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Protocadherin 15 (PCDH15) is a core component of hair cell tip-links and crucial for proper function of inner ear hair cells.
Mutations of PCDH15 gene cause syndromic and nonsyndromic hearing loss. At present, the regulatorymechanisms responsible for
the intracellular transportation of PCDH15 largely remain unknown. Here we show that PIST, a Golgi-associated, PDZ domain-
containing protein, interacts with PCDH15. The interaction is mediated by the PDZ domain of PIST and the C-terminal PDZ
domain-binding interface (PBI) of PCDH15.Through this interaction, PIST retains PCDH15 in the trans-Golgi network (TGN) and
reduces themembrane expression of PCDH15.We have previously showed that PIST regulates themembrane expression of another
tip-link component, cadherin 23 (CDH23). Taken together, our finding suggests that PIST regulates the intracellular trafficking and
membrane targeting of the tip-link proteins CDH23 and PCDH15.

1. Introduction

Inner ear hair cells are responsible for mechanoelectrical
transduction (MET) that converts mechanical stimuli into
electrical signals. MET occurs within stereocilia, the F-actin-
based, and microvilli-like protrusions on the apical surface
of hair cells [1]. Stereocilia are organized into several rows
of increasing heights, forming a staircase-like structure.
Several types of extracellular links, including tip-links, top-
connectors, lateral-links, ankle-links, and kinociliary-links,
connect stereocilia with each other andwith themicrotubule-
based kinocilium [2]. Among these extracellular links, tip-
links are of great importance. Tip-links connect the tip of each
stereocilium to the side of its taller neighboring stereocilium
and are directly involved in the MET process [3]. The yet
unidentified MET channels localize at the lower end of tip-
links and form the so-called MET machinery together with
the lower end of tip-links as well as other proteins [4]. When

stereocilia are deflected in the excitatory direction, the ten-
sion of tip-links increases and the open probability of MET
channels also increases, resulting in the influx of cations into
hair cells [1].

Protocadherin 15 (PCDH15) is an atypical cadherin that
contains eleven extracellular cadherin (EC) repeats, whereas
classical cadherins usually have only five EC repeats. Genetic,
biochemical, immunochemical, and structural evidence indi-
cated that PCDH15 and cadherin 23 (CDH23), another
atypical cadherin, form the lower and higher part of tip-links,
respectively [5–7]. PCDH15 and CDH23 interact with each
other via the most N-terminal two EC repeats and create a ∼
170 nm long extracellular link under endolymph-like calcium
levels [7–9]. Mutations of PCDH15 gene are responsible for
syndromic hearing loss Usher 1F or nonsyndromic hearing
loss DFNB23 [10–12]. Pcdh15 mutations are also responsible
for the hearing and balancing deficits of Ames waltzer (av)
mice [13, 14]. In av mice, stereociliary tip-links are reduced or
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Figure 1: PCDH15-CD3 interacts with PIST. (a) Schematic diagram of PCDH15 and PIST domain structure. EC, extracellular cadherin
repeats; TM, transmembrane domain; CR, common region; CC1, coiled-coil domain 1; CC2, coiled-coil domain 2; PDZ, PSD-95/discs
large/ZO-1 domain. The C-terminal PBI of PCDH15 isoforms (STSL, NTAL, and MTKL) is also indicated. (b) Western blots showing
coimmunoprecipitation (co-IP) of EGFP-tagged mouse PCDH15-CD1 cytoplasmic domain with Myc-tagged human PIST. (c) Western blots
showing co-IP of EGFP-tagged mouse PCDH15-CD2 cytoplasmic domain withMyc-tagged human PIST. (d)Western blots showing co-IP of
EGFP-tagged mouse PCDH15-CD3 cytoplasmic domain with Myc-tagged human PIST. IP indicates antibody used for immunoprecipitation
and WB indicates antibody used for detection.

even absent, depending on the nature of the mutations, and
hair cells are degenerated eventually, resulting in deafness and
vestibular dysfunction [15].

