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INTRODUCTION

The prevalence of dementia is rapidly increasing in 
developed countries because of significant increase in 
aging population. According to the 2014 World Alzheimer’s 
Report, dementia affects approximately 44 million people 
worldwide, and the incidence of Alzheimer’s disease (AD) 
is expected to triple by the year 2050 (1). Accordingly, the 
extent of research on the neuroimaging of dementia has 
expanded tremendously in the last decade, thus enabling 
easier differential diagnosis of dementia and more precise 
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monitoring of disease progression using structural and 
physiological magnetic resonance (MR) imaging features. The 
3T MRI in particular provides better resolution of structural 
imaging, and more robust performance of advanced 
techniques such as diffusion tensor imaging (DTI), perfusion-
weighted imaging, MR spectroscopy, and functional MRI. In 
addition, development of new positron emission tomography 
(PET) ligands specific for pathological substances such as 
β-amyloid (Aβ) provides new perspectives on the diagnosis 
of dementia.

Despite advancements made in MR imaging, radiologists 
are often reluctant to make a specific diagnosis of clinical 
dementia due to lack of specific findings. At times, subtle 
findings such as mild regional atrophy are neglected and 
imaging diagnosis of dementia is regarded as useless. 
Therefore, introduction of a systematic and practical 
approach to the imaging diagnosis of dementia is required. 
The imaging of dementia has not only diagnostic and 
prognostic potential, but may also grant unique insights 
into dementia itself. Therefore, the objective of this review 
article is to provide a brief overview of AD, and investigate 
recent neuroimaging developments in the field of dementia 
with an emphasis on structural MR imaging in order to 
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propose a systematic approach for the imaging diagnosis of 
dementia.

Alzheimer’s Disease

Alzheimer’s disease is the most common cause 
of dementia. AD is characterized by progressive 
neurodegeneration accompanied by cognitive impairments 
that interfere with the activities of daily living and 
ultimately impose heavy economic burdens on the patient 
and the patient’s family (2).

Characteristic Pathology and Pathogenesis Model of AD
Alzheimer’s disease is characterized by the accumulation 

of two abnormal proteins: extracellular Aβ protein and 
intracellular tau protein (3, 4). Amyloid and tau deposition 
progress spatiotemporally in a predictive manner. Amyloid 
first accumulates in the basal part of the frontal, temporal, 
and occipital lobes, and subsequently spreads to the 
entorhinal cortex, hippocampus, amygdala, insular cortex, 
and cingulate cortex, sparing the primary visual and 
sensorimotor cortices. Conversely, neurofibrillary tangle 
deposition progresses in the following order: transentorhinal 
cortex, entorhinal cortex, hippocampus, temporal cortex, 
association cortices, and finally the primary sensorimotor 
and visual cortices (5).

The Aβ hypothesis, the dominant theory of AD, suggests 

that overproduction or inadequate clearance of Aβ is a 
causative factor for AD; AD begins with the abnormal 
metabolism of the transmembrane amyloid precursor protein 
(APP). β- and γ-secretases cleave APPs to form several Aβ 
peptide fragments (1). Of these, the most important is Aβ42, 
which is highly prone to aggregation and resultant plaque 
formation (6). Although amyloid deposits are typically 
observed in the extracellular space, Aβ is also found within 
neurons, and this may be related to the aggregation of 
other cellular proteins such as tau protein in AD (7). 
Subsequently, abnormal phosphorylation of the microtubule-
associated tau protein in neurons and the formation 
of neurofibrillary tangles are thought to result in the 
disruption of normal neuronal function (1). Oxidative and 
inflammatory stresses from Aβ also contribute to the loss of 
synaptic and neuronal integrity, and finally, neuronal loss 
and brain atrophy. This downstream pathological cascade 
has been re-interpreted by the hypothetical model of Jack 
et al. (8) (Fig. 1). Conversely, Braak and Del Tredici (9) 
observed hyperphosphorylated tau protein in the absence 
of Aβ deposition in the medial temporal limbic isocortex of 
young individuals. Furthermore, recent evidence suggests 
that tau deposition is a requisite for amyloid toxicity in vivo 
(10). These findings raise questions regarding the role of Aβ 
as an initiator of the AD pathophysiological cascade.

