
soldering joint in order to protect the most vulnerable area of
the sensors.The fabric cover of the office chairwas thenpulled
over the sensors. Due to the fact that the pressure sensors are
highly sensitive to the contact area (material properties and
geometry), all sensors were calibrated by means of a wooden
stamp loaded with several weights (0.6 kg, 1.1 kg, 1.7 kg, 3 kg,
and 4.3 kg). The calibration procedure was repeated three
times for every sensor and a linear regression equation was
fitted through the measured sensor values in relation to the
applied forces (similar to the calibration procedure of [29]).
This calibration enabled us to make the sensor data of the
three office chairs comparable.

Forty-one healthy subjects (16 females and 25males) with
an average age of 38 years (range: 24–64 y), a mean height of
177 cm (range: 160–200 cm), and an average weight of 77 kg
(range: 53–126 kg) gave informed consent to participate in
this study which was approved by the ethics committee of
the ETH Zurich (number EK 2013-N-03). A wide range of
subject age, height, and weight was selected in order to find
an algorithm suitable to detect the sitting position for a broad
population.

2.2. Measurements. The instrumented office chair setup pre-
sented here allowed the force distribution patterns as well as
the backrest angle of different sitting positions to be analysed.
Here, all 41 subjects were requested to sit successively in the
seven most common predefined sitting positions [16, 21, 24]
one after another (SupplementaryMaterials: Figure A2).This
procedure was repeated four times. In order to familiarise the
subjects to the different sitting positions a hand-out with the
illustrations was provided (Supplementary Materials: Figure
A2). As we wanted to capture the natural variation in seating
positions, the experimenters did not provide additional
instructions or any feedback to the subjects. Participants were
asked to sit in each of the seating positions for at least five
seconds. The force and Motion-Module data were recorded
at 100Hz for one second. To do so, the examiner manually
started the one-second measurement after the subjects had
been sitting in a particular position for approximately three
seconds. Between each measurement, subjects were asked to
stand up in order to reset the pressure sensors as well as to
avoid any influence of the previous sitting positions on the
following one.

2.3. Data Set and Features. Data analysis was performed
using MATLAB (vR2013a, MathWorks Inc., Natick, USA).

The backrest angle was determined for every measurement
frame by assessing the intermediate angle of the gravitational
force vector of the unloaded chair and the same vector of the
sitting position measurement using the 3D acceleration data
of the Motion-Module. The input data for the classification
paradigm included the median of one-second duration of
the force data divided by the subject’s body weight as well as
the median of one-second duration of the calculated backrest
angles resulting in a total of 17 different explanatory variables.
Here, median values were extracted in order to ensure that all
the 17 input data vectors were robust against outliers resulting
from sensor fluctuations (which in retrospect never occurred ).

2.4. Classification and Validation. In order to quantify the
reliability of the different classification algorithms a Leave-
One-Out (LOO) cross-validation was performed where the
data of all subjects except one was used as training data and
the remaining subject was used for validation. The predicted
position was then identified as either correctly or wrongly
classified. The fraction of the misclassified observations was
defined as the LOO estimate for a particular subject. This
was repeated for all subjects and the mean value of the LOO
estimate of the 41 subjects was calculated, which can be
considered as approximately 𝑂(1/√𝑛) of the true error [30–
33], where 𝑂(⋅) stands for the Bachmann-Landau notation
[34, 35] and 𝑛 is equal to the number of subjects. The clas-
sification accuracy of a particular classification method was
then defined as one minus the LOO estimate.The estimate of
the LOO procedure is therefore almost unbiased and closely
represents the true generalisation error [36, 37]. Due to the
fact that LOO estimates the generalisation error of a model
trained with 𝑛 − 1 subjects, it provides a lower classification
performance than the real model with 𝑛 subjects [38].

Studies have shown that a lot of different algorithms
can be used for the classification of sitting positions with
satisfactory accuracy ranging from 78% to 88% [19, 21, 22,
24, 25]. Since the performance of a classification algorithm
is highly dependent on the used data set, we compared
the five algorithms (as well as their combinations) that are
generally thought to function best for classification problems
[39–41]. Unless specified, MATLAB’s (vR2013a, MathWorks
Inc., Natick, USA) default parameter values were used for all
pattern recognition algorithms.

