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ABSTRACT

Freshwater lakes emit large amounts of methane, some of which is produced in oxic surface waters. Two potential pathways for
aerobic methane production exist: methanogenesis in oxygenated water, which has been observed in some lakes, and demethyla-
tion of small organic molecules. Although methane is produced via demethylation in oxic marine environments, this mechanism
of methane release has not yet been demonstrated in freshwater systems. Genes related to the C-P lyase pathway, which cleaves
C-P bonds in phosphonate compounds, were found in a metagenomic survey of the surface water of Lake Matano, which is
chronically P starved and methane rich. We demonstrate that four bacterial isolates from Lake Matano obtain P from methyl-
phosphonate and release methane and that this activity is repressed by phosphate. We further demonstrate that expression of
phn], which encodes the enzyme that releases methane, is higher in the presence of methylphosphonate and lower when both
methylphosphonate and phosphate are added. This gene is also found in most of the metagenomic data sets from freshwater en-
vironments. These experiments link methylphosphonate degradation and methane production with gene expression and phos-
phate availability in freshwater organisms and suggest that some of the excess methane in the Lake Matano surface water, and in
other methane-rich lakes, may be produced by P-starved bacteria.

IMPORTANCE

Methane is an important greenhouse gas and contributes substantially to global warming. Although freshwater environments
are known to release methane into the atmosphere, estimates of the amount of methane emitted by freshwater lakes vary from 8
to 73 Tg per year. Methane emissions are difficult to predict in part because the source of the methane can vary: it is the end
product of the energy-conserving pathway in methanogenic archaea, which live predominantly in anoxic sediments or waters
but have also been identified in some oxic freshwater environments. More recently, methane release from small organic mole-
cules has been observed in oxic marine environments. Here we show that demethylation of methylphosphonate may also con-
tribute to methane release from lakes and that phosphate can repress this activity. Since lakes are typically phosphorus limited,
some methane release in these environments may be a by-product of phosphorus metabolism rather than carbon or energy me-
tabolism. Methane emissions from lakes are currently predicted using primary production, eutrophication status, extent of an-
oxia, and the shape and size of the lake; to improve prediction of methane emissions, phosphorus availability and sources may
also need to be included in these models.

F reshwater lakes may be responsible for as much as 20% of total
annual methane emissions from natural sources (1-3), and
supersaturation of methane in oxic water columns has been ob-
served in many lakes (4-8). Some surface water methane is pro-
duced by methanogenesis in anoxic bottom waters, followed by
upward diffusive transport or ebullition (9). Methanogenesis may
also occur in oxic surface waters, either in anoxic microenviron-
ments such as biofilms on phytoplankton or inside animal guts (5,
10) or potentially in oxygen-tolerant methanogens (11). Aerobic
demethylation of organic compounds such as methylphospho-
nate (MPn) could also contribute to surface water methane re-
lease; however, this pathway has been observed only in marine
systems (12—-16). Because lakes may release as much methane to
the atmosphere as the entire global ocean (8) and since the path-
ways for surface water methane production are poorly understood
(17), a comprehensive characterization of the biological pathways
responsible for methane production in these environments is crit-
ical to more-accurate predictions of global freshwater methane
emissions (8, 9, 18-21).

Low-molecular-weight (LMW) phosphonates such as MPn,
ethylphosphonate, and 2-aminoethylphosphonate (2-AEP) orig-
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inate from the headgroups of phosphonolipids or are linked to
exopolysaccharides and are produced in all three domains of life
(22-25). Phosphonate biosynthetic pathways are encoded in
~5% of microbial genomes in freshwater environments (24), sug-
gesting that phosphonate substrates could be available in these
environments. Because breaking the C-P bond in phosphonates
has a higher activation energy than breaking the equivalent phos-
phoester bond, phosphonate compounds tend to be chemically
stable (26, 27). Organisms capable of cleaving the C-P bond could
potentially utilize either the organic functional group or the phos-
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phorus, and indeed some pathogenic and enteric bacteria (28, 29),
as well as bacteria isolated from soil (reviewed in references 26 and
27) and wastewater (30), are capable of using both the C and P
moieties of phosphonate compounds.

Freshwater lakes are typically P limited (31), so in these envi-
ronments, phosphonates would be more likely to provide P than C
to organisms capable of phosphonate degradation. The organic
functional group would then be released as a by-product. Thus,
consumption of LMW phosphonates may result in the release of
soluble organic compounds that can be used as C or energy
sources (32) or of gaseous compounds that may escape consump-
tion, such as ethane or methane (15, 33).