Mild Cognitive Impairment or the Prodromal Phase of AD
The time course of AD is approximately 20–30 years 

from preclinical (cognitive normal) to prodromal (mild 
cognitive impairment [MCI] or pre-dementia) to overt AD. 
The prodromal phase of AD is commonly referred to as MCI, 
which is characterized by the onset of cognitive symptoms 
(e.g., memory or other cognitive dysfunctions) that do not 
meet the criteria for dementia (8, 11). The prevalence of 
MCI in non-dementia individuals over the age of 70 years 
is approximately 15% with a 2:1 ratio of amnestic to non-
amnestic types (12, 13). Previous studies have indicated 
that approximately 10–15% of MCI patients progress to 
AD yearly, and predictors of this conversion include the 
APOE4 allele of the apolipoprotein E gene (APOE), clinical 
severity, brain atrophy, certain cerebrospinal fluid (CSF) 
biomarkers, changes in cerebral glucose metabolism, and 
Aβ deposition (14). The National Institute on Aging-
Alzheimer’s Association recently developed new diagnostic 
criteria for AD, MCI due to AD, and preclinical AD that 
integrate biomarker evidence into the diagnostic frame (15, 
16). In these criteria, concomitant observation of amyloid 

Fig. 1. Proposed model of Alzheimer’s disease pathogenesis 
adapted from Jack et al. Lancet Neurol 2010;9:119-128, with 
permission of Elsevier (8). Aβ = β-amyloid, MCI = mild cognitive 
impairment, MR = magnetic resonance
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deposition (PET or CSF) and neuronal injury (tau, FDG-
PET, MRI) indicates a high likelihood of MCI due to AD, 
while the presence of only one of these factors indicates 
an intermediate likelihood of MCI due to AD (16). Recent 
International Working Group-2 criteria further simplified 
the diagnosis of AD based on the requirement of only the 
presence of an appropriate clinical phenotype at any stage 
and presence of amyloid biomarker (e.g., decreased Aβ in 
CSF, or increased tracer retention on amyloid PET) (17).

Structural Imaging

Structural Imaging as a Mirror of Dementia Pathology
Structural MR imaging is recognized as an important 

diagnostic tool for AD, as it can both differentiate AD from 
non-AD dementia and potentially estimate preclinical or 
prognostic tissue damage in vulnerable regions such as the 
hippocampus and entorhinal cortex (18). Structural MR 
imaging is also important for the exclusion of meningioma, 
glioma, subdural hematoma, vascular malformation, and 
normal pressure hydrocephalus (19). 

Specific patterns of cortical atrophy and vascular 
pathology distinguish typical AD from other 
neurodegenerative dementias including frontotemporal 
dementia (FTD), corticobasal degeneration (CBD), 
progressive supranuclear palsy (PSP), and vascular dementia 
(19). Thus, identification and classification of cortical 
atrophy patterns and vascular pathology are of utmost 
importance for accurate and effective usage of MR imaging 
in patients with cognitive impairment.

Cortical Atrophy

Cortical Atrophy in AD and Other Dementias
Accumulation of amyloid plaques and neurofibrillary 

tangles in AD is contemplated to induce neural and synaptic 
loss that finally leads to cortical atrophy. Cortical atrophy 
typically occurs first in the hippocampus and associated 
entorhinal cortex prior to pervasive progression, and is 
considered to be an early marker of neurodegeneration 
(20). Furthermore, the degree of hippocampal atrophy on 
antemortem MRI has been demonstrated to be correlated 
with the postmortem severity of neuropathological changes 
in AD (21). These data suggest importance of accurate 
recognition of specific atrophy patterns. In the following 
section, we will discuss specific atrophy patterns and 
atrophy scales employed for quantitation (Table 1).

Diffuse Cortical Atrophy
Diffuse cortical atrophy is a common finding in various 

pathological states such as stroke, radiation treatment, and 
neurodegenerative disorders as well as in normal aging. The 
global cortical atrophy (GCA) scale was first introduced as 
a tool to quantify this kind of atrophy in stroke patients 
with or without dementia. The GCA evaluates atrophy in 
13 different brain regions (frontal, parieto-occipital, and 
temporal sulcal dilation, and dilatation of the ventricles) 
and assigns a subscore (0 to 3) at each of these levels 
(22). Studies have demonstrated the predictive value 
of the GCA for dementia and associated mortality, and 
confirmed good inter-observer agreement (κ = 0.84) (23, 
24). However, considering that GCA evaluates large brain 

Table 1. Diagnostic Sensitivities and Specificities of Visual Rating of Cortical Atrophy
Study Subjects Sensitivity Specificity

Diffuse cortical atrophy
Global cortical atrophy scale NA NA NA
Ventricular enlargement scale (26) AD or DLB vs. controls 94% 40%

Medial temporal lobe atrophy
Scheltens et al. (29) AD 81% NA
Duara et al. (34) Probable AD vs. controls 85% 82%
Modified MTA rating on axial scan (36) AD vs. controls 76% 80%