Three prominent PCDH15 isoforms are generated by
alternative pre-mRNA splicing, which are PCDH15-CD1,
PCDH15-CD2, and PCDH15-CD3 [6]. These PCDH15 iso-
forms differ in their cytoplasmic domains (Figure 1(a)) and
show different spatiotemporal expression pattern in the
developing and mature inner ear [6]. Noticeably, different
PCDH15 isoforms contain different PDZ binding interfaces
(PBI) at their C-termini, which consist of the last four amino
acids and are responsible for binding to PDZ domains.
Different PCDH15 isoforms function redundantly during
hair cell development, whereas PCDH15-CD2 was shown
to be essential for tip-links in mature auditory hair cells
[16, 17]. All PCDH15 isoforms could interactwithTMHS (also
called LHFPL5), an integral component ofMETmachinery of
cochlear hair cells [18]. PCDH15-CD2, but not PCDH15-CD1
or PCDH15-CD3, also binds TMIE, another METmachinery
component [19]. Furthermore, all PCDH15 isoforms directly
interact with TMC1 and TMC2, the candidateMET channels,
and core component of MET machinery [20, 21]. These data
suggest that PCDH15 is an important component of theMET
machinery.

Several other PCDH15-binding proteins have also been
identified so far. PCDH15-CD1 was shown to interact
with PDZ domain-containing protein harmonin via its C-
terminal PBI [22, 23]. Further investigation showed that the

stereociliary localization of PCDH15 is affected in harmonin
knockoutmice [24]. PCDH15-CD1 also interactswithMyosin
VIIA, and the stereociliary localization of PCDH15 is per-
turbed inmyosin VIIAmutant mice [25]. Recently, PCDH15-
CD2 was shown to interact with Myosin 3A, which might
regulate the transportation of PCDH15 to stereociliary tips
[26]. In the presentwork,we show that PCDH15-CD3, but not
PCDH15-CD1 or PCDH15-CD2, interacts with PDZ domain-
containing protein PIST, which might play an important
role in the intracellular trafficking and plasma membrane
targeting of PCDH15-CD3.

2. Materials and Methods

2.1. DNA Constructs and Antibodies. Chicken Pcdh15-CD3
cDNA was inserted into pBD-GAL4 Cam vector (Strata-
gene) to express the C-terminal 106 amino acids of chicken
PCDH15-CD3 as bait protein. Mouse Pcdh15 cDNAs were
inserted into pcDNA3.1(+) to express full length PCDH15
isoforms with a Myc tag between the N-terminal signal
peptide and the first EC repeat. Mouse Pcdh15 cDNAs were
inserted into pEGFP-C2 or modified pEGFP-C2 (EGFP
replaced with Myc) to express EGFP-tagged or Myc-tagged
PCDH15 cytoplasmic domains. The cDNA encoding mouse
PCDH15-CD3 missing the last 4 aa (MTKL) at the C-
terminus was inserted into the same vectors to express
Myc-PCDH15-CD3 (-MTKL) and Myc-PCDH15-CD3 Cter
(-MTKL). Human PIST cDNA was inserted into pEGFP-C2
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or modified pEGFP-C2 to express full length PIST, PIST
CC2-plus domain (146-274aa), and PIST PDZ domain (276-
366aa) as EGFP-fusion or Myc-fusion proteins. Mouse mon-
oclonal anti-EGFP antibody (Cat. number M20004) was
from Abmart. Mouse monoclonal anti-Myc antibody (Cat.
number M4439) was from Sigma-Aldrich.

2.2. Yeast Two-Hybrid Screen. The yeast two-hybrid screen
was performed as previously described [27, 28]. Briefly, yeast
strain AH109 (Clontech) was sequentially transformed with
the bait plasmid and a chicken cochlear cDNA library in
the HybriZAP two-hybrid vector [29]. Totally 2.4 × 106
transformants were selectively screened using HIS3 (at the
presence of 2.5mM of 3-amino-1,2,4-triazole) as the primary
reporter gene. The positive colonies were further examined
using two more reporter genes ADE2 and lacZ. The prey
vectors in triple-positive yeast colonies were recovered and
the sequence of cDNA inserts was determined by Sanger
sequencing.