In permanently stratified lakes with deep chemoclines, where
the anoxic bottom waters are essentially disconnected from the
air-water interface, methane accumulation is more likely to be due
to the production of methane in the surface water than to upward
diffusion, since the rate of diffusion should be lower than the rate
of methane consumption (8, 34). Lake Matano, Indonesia, is a
deep, permanently stratified, chronically P-limited lake. Methane
is supersaturated in Lake Matano surface water (7, 35), even
though most of the methane produced in the anoxic sediments
and bottom waters is oxidized in the chemocline (7) and diffusion
of methane upward through the 120-m epilimnion should be slow
enough to allow complete aerobic consumption of methane pro-
duced below the chemocline. Because of the degree of P limitation
in Lake Matano (36—38), we hypothesize that additional methane
may be produced in the surface water by P-starved organisms
acquiring P from methylphosphonate. Here we use metagenomic
analysis, physiological experiments, and gene expression analysis
to test the hypothesis that P acquisition by aerobic heterotrophs in
Lake Matano may account for some of the excess methane in Lake
Matano surface water. We show that genes encoding phosphonate
degradation are enriched in metagenomic data from surface water
and widespread in other freshwater metagenomic data sets, that
four isolates produce methane from MPn, and that both methane
production and expression of phnJ, which encodes a subunit of
the C-P lyase complex (27, 39), change in response to phosphate
availability.

MATERIALS AND METHODS

Sample collection and sequencing. Surface water was collected from Lake
Matano, Indonesia, for DNA extraction and sequencing from January to
March 2009. Water (100 liters) was pumped through 0.22-pum Steripak
filters, which were frozen on-site and kept frozen until processing. DNA
was extracted and sequenced using a 454 Life Sciences GS-FLX instrument
with Titanium series reagents, as described earlier for water collected from
the Lake Matano chemocline (40).

Analysis of Lake Matano metagenomic data. The raw reads were
compared to the Clusters of Orthologous Groups (COG) database (41)
using a BLASTx search with an E value cutoff of 10 ~'° and a minimum bit
score of 50. The COG category of the best BLASTx hit was assigned to the
raw reads. Odds ratios were calculated for each COG category identified in
the metagenomic data set by calculating the ratio (A/B)/(C/D), where A is
the number of reads in the metagenome that are in a given COG category,
B is the number of reads in the metagenome that are in all of the other
COG categories, Cis the number of proteins in the COG database that are
in a given COG category, and D is the number of proteins in the COG
database that are in all of the other COG categories. COG categories with
odds ratios of >1 were considered enriched (42), meaning that they are
more highly represented in the metagenomic data than in the protein
database. For comparison, odds ratios were calculated for the same COG
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TABLE 1 Bacterial strains used in this study”

Ability to use:
Strain designation Closest related cultivated species MPn 2-AEP
LM-2 Microbacterium testaceum - -
LM-1 Agrobacterium tumefaciens + +
LM-5 Rhizobium sp. + +
LMe6-1 Agrobacterium tumefaciens + +
LM-P Methylobacterium podarium - -
2-LM-22 Acinetobacter sp. - -
LM-Y Pantoea ananatis + +

@ All strains listed were isolated from water collected from Lake Matano, Indonesia, as
described previously (38). The ability to use methylphosphonate (MPn) or
2-aminoethylphosphonate (2-AEP) was assessed by monitoring growth in NBRIP
medium with MPn or 2-AEP supplied as the sole phosphorus source at a concentration
of 0.2 mM. The 2-AEP results were originally reported in reference 38.

categories in the metagenomic data from the chemocline in Lake Matano
(40), where phosphate is not limiting (37).

Metagenomic reads were assembled into contigs using Newbler GS De
Novo Assembler (software version 2.5.3) with the default settings for
genomic projects. Contigs potentially including phosphonate degrada-
tion genes were identified by blasting the C-P lyase amino acid sequences
from Escherichia coli (GenBank accession number NC_000913.3, locus
tags b4092 to b4106 [https://www.ncbi.nlm.nih.gov/gene?LinkName
=pubmed_gene&from_uid=1335942]) against the contigs. Contigs with
at least three C-P lyase genes were analyzed using the open reading frame
(ORF) finder (NCBI), BLAST (Basic Local Alignment Search Tool;
NCBI), and CD-search (Conserved Domains; NCBI) to predict and an-
notate the genes on the contigs.