Posterior cortical atrophy
Koedam scale (42) AD vs. controls 58% 95%
Combined Scheltens + Koedam scale (42) AD vs. controls 73% 87%

Frontotemporal lobar atrophy
FTLA scale (46) Semantic dementia 100% NA
FTLA scale (46) Behavioral variant frontotemporal dementia 53% NA

AD = Alzheimer’s disease, DLB = dementia with Lewy bodies, FTLA = frontotemporal lobar atrophy, MTA = medial temporal lobe atrophy, 
NA = not applicable
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areas, it is more likely to be confounded by age than 
other atrophy scales, and is primarily utilized for larger 
diagnostic assessments (24, 25). As an alternative, a four-
point ventricular enlargement scale (0 to 3) was developed 
to quantify enlargement of the lateral ventricles in an 
axial orientation, and this scale has also demonstrated 
very good inter-observer agreement (intra-class correlation 
coefficient = 0.85) (26). However, poor diagnostic 
performance (sensitivity/specificity of 94%/40%) was 
reported for distinguishing patients who have AD and 
dementia with Lewy bodies as compared to healthy controls 
(26). The reason is hypothesized as substantial variation in 
ventricular size even between healthy individuals (25).

Medial Temporal Lobar Atrophy
Atrophic changes of the medial temporal lobe are 

commonly found in association with different stages of AD 
and MCI, but are less commonly related to normal aging 
(21, 27, 28). Recently, the NINCDS-ADRDA suggested 
incorporation of structural MRI of the medial temporal lobe 

into the criteria for probable AD, but this suggestion did 
not specify a method for atrophy evaluation.

Medial temporal lobe atrophy (MTA) was first quantified 
by Scheltens et al. (29) using a 5-point subjective scale (0–
4) surveying the width of the surrounding CSF spaces and 
the height of the hippocampal formation; results showed 
significant differences in MTA between patients with AD 
and healthy controls in association with good correlation 
between scale values and linear measurements (Table 
2). These findings suggest that visual MTA ratings might 
provide constructive and rapid assessment for diagnosing 
or excluding AD in clinical practice (30); however, in a 
research setting, low inter-observer reliability for this scale 
(κ = 0.59–0.62) might be problematic (Fig. 2) (31, 32). 
Additionally, Scheltens’ coronal plane was obtained parallel 
to the brain stem axis from a midsagittal scout image with 
a slice thickness of 5 mm and an interslice gap of 1 mm on 
0.5 or 0.6T MRI (29), which is different from the current 
MR acquisition technique to some extent. Recent studies 
employing the Scheltens 5-point scale with a modified 
oblique coronal plane perpendicular to the anterior-
posterior commissure line with slice thicknesses between 
0.8–4 mm have shown more promising results and better 
inter-observer reliability (weighed κ = 0.65–0.84) (23, 33).

Duara et al. (34) and Urs et al. (35) also developed a 
visual rating system for MTA using the mammillary bodies 
as a landmark to include more standardized portions of 
the hippocampal head, entorhinal cortex, and perirhinal 
cortex. Based on this method, standardized atrophy ratings 
are obtained using software and a 5-point rating scale (0 
to 4). This visual rating system showed good diagnostic 
performance for both MTA and AD (sensitivity/specificity: 
82%/82% and 85%/82%, respectively) (34, 35), but the 
studies had some limitations. A modified visual rating system 
for MTA in the axial plane was recently proposed and showed 
a good correlation with results of the well-known coronal 
visual rating system designed by Scheltens et al. (κ = 0.772) 
and fairly good performance for discriminating AD from 
healthy controls (sensitivity/specificity 76%/80%) (36).

Table 2. Visual Rating of Medial Temporal Lobe Atrophy from Scheltens et al. (32)
Score Width of Choroid Fissure Width of Temporal Horn Height of Hippocampal Formation

0 Normal Normal Normal
1 ↑ Normal Normal
2 ↑↑ ↑ ↓
3 ↑↑↑ ↑↑ ↓↓
4 ↑↑↑ ↑↑↑ ↓↓↓

↑ indicates increase and ↓ indicates decrease in each region.

Fig. 2. Medial temporal lobe atrophy according to Scheltens et 
al. J Neurol 1995;242:557-560, with permission of Springer-
Verlag 1995 (32).