Classification Paradigms
(1) Support VectorMachines (SVMs) [42, 43]. SVMswith a lin-
ear, quadratic, 3rd, 4th, 5th, and 6th polynomial order kernel
function and with a Gaussian Radial Basis Function (RBF)
kernel were used to classify the different sitting positions.
The scaling factor 𝜎RBF of the RBF kernel was varied between
0.01 and 4.00 in 0.01 steps. Sequential Minimal Optimisation
(SMO) was used to find the separating hyperplane and the
maximum number of iterations of the main loop was set at
106.

(2) Multinomial Regression (MNR) [39]. Each sitting position
measurement was predicted to belong to the sitting position
associated with the highest probability of the multinomial
Regression model for nominal responses.
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(3) Boosting [44]. For all Boosting methods the number of
ensemble learning cycles was set at 500. For the Boosting
method Subspace, the weak learners Discriminant as well as
kNN (k-Nearest-Neighbour)were applied. All other Boosting
methods (AdaBoostM2, LPBoost, TotalBoost, RUSBoost, and
Bag) were trained with Discriminant and tree weak learners.

(4) Neural Networks (NNs) [45]. A conventional feedforward
neural network (feedforwardnet) and various modifications
(such as fitnet, patternnet, and cascadeforwardnet) with five
different training functions were used. The network train-
ing functions were Levenberg-Marquardt backpropagation
(trainlm), scaled conjugate gradient backpropagation (train-
scg), gradient descent backpropagation (traingd), and gradi-
ent descent with momentum backpropagation (traingdm) as
well as gradient descent with momentum and adaptive learn-
ing rate backpropagation (traingdx). The hidden layer size
was varied between five and 25 for all feedforward networks.
Furthermore also Radial Basis Networks, particularly an
exact Radial BasisNetwork (newrbe), a generalised regression
neural network (newgrnn), and probabilistic neural network
(newpnn), were designed.The scaling factor 𝜎RBF of the radial
basis functions was varied between 0.01 and 4.00 in steps of
0.01.

(5) Random Forest (RF) [41]. An ensemble of 500 bagged
decision trees was created with a number of variables to select
at random for each decision split (NVarToSample) between
two and five.

(6) Combination of Boosting, NN, and RF. In order to improve
the classification algorithm, the three best performing
approaches were combined with each other. The mean value
of the class membership probabilities of the Bag Boosting
trainedwith treeweak learners, the conventional feedforward
neural network (feedforwardnet) using Levenberg-Marquardt
backpropagation (trainlm) with a hidden layer size of 22, and
the RF method with four variables to select at random for
each decision split was calculated and the data were assigned
to the sitting position with the highest probability.

The importance of the 17 different explanatory variables
(16 pressure sensors and backrest angle) was analysed by
performing the out-of-bag feature importance evaluations
(OOBPermutedVarDeltaError) of the RF method [46] with
the best performing parameters (NVarToSample = 4). Fur-
thermore, by using the results of the feature importance
analysis, we performed the LOO cross-validation (RF, NVar-
ToSample = 4) with different explanatory variable combi-
nations in order to analyse the importance of the backrest
angle (scenarios A, C, and E) as a predictor, to evaluate the
possibility of reducing some force channels (scenarios B, D),
and to determine whether the force sensors on the seat pan
were sufficient for classifying the different sitting positions
(scenario F). The six different analysed scenarios were as
follows (Figure 5):

A: all channels except the backrest angle (1–16).
B: all channels except the ones at the lower backrest
(7/15).
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Figure 1: Pressure values of input channel 6 against the values of
input channel 10 for the seven different sitting positions (as shown in
Figure A2 (SupplementaryMaterials); 1: upright position, 2: reclined
position, 3: forward inclined position, 4/5: laterally tilted right/left
position, 6/7: crossed legs, the left leg over the right one/the right
leg over the left one).

C: all channels except the backrest angle and the
sensors at the lower backrest (7/15).
D: only the pressure sensor channels 2, 6, 10, and 14,
as well as backrest angle 17.
E: only the pressure sensor channels 2, 6, 10, and 14.
F: only pressure sensor channels of the seat pan (1–5,
9–13).