2.3. Coimmunoprecipitation (Co-IP). HEK293T cells were
transfected with the expression vectors using jetPRIME
Transfection Agent (Polyplus, Cat. number PT-114-15) ac-
cording to the manufacturer’s instructions. Transfected cells
were washed with phosphate-buffered saline (PBS) 24 hours
after transfection and lysed in ice-cold lysis buffer consisting
of 150mMNaCl, 50mMTris at pH 7.5, 1% (vol/vol) Triton X-
100, 1mM PMSF, and 1 × protease inhibitor cocktail (Roche).
After centrifugation at 4∘C, the supernatant was collected
and incubated with immobilized anti-Myc antibody (Sigma-
Aldrich, Cat. number E6654) at 4∘C overnight. After washing
five times with washing buffer (a modified lysis buffer
containing 500mM NaCl instead of 150mM), the immuno-
precipitated proteins were separated by polyacrylamide gel
electrophoresis (PAGE) and then transferred to PVDFmem-
brane. The blot was incubated with corresponding primary
antibodies, followed by incubationwith secondary antibodies
(Bio-Rad), and the signals were detected with the ECL system
(Cell Signaling Technology).

2.4. Immunofluorescence. COS-7 cells were grown on Gela-
tin-coated glass cover slips and transfected with the expres-
sion vectors. Transfected cells were fixedwith 4%paraformal-
dehyde (PFA) in PBS for 15 minutes and then permeabilized
and blocked with PBT1 (0.1% Triton X-100, 1% BSA, 5%
heat-inactivated goat serum in PBS, pH 7.3) for 30 minutes,
followed by incubation with primary antibody diluted in
PBT1 over night at 4∘C. After washing twice with PBT1
for 10 minutes and twice with PBT2 (0.1% Triton X-100,
0.1% BSA in PBS) for 5 minutes, cells were incubated with
fluorescence-conjugated secondary antibody (Life Tech) in
PBT2 for 1 hour, followed by two 5-minute PBT2 washes
and two 5-minute PBS washes. For nuclei staining, cells
were incubated with DAPI (Gen-View Scientific Inc.) for 15
minutes, followed by four 5-minute PBS washes and then
mounted in Glycerol/PBS (1 : 1). The cells were imaged with
a confocal microscope (LSM 700, Zeiss).

3. Results

To identify proteins that interact with PCDH15, we per-
formed yeast two-hybrid screens of a chicken cochlear cDNA
library using PCDH15 as bait. HIS3 gene was used as the
primary reporter gene for the screen in the presence of 3-
amino-1,2,4-triazole (3-AT) that inhibits the autoactivation
of HIS3 reporter gene. When the intact cytoplasmic domain
of chicken PCDH15-CD3 was used as bait, it autoactivated
the HIS3 reporter gene at the highest 3-AT concentration
(15mM) tested. Then various regions within the PCDH15-
CD3 cytoplasmic domain were tested for autoactivation.
The results showed that the fragment containing the C-
terminal 106 amino acids does not activate HIS3 reporter
gene at the presence of 2.5mM 3-AT, and this fragment
was used in the following yeast two-hybrid screen. Among
the positive clones that activate all the three reporter genes
(HIS3, ADE2, and lacZ), several clones encode the PDZ-
containing, Golgi-associated chaperone protein PIST. PIST
has been shown to play important roles in regulating the
membrane targeting of several transmembrane proteins such
as frizzled, somatostatin receptor subtype 5 (SSTR5) and 𝛽1-
adrenergic receptor (𝛽1AR) [30–32].

We then performed coimmunoprecipitation (co-IP)
experiments to verify the interaction between PCDH15 and
PIST. From here on in the rest of our investigation, we
focused onmammalian proteins. Our data showed that when
overexpressed in HEK293T cells, EGFP-tagged cytoplasmic
domain of mouse PCDH15-CD3 was co-IPed with Myc-
tagged human PIST, whereas PCDH15-CD1 and PCDH15-
CD2 were not (Figures 1(b)–1(d)). This result suggests that
PCDH15-CD3, but not PCDH15-CD1 or PCDH15-CD2,
interacts with PIST.