Analysis of other metagenomic data sets. The PhnJ amino acid se-
quences from Pseudomonas stutzeri (NCBI accession no. AAR91738) and
E. coli (NCBI accession no. AAC77059.1) were used as BLAST queries
against freshwater metagenomic data sets publicly available at the Joint
Genome Institute’s Integrated Microbial Genomes website (https://img
Jjgi.doe.gov/cgi-bin/mer/main.cgi) and at the European Nucleotide Ar-
chive (http://www.ebi.ac.uk/ena) (43). Data sets were scored as positive
for phn] if they had at least one hit with an E value of less than 1 X 107 .

Strains and growth conditions. Seven heterotrophic bacteria isolated
from the surface water of Lake Matano (Table 1) (38) were screened for
their ability to acquire P from MPn. The base medium was the National
Botanical Research Institute phosphate growth medium (NBRIP) without
added P [per liter: MgCl,-6H,0, 5 g; MgSO,-7H,0, 0.25 g; KCI, 0.2 g;
(NH,),SO,, 0.1 g; glucose, 10 g] (44). To test for MPn utilization, strains
were grown in NBRIP base medium with 0.2 mM MPn as the only P
source. Production of methane from MPn was characterized in the four
strains (LM-1, LM-5, LM6-1, and LM-Y) capable of using MPn as their
sole source of P. MPn, K,HPO,, or both were added to the P-free NBRIP
medium as P sources. The pH of the medium was adjusted to 7.0 with 1
mM solutions of NaHCOj; or acetic acid for the medium with added
K,HPO, or I mM solutions of NaHCO; or NaOH for medium with added
MPn, as appropriate. Prior to measuring growth curves, cells were grown
in NBRIP with K,HPO, as the only P source. Serum bottles (60 ml) con-
taining 30 ml medium and air in the headspace were inoculated with cells
to an optical density at 660 nm (ODy,) of ~0.05 and incubated horizon-
tally at 30°C with shaking at ~150 rpm. Growth was monitored by mea-
suring the ODg.

For the initial growth experiments, MPn, KH,PO,, or both were
added to concentrations of 0.2 mM each. For experiments characterizing
methane release with different concentrations of MPn, no phosphate was
added to the medium, and MPn was added to concentrations of 5 wM, 10
M, 50 uM, 100 wM, or 200 WM. To determine the effect of phosphate
addition on MPn degradation, the initial MPn concentration was 50 uM
and the starting K,HPO, concentration was 0 M, 4 uM, 10 pM, 50 uM,
or 100 M.
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TABLE 2 Primers used for phnJ sequencing and RT-PCR analysis?

Source or
Target (strain(s]) Application  Forward primer (sequence) Reverse primer (sequence) references
phnJ PCR PhnJocl (AARGTRATMGAYCARGG) PhnJoc2 (CATYTTYGGATTRTCRAA) 46, 47
phnJ1 (LM-1, LM-5,and LM6-1)  RT-PCR phnJ-F1 (ACCATCATCCAGACGCGGCA)  phnJ-R1 (AGCTTGACGTGCATCAGGCC)  This study
phnj2 (LM-Y) RT-PCR phnJ-F2 (TCAGACGCGTCACCGTATT) phnJ-R2 (CTTCGTACAGTTTGACCTGC) This study

@ Degenerate primers were used to amplify and sequence phnJ from all isolates; specific primers were designed based on the sequences to use for gPCR. Strains LM-1, LM-5, and
LM6-1 are members of Alphaproteobacteria that are closely related to each other, and the same primer pair was used for all three. Primers for LM-Y were slightly different but were

complementary to the same region of the gene and generated a product of the same size.

To calculate the total methane production, we assumed it to be in
equilibrium between the gas and aqueous phases. In serum bottles with a
headspace-to-liquid ratio of 30 ml/30 ml, the percentage of methane in
the gas phase (f,) is 96.87% at 30°C based on equation 1 (45), using a value
0f 0.0013 mol liter ' atm ™! for Henry’s law constant, K, (35):

1 V,

Ky XRT *V,

e A M

KyxRT v, 71

where V, and V,, are the volumes of the gas and aqueous phases, respec-

tively, and R is the gas constant. The amount of methane produced was
calculated by dividing the quantity of methane in the headspace by f,.