3. Results

3.1. Sitting Posture Classification andValidation. A scatterplot
of all pressure values of input channel 6 against input
channel 10, exemplarily representing one of the pairs of
sensors with the highest optical distinction power for the
differentiation of the seven sitting positions, is shown in
Figure 1. It was almost impossible to distinguish any sitting
position from another due to the high complexity as well as
variability within our data set. The classification accuracy for
the different pattern recognition algorithms (Table 1) varied
between 25.3% (NN, patternnet, and traingd(24)) and 90.9%
(RF, NVarToSample = 4). By tuning the parameters of the
five different pattern recognition methods, a classification
accuracy of at least 82.7% could be achieved for everymethod.
The Boosting (Bag, tree), NN (feedforward, trainlm(22)), and
RF (NVarToSample = 4) showed the three best recognition
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Table 1: Classification accuracy of the different pattern recognition
algorithms.

Classification algorithm Classification accuracy
Support Vector Machines (SVMs)

Linear kernel function 70.1%
Quadratic kernel function 78.5%
3rd polynomial kernel function 77.7%
4th polynomial kernel function 79.8%
5th polynomial kernel function 75.9%
6th polynomial kernel function 72.2%
RBF kernel (𝜎RBF = 2.53) 82.7%

Multinomial Regression (MNR) 87.8%
Boosting

Subspace
𝑘𝑁𝑁a 47.6%
𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡a 72.4%

AdaBoostM2
𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡a 85.2%
𝑇𝑟𝑒𝑒a 78.8%

LPBoost
𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡a 82.1%
𝑇𝑟𝑒𝑒a 62.3%

TotalBoost
𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡a 75.1%
𝑇𝑟𝑒𝑒a 68.5%

RUSBoost
𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡a 82.0%
𝑇𝑟𝑒𝑒a 27.4%

Bag
𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡a 81.8%
𝑇𝑟𝑒𝑒a 90.4%

Neural Networks (NN)
Feedforward NN
Feedeforwardnet
trainlm(22)b 90.4%
trainscg(23)b 88.3%
traingd(22)b 39.1%
traingdm(22)b 37.2%
traingdx(23)b 77.5%

Patternnet
trainlm(17)b 89.2%
trainscg(15)b 85.1%
traingd(24)b 25.3%
traingdm(25)b 27.6%
traingdx(18)b 71.7%

Fitnet
trainlm(21)b 89.8%
trainscg(18)b 88.4%
traingd(25)b 40.0%
traingdm(24)b 36.3%
traingdx(24)b 78.4%

Cascade-forwardnet
trainlm(22)b 90.0%
trainscg(22)b 78.7%
traingd(23)b 45.2%
traingdm(21)b 39.3%
traingdx(22)b 41.7%

Table 1: Continued.

Classification algorithm Classification accuracy
Radial Basis NN
newrbe (𝜎RBF = 0.51)c 72.5%
newgrnn (𝜎RBF = 0.08)c 69.5%
newpnn (𝜎RBF = 0.08)c 69.5%

Random Forest (RF)
NVarToSample = 2 90.5%
NVarToSample = 3 90.7%
NVarToSample = 4 90.9%
NVarToSample = 5 90.2%

Combination: Boosting, NN, RF 90.8%
Only the results with the highest classification accuracy for the different
hidden layer sizes (NN) as well as for the different scaling factors 𝜎RBF (SMV
with RBF kernel, Radial Basis NN) are listed. The highest accuracies are
marked in bold for every category.
aWeak learner for the corresponding Boosting method.
bNeural network training function with the hidden layer size in brackets that
showed the highest classification accuracy.
cThe highest classification accuracy shown throughout variation of the
scaling factor of the radial basis function 𝜎RBF.

performances with accuracies of 90.4%, 90.4%, and 90.9%,
respectively. Finally, further improvement in the classification
accuracy was not observed even after combining the three
most successful pattern recognition paradigms.

The classification accuracy was then further categorised
into the seven different sitting positions for the three most
successful classification methods (Figure 2). The accuracies
clearly varied according to the sitting position with the worst
classified sitting postures being the crossed leg positions with
approximately 81% accuracy, while the posture with forward
inclination was classified most accurately at about 98% for all
of the three methods.

The histograms of the classification accuracy of the
different subjects (Figure 3)were very similar for the Boosting
(Bag, tree) and the RF (NVarToSample=4). Both the Boosting
(Bag, tree) and the RF (NVarToSample = 4) method showed
the lowest accuracy value of 67.9% for one subject, whereas
for theNN (feedforward, trainlm(22)) the lowest classification
accuracy was 77.8%.