Score 0: normal

Score 1: minimal

Score 2: mild

Score 3: moderate

Score 4: severe
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Posterior Cortical Atrophy
Early posterior cerebral involvement has emerged as an 

important aspect of AD, and appears to be a feature of 

early-onset rather than late-onset AD. Therefore, posterior 
cortical atrophy (PCA) combined with relative sparing 
of the medial temporal lobe may characterize atypical 
presentations of AD patients (Fig. 3) (37-41). The Koedam 
scale is a 4-point rating scale (0–3) based on the presence 
of atrophy in sagittal, axial, and coronal orientations of 
selected anatomical regions: the posterior cingulate sulcus, 
precuneus, parieto-occipital sulcus, and parietal cortices 
(42). This scale demonstrated good inter-observer agreement 
(weighted κ = 0.73) and a sensitivity/specificity of 
58%/95% for distinguishing AD; additionally, a subsequent 
study validated the ability of the Koedam scale to 
discriminate AD patients from healthy controls (area under 
the curve [AUC] = 0.74) and frontotemporal lobar dementia 
patients from AD patients (AUC = 0.66), respectively (38). 
Recent quantitative validations of this scale have allowed 
it to be considered as a fast and easily applicable tool in 
clinical practice (43).

Frontotemporal Lobar Atrophy
A scale for frontotemporal lobar atrophy (FTLA) was 

first developed based on the assessment of postmortem 
specimens of FTD (44), and assessed two coronal slices 
at the level of the anterior temporal lobe and lateral 
geniculate nucleus using a 5-point scale (0–4). The scale 
initially showed potential as an outcome predictor for FTD 
(Fig. 4) (45). Kipps et al. (46) further extended the scale 

Fig. 4. Frontotemporal lobar atrophy of behavioral variant 
frontotemporal dementia.

Fig. 3. Posterior cortical atrophy as variant of Alzheimer’s dementia. 
Note prominent atrophy of bilateral parietal lobe on sagittal (A) and axial (B) planes.

A B



832

Park et al.

Korean J Radiol 17(6), Nov/Dec 2016 kjronline.org

to include the posterior temporal lobe, and observed a 
sensitivity of 100% for semantic dementia (SD) and 53% 
for behavioral variant FTD. It is noteworthy that FTLA scales 
have been developed with selective focus on the differential 
diagnosis of FTD, rather than its differentiation from AD.

Anterior Temporal Lobar Atrophy
Semantic dementia is a syndromic variant of FTD, and is 

typified by semantic memory impairment with preservation 
of episodic memory. While this is a key clinical feature 
that differentiates SD from AD (47), distinction is not so 
easily achieved in the earlier stages of disease. One study 
observed primary involvement of the left anteroinferior and 
anteromedial temporal lobe with relative sparing of the 
posterior temporal lobe in SD, as opposed to generalized 
atrophy in AD (48). Thus, it is proposed that focal anterior 
temporal lobe atrophy may be a helpful differential 
diagnostic clue for SD (Fig. 5).

Asymmetric Cortical Atrophy
Bilateral asymmetric perisylvian atrophy can be seen in 

primary non-fluent aphasia variant of FTD (Fig. 6) (19). CBD 
produces striking asymmetrical parietal and frontal atrophy 
while sparing the medial temporal regions, as opposed 
to near-proportionate atrophy of the fronto-temporo-
parietal cortices in AD (Fig. 7) (49). While there are some 
cases of asymmetrical cerebral atrophy in AD (50, 51), the 

observation of asymmetrical cerebral atrophy is usually not 
in favor of diagnosis of AD.

Quantitative Assessment of Cortical Atrophy
In addition to visual ratings, volumetric and voxel-

based measures of brain atrophy have demonstrated 
close correlations with actual atrophy, neuropathological 
changes, and cognitive impairment (52-54). Given that 
rates of brain atrophy have been correlated with rates of 
concurrent cognitive decline, quantitative measurement 
might serve as an accurate and reproducible surrogate 
for neurodegenerative pathology (55). However, the 
labor-intensive nature of such measurements has 
limited generalization to routine clinical practice (56). 
Consequently, recent commercial development of automated 
volumetric measurements of anatomical structures may 
prove useful in future (57, 58).

White Matter Hyperintensity
White matter hyperintensity (WMH) has emerged 

as a strong correlate of cognitive aging and AD (59-
61). In 1987, Fazekas et al. (62) first described WMH 
as a periventricular halo, punctate, or early confluent 
hyperintensity observed in AD. WMH later became known 
by other terms such as leukoaraiosis, white matter lesion, 
leukoencephalopathy, and white matter disease, with 

Fig. 6. Bilateral asymmetric perisylvian atrophy of primary non 
fluent aphasia variant frontotemporal dementia.

Fig. 5. Bilateral prominent anterior temporal lobar atrophy of 
semantic variant frontotemporal dementia.
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various definitions that have hampered the integration 
of previous research on risk factors, pathophysiology, 
pathological correlations, and clinical implications (63). 
Recently, the Standards for Reporting Vascular Changes 
on Neuroimaging (STRIVE) defined WMH as a presumed 
vascular-origin signal abnormality of variable size in the 
white matter, showing hyperintensity on T2-weighted 
images without cavitation, exclusive of subcortical grey 
matter or brainstem lesions (63).