Previously we have shown that PIST binds to cadherin 23
(CDH23), the upper tip-link component, and retains CDH23
in the trans-Golgi network (TGN) in cultured cells [33]. To
test whether this also applies to PCDH15, we analyzed the
subcellular distribution of PCDH15 and PIST in cultured
cells by immunofluorescence and confocal microscopy. The
results showed that when coexpressed in COS-7 cells, EGFP-
PIST mainly localizes in the TGN, whereas Myc-PCDH15-
CD1 or Myc-PCDH15-CD2 localizes in the cytoplasm as well
as on the plasma membrane, consistent with the fact that
PCDH15-CD1 or PCDH15-CD2 does not interact with PIST
(Figures 2(a) and 2(b)). In contrast, when cotransfected with
EGFP-PIST and Myc-PCDH15-CD3, most (70.24%) cells
show colocalization of PCDH15-CD3 with PIST in the TGN
(Figure 2(c)).

We then performed co-IP experiments to explore which
regions/motifs in PCDH15-CD3 and PIST are responsible
for the interaction between them. PIST contains a PDZ
domain near the C-terminus and two coiled-coil (CC)
domains in the middle part (Figure 3(a)). Co-IP experiments
with EGFP-tagged PIST PDZ domain (276-366aa) or the
second CC domain (CC2) plus the amino acids between
CC2 and PDZ domain (CC2-plus, 146-274aa) revealed that
both domains could be co-IPed with Myc-PCDH15-CD3
cytoplasmic domain (Figures 3(b) and 3(c)). PCDH15-CD1,
PCDH15-CD2, and PCDH15-CD3 have unique C-termini
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Figure 2: Colocalization of PCDH15-CD3 with PIST in COS-7 cells. (a) In the presence of EGFP-PIST, Myc-PCDH15-CD1 localizes in the
cytoplasm as well as on the cell membrane. (b) In the presence of EGFP-PIST, Myc-PCDH15-CD2 localizes in the cytoplasm as well as
on the cell membrane. (c) In the presence of EGFP-PIST, Myc-PCDH15-CD3 colocalizes with EGFP-PIST in the TGN. Myc-PCDH15 was
stained with mouse anti-Myc antibody and then TRITC-conjugated goat anti-mouse secondary antibody. Nuclei were stained with DAPI.
The fluorescent intensity was quantified using Image J. Scale bars, 10 𝜇m.
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Figure 3: The C-terminal PBI of PCDH15-CD3 is necessary for the interaction with PIST. (a) Schematic diagram of PCDH15 and PIST
domains used in this experiment. (b) Western blots showing coimmunoprecipitation (co-IP) of EGFP-tagged human PIST PDZ domain
with Myc-tagged mouse PCDH15-CD3 cytoplasmic domain. (c) Western blots showing co-IP of EGFP-tagged human PIST CC2-plus region
withMyc-tagged mouse PCDH15-CD3 cytoplasmic domain. (d)Western blots showing co-IP of EGFP-tagged human PIST withMyc-tagged
mouse PCDH15-CD3 cytoplasmic domain with or without the C-terminal PBI (MTKL). IP indicates antibody used for immunoprecipitation
and WB indicates antibody used for detection.

(STSL, NTAL, and MTKL, resp.), which belong to type I PBI
[34].We found that when the C-terminalMTKL of PCDH15-
CD3 was removed, EGFP-PIST could not be co-IPed with
Myc-tagged PCDH15-CD3 cytoplasmic domain anymore
(Figure 3(d)). In line with this, Myc-tagged PCDH15-CD3
lacking the C-terminal MTKL is not retained in the TGN
by EGFP-PIST anymore (Figures 4(a) and 4(b)). These data
suggest that the principal interaction between PCDH15-CD3
and PIST utilizes the PDZ binding interface.

Finally, we examined whether the association with PIST
affects the membrane targeting of PCDH15-CD3. When
coexpressed with EGFP, Myc-PCDH15-CD3 mainly localizes
in the cytoplasm and on the plasma membrane (Figure 5(a)).
The plasma membrane localization of Myc-PCDH15-CD3
could be observed more clearly when the extracellular Myc
epitope was labeled by anti-Myc antibody without cell per-
meabilization (Figure 5(a󸀠)). In contrast, when EGFP-PIST is
present, Myc-PCDH15-CD3 colocalizes with EGFP-PIST in
the TGN, and the membrane labelling in nonpermeabilized
cells disappeared completely (Figures 5(b) and 5(b󸀠)). These
data suggest that PIST retains PCDH15-CD3 in the TGN and
reduces the membrane expression of PCDH15-CD3.