3.2. Random Forest Feature Importance. The mean value of
the out-of-bag feature importance of the 17 predictors was
around 1.5 (Figure 4). The highest values were found for
the sensors at the armrests (6, 14; Supplementary Materials:
Figure A1) as well as the two sensors in the anterior part of
the seat pan (2, 10; Supplementary Materials: Figure A1) with
values between 2.1 and 2.5, whereas the lowest importance
rating could be found for the two sensors at the lower backrest
(7, 15; Supplementary Materials: Figure A1) with values lower
than 0.6.

By neglecting the backrest angle, aswell as the two sensors
of the lower backrest, a classification accuracy of 89.6% was
determined (Figure 5). By only considering the four sensors
with the highest feature importance value (2, 6, 10, and 14;
Supplementary Materials: Figure A1), an accuracy of 71.1%
was determined. Furthermore, using only the sensors on the
seat pan showed a classification accuracy of 81.9%.



6 BioMed Research International

Sitting position
1 2 3 4 5 6 7

Tan et al. [19]

Mota and Picard [21]

This study (RF) 

60

70

80

90

100

Cl
as

sifi
ca

tio
n 

ac
cu

ra
cy

 (%
)

feedforwardnet, trainlm(22)
Bag Boosting (tree)
Random Forest (NVarToSample: 4)

Figure 2: Classification accuracy of the seven different sitting
positions (as shown in Figure A2 (Supplementary Materials); 1:
upright position, 2: reclined position, 3: forward inclined position,
4/5: laterally tilted right/left position, and 6/7: crossed legs, the left
leg over the right one/the right leg over the left one) for the three best
performing classification methods (NN (beige), Boosting (green),
and RF algorithm (red)), each using the parameters leading to the
highest classification accuracy. The horizontal lines represent the
classification accuracy of Tan et al. [19] and Mota and Picard [21]
(black) as well as that of the current study using RF (red).

4. Discussion

Despite increasingly prolonged seating periods required for
office jobs, the relationship between the sitting behaviour
and the occurrence of LBP is hardly understood [6]. One
challenging aspect of addressing this issue is to correctly clas-
sify sitting position in office environments and subsequently
apply this classification for quantifying sitting behaviour.The
aim of our study was therefore to develop an instrumented
office chair in order to automatically classify various sitting
postures as an essential first step towards assessing sitting
behaviour for chair users. Here, with the application of 16
pressure sensors, as well as a Motion-Module for assessing
back rest angle and chair motion, we were able to detect
seven different sitting positions with a classification accuracy
of over 90% (RF, NVarToSample = 4). The use of Leave-One-
Out analyses for assessing new subjects that were entirely
unfamiliar with the classification algorithm ensured that
this validation accuracy was not only conservative but also
realistic for application in new environments.

The complexity of our data set was too high in order
to classify the different sitting positions by means of simple
threshold based algorithms (Figure 1). The use of advanced
algorithms such as SVMs, MNR, Boosting methods, and

NNs as well as RFs with different algorithm parameters
was therefore necessary for classifying the different sitting
positions. The performance of the five different classification
methods was very similar when tuning the algorithm’s spe-
cific parameters; however only threemethods, Boosting (Bag,
tree), NN (feedforward, trainlm(22)), and RF (NVarToSample
= 4), showed a classification accuracy above 90%.The results
achieved in our study present an improvement over the values
reported in similar studies [19, 21, 22, 24, 25], which generally
ranged between 78% and 88%. The studies from Tan and
coworkers [19] as well as Mota and Picard [21] used an
instrumented chair with pressure sensor mats on the seat pan
and the backrest. Therefore, these studies used some 4032
sensor units compared to the simpler 17-sensor system (16
pressure sensors and one Motion-Module) considered here.
Our improved classification accuracy, despite reduced levels
of information, is likely to be due to the effective utilisation of
modern algorithms [39, 40] and improved spatial placement
of the sensors around the seat pan and backrest. The current
study also shows that the sensors on the lower backrest
(7, 15; Supplementary Materials: Figure A1) as well as the
Motion-Module can be left out without any notable loss in the
overall classification accuracy. Furthermore, it is still possible
to assess the different sitting positions by only using the
pressure sensors on the seat panwith reasonable classification
accuracy (81.9%).

Dreischarf et al. [47] highlighted the importance of sup-
porting the upper body using the arms in order to decrease
spinal loads. By means of our instrumented office chair it is
possible not only to accurately detect the users’ current sitting
position but also to quantify the armrest usage, which could
play an important role in understanding and preventing LBP
in the office environment.