White matter hyperintensity can be classified as smooth 
periventricular or irregular periventricular (located in the 

periventricular system) or deep white matter lesions (found 
in the subcortical white matter) (64, 65). Postmortem 
studies have reported that smooth periventricular WMH 
presents as a loosening of the fiber network with myelin 
loss around the tortuous venules, irregular periventricular 
WMH demonstrates confluent areas with fiber and myelin 
loss around the perivascular space with reactive gliosis, and 
deep WMH shows perivascular rarefaction of myelin with 
varying degrees of axonal loss, astrogliosis, and spongiosis 
(66-70). These findings imply that smooth periventricular 
WMH is likely caused by altered periventricular fluid 
dynamics, while irregular periventricular WMH and deep 
WMH reflect ischemic tissue damage (67, 70, 71). Recent 
studies have provided strong evidence that WMH plays a 
causative role in cognitive decline and dementia (72-75), 
and might lead to AD by contributing in an additive or 
synergistic manner to disease pathogenesis (59, 76, 77).

White matter hyperintensity has been considered to 
be a primary pathology in subcortical ischemic vascular 
dementia. However, the histopathological features of WMH 
are also comparable with that of AD, suggesting that 
subcortical ischemic vascular dementia and AD may be part 
of a pathological continuum (78, 79). There are only few 
pure conditions of AD and subcortical ischemic vascular 
dementia that have been reported, and rather varying 
degrees of neurodegenerative and vascular pathologies 
comprise the spectrum of AD and vascular dementia 
(80). Furthermore, AD and subcortical ischemic vascular 

Fig. 7. Asymmetric atrophy of frontoparietal cortex (A) and basal ganglia (B) in corticobasal degeneration.
A B

Fig. 8. Classification of white matter hyperintensity according 
to Fazekas et al. AJR Am J Roentgenol 1987;149:351-356, with 
permission of ARRS (62).

Fazekas
grade I

Fazekas
grade II

Fazekas
grade III
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dementia share common risk factors such hypertension, 
atherosclerosis, diabetes, hypercholesterolemia, obesity, 
metabolic syndrome, and smoking (80).

The severity of WMH can be quantified semiquantitatively 
or quantitatively, but a gold standard has not been 
established until date. The Fazekas scale is most commonly 
used, which distinguishes periventricular versus deep WMH 
and scores them according to a 4-point scale (0–3) (Fig. 8) 
(62). Another well-known scale is the Age-Related White 
Matter Changes scale, which defines WMHs as ill-defined 
hyperintensities ≥ 5 mm and scores them according to a 
4-point scale in five different regions of each hemisphere 
(0–30) (81). Fazekas et al. (82) also proposed a WMH 
grading scale based on type, location, number, and size 
(0–84). Another new rating system according to the ratio 
of periventricular versus deep WMHs has been recently 
proposed by the Clinical Research for Dementia of South 
Korea (83). These semiquantitative scales have shown good 
intra-observer and inter-observer agreement and close 
correlations with volumetric assessments; however, they 
were designed to measure WMH at a single time point and 
are not suitable for evaluating WMH progression (84-86).

Lacunes
The term “lacune” is derived from the French word for a 

small fluid-filled cavity, and has historically represented the 
late stage of a small deep brain infarct (87). The STRIVE 

criteria define lacunes as a “round or ovoid, subcortical, 
fluid-filled (similar signal as CSF) cavity measuring between 
3 mm and 15 mm in diameter, consistent with a previous 
acute small deep brain infarct or hemorrhage in the 
territory of one perforating arteriole” (37). In most cases, 
lacunes have a CSF-like hypointensity at the center with 
a surrounding rim of hyperintensity on fluid-attenuated 
inversion recovery images, which is helpful for differentiating 
them from enlarged perivascular space along size (< 3 mm) 
and location criteria (lower basal ganglia region) (88-90). 
Lacunes are assumed to exist as remnants of symptomatic 
or silent small subcortical infarcts, appearing central to 
the most common cause of vascular dementia (37). Though 
there is no consensus regarding the number or location of 
lacunes required for diagnosis of vascular dementia, two or 
more lacunes outside the brain stem are considered to be 
sufficient to support the diagnosis (91).