4. Discussion

PCDH15 and CDH23 form the lower and upper part of tip-
links, respectively, and are indispensable for hearing trans-
duction. Besides tip-links, PCDH15 and CDH23 also local-
ize at kinociliary-links, transient lateral-links, and ribbon
synapse of hair cells [6, 7, 35–37]. It has been suggested that
the transportation of PCDH15 to apical (stereociliary bun-
dle) and basal (ribbon synapses) poles depends on distinct
trafficking mechanisms. Apically transported PCDH15 was
shown to associate with the Arf1-positive early endosomal
vesicles and colocalize with the early endosomal marker
Rab5, whereas basally transported PCDH15 was shown to
associate with AP-1-positive post-trans-Golgi vesicles [38].
The detailed mechanism of PCDH15 transportation remains
elusive.

In the present work we show that PIST might play
an important role in regulating the intracellular traffic and
membrane targeting of PCDH15. Previously we have shown
that PIST regulates the membrane expression of CDH23
[33]. Taken together, our work suggests that PIST regulates
the intracellular transportation of both tip-link components,
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Figure 4: The C-terminal PBI of PCDH15-CD3 is necessary for its retention in the TGN of COS-7 cells by PIST. (a) In the presence of
EGFP-PIST, Myc-PCDH15-CD3 colocalizes with EGFP-PIST in the TGN. (b) In the presence of EGFP-PIST, Myc-PCDH15-CD3 lacking the
C-terminal PBI (MTKL) localizes in the cytoplasm as well as on the cell membrane.Myc-PCDH15 was stained withmouse anti-Myc antibody
and then TRITC-conjugated goat anti-mouse secondary antibody. Nuclei were stained with DAPI. The fluorescent intensity was quantified
using Image J. Scale bars, 10𝜇m.

PCDH15 and CDH23. PIST is a PDZ-containing, Golgi-
associated chaperone protein, also named as FIG, GOPC, or
CAL. PIST plays important roles in regulating the membrane
targeting of transmembrane proteins [30–32]. Notably, PIST
was shown to colocalize with the early endosome marker
Rab5 and the TGN/endosome marker Rab14 [39]. Our data
reveal that PCDH15-CD3 and CDH23 bind PIST via their C-
terminal PBI and colocalize with PIST in the TGN, which
might regulate the transportation of PCDH15 and CDH23 to
the apical surface of hair cells.

Interestingly, we found that, besides the PDZ domain,
the CC2 domain and its downstream amino acids (CC2-
plus) of PIST also interact with PCDH15-CD3. This was
also observed in the interaction between PIST and CDH23
[33]. Nevertheless, it seems that PDZ/PBI mediate the
principal interaction between PIST and PCDH15-CD3 or
CDH23 because deletion of the C-terminal PBI abolishes the
interaction completely. PCDH15-CD1, PCDH15-CD2, and
PCDH15-CD3 all contain a type I PBI, but only PCDH15-
CD3 binds PIST and colocalizes with PIST in the TGN.
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Figure 5: PIST reduces the membrane expression of PCDH15-CD3 in COS-7 cells. (a) Myc-PCDH15-CD3 immunoreactivity shows
cytoplasmic and plasma membrane localization when coexpressed with EGFP. (a󸀠) Myc-PCDH15-CD3 immunoreactivity using a
nonpermeable protocol shows clear plasma membrane localization when coexpressed with EGFP. (b) Myc-PCDH15-CD3 immunoreactivity
colocalizes with EGFP-PIST in the TGN. (b󸀠) The plasma membrane localization of Myc-PCDH15-CD3 immunoreactivity examined using
a nonpermeable protocol disappears when EGFP-PIST is present. For the nonpermeable protocol, staining was performed as normal except
that Triton X-100 was excluded. Myc-PCDH15 was stained with mouse anti-Myc antibody and then TRITC-conjugated goat anti-mouse
secondary antibody. Nuclei were stained with DAPI. Scale bar, 10𝜇m.

Previously, PCDH15-CD1 has been shown to interact with
PDZ domain-containing protein harmonin [22, 23]. The
different C-terminal PBI of the three PCDH15 isoforms

might mediate interaction with different PDZ domain-
containing proteins and render the PCDH15 isoforms differ-
ent function or regulation.
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