By looking at the different sitting positions individually,
we found the highest classification accuracies for the forward
inclined sitting position (3; Supplementary Materials: Figure
A2). This is plausible inasmuch as the forward inclined
sitting position shows differences in almost every sensor
value compared to all other positions. Here, an increase in
the anterior and decrease in the posterior seat pan sensors are
accompanied by no contact to the backrest, since the back is
entirely unsupported, with more weight probably supported
by the legs. Furthermore, this is the only position with a
forward inclined backrest angle. The lowest classification
accuracies were determined for the two sitting positions
with crossed legs (6, 7; Supplementary Materials: Figure A2).
Surprisingly, despite the symmetry of the two sitting positions
with crossed legs, the classification accuracy differed by
approximately 6%. This might be explained by the fact that
many of the analysed subjects reported a preference to have
the left leg over the right one in the crossed leg sitting
positions, which is likely a result of the fact that the limb
dominance was not evenly distributed across the analysed
subjects. As a result, the variability in the performance of
the crossed legged sitting position with the right leg over
the left one was likely to be higher and therefore could
have led to a lower classification accuracy compared to
the sitting position with the left leg over the right one.
Importantly, in daily office work, where subjects are not
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Figure 3: Histogram of the classification accuracy of the 41 different subjects for the three best classification methods (NN, Boosting, and
RF), each using the parameters leading to the highest classification accuracy.
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Figure 4: Out-of-bag feature importance of the 17 explanatory
variables: pressure sensors (1–16, Supplementary Materials: Figure
A1) and backrest angle (17) for the RF (NVarToSample = 4). The
sensors on the seat pan are presented in a plain colour, those on the
armrests are presented as crosshatched ones, those on the backrest
are presented as normal hatched ones, and the backrest angle is in
patterned dots.

asked to sit in predefined positions, workers are unlikely
to sit in less preferred positions and therefore the general
classification accuracy of the techniques used here would be
even higher. Furthermore, in a real working environment
computer mouse usage can also result in an asymmetric
sitting as well as upper body positions. However, the role of
any such asymmetrical sitting bias and its possible role in low
back pain remain to be elucidated.

It is important to note that our measuring system only
allows classification of the seven predefined postures with an
accuracy of over 90%. Hence, if a subject is sitting in another
(unknown) position, the algorithmwould predict the nearest
known sitting position that shows the most similar input
channel pattern. Furthermore, it must be kept in mind that

some pattern recognition algorithms were given a stronger
weight due to the fact that some methods were modified
with many different parameter values (e.g., NN) and others
were not (e.g., MNR). However, any such weighting could
be considered of only low importance, since the aim of our
study was not to compare different classification algorithms
in general. Our strategy rather enabled us to find the clas-
sification algorithm and parameters performing the best for
our data set. Nevertheless, the RF method showed the best
performance for our data set, even though we adapted only
one single parameter of the algorithm that resulted in four
different RF executions. Furthermore, in addition to the fact
that this method showed the highest accuracy, the authors
would recommend the use of RF since this method is one
of the fastest algorithms, it provides direct estimates of the
variable importance, and the algorithm does not overfit [41].

With 41 subjects in 7 different sitting positions, each
4 times, the total sample size of 1148 sitting assessments
could be considered to be rather high—and, indeed, this was
confirmed by the excellent performance of the classifiers,
which provided appropriate confirmation that the training set
was more than sufficient to provide a baseline understanding
for classifying sitting positions. However, should assessment
of a greater number of sitting positions be required, further
data sets would be beneficial to ensure similar classification
performance. In future studies, the introduced instrumented
office chair could be used to analyse sitting behaviour in the
office environment in order to gain a better understanding of
the relationship between the amount of time spent in a sitting
position and the occurrence of LBP.

5. Conclusions

To summarise, the present study demonstrated the ability of
sensor technology, together with machine learning analyses,
to accurately classify different occupational sitting positions.
The use of such novel approaches for the accurate assessment
of chair usage could offer insights into the relationships
between sitting position, sitting behaviour, and the occur-
rence of musculoskeletal disorders but could also provide
important knowledge in other fields, for example, sleeping
disorders, or in subjects suffering clinical pathologies such
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as spinal cord injuries. In the future office environment,
sitting assessment technologies could become commonplace
in order to help to raise user’s awareness of their sitting
behaviour and may help towards reducing the occurrence of
LBP.
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