Lacunes are known to be associated with stroke and gait 
disturbance in elderly individuals (92, 93). Furthermore, 
patients with AD are more likely to have lacunes on MRI 
than individuals without dementia (77, 94). Previous 
pathological studies have also revealed that patients with 
lacunes are more likely to have dementia for the reason that 
patients with infarcts require a lower burden of plaques and 
tangles for clinical diagnosis of AD (95-97). Moreover, the 
location of lacunes is an important factor in dementia, as 
thalamic and basal ganglia lesions are associated with poor 

Fig. 9. Cerebral microbleeds exhibiting differential distribution pattern of hypertensive microangiopathy (A) and cerebral 
amyloid angiopathy (B).

A B
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cognition (98). The underlying mechanism relating lacunes 
and cognitive impairment remains unclear, and may be 
resultant from the coexistence of other factors such as WMH, 
cortical microinfarcts, or other unidentified factors (99).

Microbleeds 
Microbleeds are well-known MRI expression of small 

vessel disease as well as lacunes and WMH. Cerebral 
microbleeds refer to small, round, or ovoid hypointensities, 
ranging 2–10 mm in diameter on T2* gradient-recall echo 
(GRE) or susceptibility-weighted (SWI) MR sequences, 
which provide a high contrast-to-noise ratio between 
the brain parenchyma and paramagnetic materials (100-
102). Histopathological-radiological correlation studies 
have shown that hypointensities found on MRI correlate 
with areas of hemosiderin deposition with impaired vessel 
integrity, such as in the case of lipofibrohyalinosis or 
vascular Aβ deposition in patients with dementia (103, 
104). These hypointensities can be classified into two 
different patterns of distribution according to their etiology 
and location: deep or infratentorial location with the 
presence of vascular risk factors (e.g., hypertension), and 
lobar (cortico-subcortical) location associated with APOE ε4 
carrier status or cerebral amyloid angiopathy (CAA) (Fig. 9) 
(103, 105, 106).

With regard to dementia, microbleeds have drawn research 
attention as potential mediators of cognitive impairment. 
Microbleeds are more commonly found in patients with 
MCI, AD, and vascular dementia (107-110). The mechanism 
of cognitive impairment due to microbleeds is not fully 
understood, but is hypothesized to be due to focal 
dysfunction or damage to the surrounding tissue, or due to 
more generalized processes such as small vessel disease or 
extensive CAA (103, 111). According to the Boston Criteria, 
for patients older than 55 years who present with lobar 
intracerebral hemorrhage, the imaging diagnosis of CAA can 
be made based on either MRI or CT findings: 1) probable 
CAA: multiple hemorrhage restricted to lobar, cortical, or 
cortico-subcortical regions; and 2) possible CCA: single 
lobar, cortical, cortico-subcortical hemorrhage (112).

Microbleeds are also frequently encountered in the context 
of Aβ immunotherapy for AD (amyloid-related imaging 
abnormalities) as an important side effect (113). For this 
particular immunotherapy, Food and Drug Administration 
guidelines recommend exclusion of patients with more than 
five microbleeds, which can be evidence of underlying CAA.

Reports of inter-observer agreement on the presence of 

microbleeds on conventional T2* GRE MR imaging are varied 
(κ = 0.33–0.88), likely due to detection difficulties (114). 
Calcification, cavernous malformations, cross-sectional 
pial vessels, hemorrhagic metastases, and diffusion axonal 
injury can mimic the appearance of microbleeds on MR 
imaging, such that a diagnosis should be made in the 
context of a patient’s clinical history and with consideration 
of other MR sequence findings (63, 115). Furthermore, 
T2* GRE versus SWI parameters, resolution, field strength, 
and post-processing technique can affect the observed 
number of microbleeds (116, 117); SWI MR imaging is well-
known for detection of a larger number of microbleeds than 
T2* GRE MR imaging as it offers higher resolution and an 
increased susceptibility effect (117-119). Therefore, future 
research should focus on the development and validation 
of controlled standards for the diagnosis of microbleeds in 
order to strengthen our understanding of their utility as risk 
and prognostic factors.

Cerebral Microinfarcts
Emerging evidences shows that cerebral microinfarcts 

are associated with cardiovascular risk factors as well 
as cognitive decline and dementia, particularly if they 
are multiple and cortical (120, 121). Moreover, cerebral 
microinfarcts can occur in cognitively normal elderly people, 
but the prevalence is higher in AD patients (122).

Cortical microinfarcts are defined as sharply defined 
microscopic regions of cellular death or tissue necrosis, 
ranging from 50 um to 5 mm as per histopathology studies. 
Recently, several studies aimed to detect microinfarcts 
on in vivo 7T MRI (123, 124). According to a previous 
study, a cut-off value of five microinfarcts on 7T MRI 
could differentiate AD and controls with sensitivity of 
64.3% and specificity of 94.4% (124). When using 3T 
MRI, only 25% of cortical microinfarcts identified on 7T 
were detectable, probably due to limited spatial resolution 
(123). Consequently, it is necessitated to improve 
detection of cortical microinfarcts lesion on widely used 
3T MRI by protocol optimization to reflect exact burden of 
microinfarcts in clinical practice.

Systematic Approach to Structural Imaging Evaluation 
for Differential Diagnosis of Dementia

The first thing that must be determined during 
potential imaging diagnosis of dementia is whether the 
patient has any focal lesions such as those due to stroke, 
tumor, or vascular malformation, or if the patient has 
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hydrocephalus (19, 125). Second, the presence of MTA 
must be determined, as MTA indicates a high probability 
of AD. Third, the degree of WMH and the presence of 
microbleeds should be assessed in order to verify AD or 
classify the type of dementia (vascular dementia, CAA, and 
other dementias). If a patient is categorized as having an 
“other dementia,” the spatial pattern of brain atrophy must 
be more carefully evaluated. FTLA is indicative of FTD. If 
the FTLA has a right predilection, behavioral variant FTD 
is indicated, whereas a left predilection indicates SD. Peri-
insular atrophy with a left predilection or less commonly, 
with a right predilection, indicates progressive non-fluent 
aphasia. Alternatively, presence of parieto-occipital atrophy 
suggests neurodegenerative diseases such as PCA, CBD, or 
dementia with Lewy bodies. Infratentorial atrophy with 
relative sparing pons and prominent atrophied midbrain is 
indicative of PSP (Fig. 10A) (126). The presence of brain 
atrophy with markedly disproportionate ventriculomegaly 
suggests normal pressure hydrocephalus (Fig. 10B) (127). 
When the cortex and basal ganglia show hyperintensity 
on diffusion weighted imaging (DWI), Creutzfeldt-Jakob 
disease is indicated (Fig. 10C) (128). A flowchart of the 
above approach to the imaging diagnosis of cognitively 
impaired patients is provided in Figure 11.

Advanced MR Sequences for Detecting Structural 
Abnormalities 

Diffusion Tensor Imaging
In AD, the pathological disruption of cell membranes 

impedes diffusion of water molecules and produces an 
increased mean diffusivity, while fractional anisotropy is 
abnormally decreased in AD and MCI patients due to the 
loss of tract integrity (129-131). A previous study revealed 
that DTI measurement can help identify patients with MCI 
who are likely to progress to AD (132). Moreover, various 
attempts have been made to assess mean diffusivity and 
fractional anisotropy from region of interest measurements 
to tract-based spatial statistics in AD (133, 134). Axial 
diffusivity and mean diffusivity are suggested to be most 
sensitive at detecting early changes of AD (Table 3) (134).

Quantitative Susceptibility Mapping
Quantitative susceptibility mapping (QSM) is an actual 

quantification map for local susceptibility based on 
multi-echo 3-dimensional GRE images. QSM can be used 
to evaluate iron overload potentially associated with 
neurodegenerative disease (135, 136). Iron is a known 
component of Aβ plaques and neurofibrillary tangles, 
and moreover may provide an ideal environment for Aβ 
aggregation and neurotoxicity (137-139). Therefore, 
the use of QSM to measure iron levels in vivo may offer 
important information to assist our understanding of the 
neurodegenerative sequence. Indeed, a previous study 
revealed that significant magnetic susceptibility differences 
exist in the deep brain nuclei as well as posterior grey and 
white matter regions of AD patients, and may be a potential 
biomarker for AD (140). Another study reported the increase 
of susceptibility (iron load) in vascular dementia as well as 
AD (Fig. 12) (141).

Fig. 10. Exemplary cases of other uncommon dementias for differential diagnosis of cognitive impaired subjects using structural 
imaging.
Progressive supranuclear palsy (A) shows typical midbrain atrophy. Normal pressure hydrocephalus (B) shows disproportionate ventricular 
enlargement to brain atrophy. Creutzfeldt-Jacob disease (C) shows typical cortical hyperintensities on DWI. DWI = diffusion weighted imaging

A B C
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Fig. 11. Algorithm for differential diagnosis of cognitive impaired subjects by employing structural imaging. AD = Alzheimer’s 
disease, BG = basal ganglia, CAA = cerebral amyloid angiopathy, CBD = corticobasal degeneration, CJD = Creutzfeldt–Jakob disease, DLB = 
dementia with Lewy bodies, DWI = diffusion weighted imaging, FTD = frontotemporal dementia, FTLD = frontotemporal lobar atrophy, MRI = 
magnetic resonance imaging, MTL = medial temporal lobe, NPH = normal pressure hydrocephalus, PCA = posterior cortical atrophy, PNFA = 
progressive nonfluent aphasia, PSP = progressive supranuclear palsy, SD = semantic dementia, VD = vascular dementia
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Magnetization Transfer Imaging
Magnetic transfer (MT) imaging is based on the exchange 

of magnetization between free protons and protons bound 
to macromolecules, and reflects underlying histopathological 
changes in advance than does conventional MRI (142, 
143). Reduced MTR values in the hippocampus have 
been observed independent of atrophy in even patients 
with very mild AD (144), thus supporting the contention 
that MT imaging can detect histopathological changes 
preceding to obvious volumetric changes in AD. Yet, the 
underlying mechanism of reduced MT-derived values in the 
hippocampus of AD patients is not fully understood. One 
hypothesis is that pathological accumulations of soluble 
and non-soluble proteins preceding cell death lead to 
alterations in the local composition of macromolecules, and 
that the impact of these alterations on MT-derived values is 
thus more relevant than atrophic changes (145). However, 
further studies involving larger populations are required to 
validate the clinical utility and implications of MT imaging 
in patients with early AD.

Optimized MR Protocols
For the reason that most patients with suspected 

dementia are elderly and represent a distinct population, a 
tailored MRI protocol is mandatory. First, imaging markers 
that reflect important neurohistopathological features of 
AD should be included. Second, imaging markers that can 
be used to demonstrate functional changes related to AD 
should also be incorporated. Third, imaging markers must be 
identified and utilized to monitor the therapeutic response 
of AD pathology. Fourth, contrast administration should be 
avoided unless there are other suspicious imaging findings 
and MRI should be performed within proper acquisition 
time. Finally, considering its association with subcortical 
ischemic vascular dementia, the necessity of MR angiography 
should be revisited in elderly patients. For MR examinations 
of patients with suspected dementia, consistency of 
imaging parameters across subjects and across time are 
also important in terms of longitudinal follow-up and 
multicenter clinical trials (146, 147). We have provided such 
an MR protocol, which was initially devised for the Korea-

Table 3. Diagnostic Sensitivities and Specificities of Advanced Imaging for AD
Study Subjects Sensitivity Specificity

Diffusion tensor imaging
Total hippocampal volume + 
  FA of left posterior cingulum 

AD vs. controls 88% 94%

FA AD vs. controls 86% 65%
MD 86% 95%
MD of hippocampus and pallidum AD vs. controls 86.7% 98.7%

Quantitative susceptibility mapping NA NA
Magnetic transfer imaging NA NA

AD = Alzheimer’s disease, NA = not applicable, FA = fractional anisotropy, MD = mean diffusivity

Table 4. Suggested Imaging Protocols for Cognitively Impaired Patients in Clinical Practice and for Academic Research
Protocol for Clinical Practice Protocol for Research Purpose*

3D T1-weighted images (MPRAGE)
- Parallel imaging factor = 2
- ≤ 1.2 x 1.2 x 1.2 mm, 256 mm FOV

3D (sagittal) T1-weighted images (MPRAGE)
- Parallel imaging factor = 2
- ≤ 1.2 x 1.2 x 1.2 mm, 256 mm FOV

2D FLAIR 
3D (sagittal) FLAIR

- 1 x 1 x 1 mm, 256 mm FOV

2D GRE (or SWI)
2D (axial) GRE or 3D (axial) SWI

- 3 mm slice thickness

Optional: 2D T2WI, DWI, or MRA

Resting state fMRI 
- TR = 2000 ms

Diffusion tensor imaging (30 directions or more)
Optional: arterial spin labeling (ASL) 

*Adapted from Korea-ADNI MR protocol. DWI = diffusion weighted imaging, FLAIR = fluid-attenuated inversion recovery, fMRI = 
functional magnetic resonance imaging, FOV = field of view, GRE = gradient recalled echo, MPRAGE = magnetization-prepared rapid 
gradient-echo, MRA = magnetic resonance angiography, SWI = susceptibility-weighted imaging, T2WI = T2-weighted imaging, 2D = two-
dimensional, 3D = three-dimensional
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Alzheimer Dementia Neuroimaging Initiative (K-ADNI) study 
by modification of ADNI protocols (Table 4) (148).

CONCLUSION

Imaging of patients with cognitive decline has clear 
utility not only for exclusion diagnoses but also for the 
differential diagnosis of neurodegenerative disorders based 
on specific patterns of atrophy, pathological progression over 

time, and even physiological changes. Radiologists should 
be aware of the advantages and limitations of modern 
imaging so that imaging protocols can be optimized for 
diagnostic use. Quantitative imaging analysis and diagnosis 
provides new field and role for radiologists. 
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