Percent repression of methane production by phosphate was calcu-

lated as follows:

(total CHy), b, (total CHy),, b,
(total CHy),p.

Y%repression = (2)
where n = 4, 10, 50, or 100 M.

Measurements of CH,. Methane in the culture headspace was mea-
sured by gas chromatography coupled with a flame ionization detector
(GC-FID), Agilent 7890A (G3440A). Gas was sampled from the culture
headspace (25 pl for the LM-Y initial growth experiment; 100 pl for all
other experiments) using a gas-tight syringe and injected into the GC-FID
atan inlet temperature of 250°C. The carrier gas was helium, at a rate of 25
ml min~'. The oven temperature was 90°C for 4 min, and then the tem-
perature was increased by 120°C min " for 1.25 min, until a final temper-
ature of 240°C was reached. The temperature was maintained at 240°C for
1.5 min to remove any sample residue in the column. The detector tem-
perature was 200°C, with hydrogen and airflows of 35 and 350 ml min™",
respectively. MSDChem was used to integrate the peaks. Methane stan-
dards with 99 ppm methane in nitrogen gas (item no. 01-04-212; Scotty)
and >99.9% methane (item no. GMT10015TC; Matheson) were used to
prepare a standard curve of peak area and concentration (49.5 ppm, 99
ppm, 999 ppm, and 1,996.01 ppm). The methane concentration obtained
based on the standard curves was then converted from parts per million to
micromolar using the molar gas volume 24.87 liters mol ! at 30°C for
ideal gas at 1 atm of pressure.

Amplification and sequencing of phnJ in isolates. Initially, the prim-
ers PhnJocl and PhnJoc2 (Table 2) were used to amplify the phn] genes
from isolates (46, 47). Each PCR volume (25 pl) included 1X Mg-free
buffer (item number D4545; Sigma-Aldrich), 1.5 mM MgCl,, 0.25 uM
each primer, 0.2 mM each deoxynucleoside triphosphate (ANTP), 0.75 U
SigmaTaq (Sigma-Aldrich item number D1806), and 0.5 pl (7 to 30 ng)
template DNA. PCR conditions were 94°C for 3 min, followed by 35 cycles
0f 94°C for 30 s, 52.5°C for 30 s, and 72°C for 1 min, with a final extension
at 72°C for 5 min.

PCR products (~400 bp) were extracted from agarose gels and se-
quenced by Sanger sequencing at the University of Delaware Sequencing
and Genotyping Center. Primers for RT-PCR were designed based on
these sequences (phnJ-F1/phnJ-R1 for strains LM-1, LM-5, and LM6-1
and phnJ-F2/phn]-R2 for strain LM-Y; see Table 2 for sequences).
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Expression of phnJ during growth on different P sources. Liquid
subsamples (1.5 or 3.0 ml) were removed from all cultures during the
mid-exponential and stationary phases of growth on each P source (MPn,
K,HPO,, or both) and stored at —20°C in RN ALater until processing. For
RNA extraction, cells were stabilized in RNA Protect Reagent (catalog
number 76506; Qiagen) and then digested with lysozyme (15 mg ml™ ')
and 20 pl proteinase K (800 U ml ™!, catalog no. P8107S; New England
BioLabs) at room temperature for 15 min. RNA was then purified from
the bacterial lysate using the Qiagen RNEasy minikit (catalog no. 74104;
Qiagen) according to the manufacturer’s instructions. Genomic DNA
contamination was removed by Turbo DNase treatment (catalog no.
AM1907; Ambion). RNA was used as the template for reverse transcrip-
tion using the RETROscript kit (catalog no. AM1710; Ambion). RNA (~1
pg) and random decamers (2 wl, 50 pM) were denatured at 75°C for 3
min and then immediately placed on ice. RT buffer (2 ul, 10X), dNTP
mix (4 pl, 2.5 mM each), RNase inhibitor (1 wl, 10 U ul™ "), and Moloney
murine leukemia virus reverse transcriptase (MMLV-RT; 1 wl, 100 U
pl ™) were added to the mixture to a volume of 20 wl. This solution was
incubated at 44°C for 1 h and then at 92°C for 10 min to inactivate the
reverse transcriptase (MMLV-RT). The single-stranded cDNA product
was used as the template for quantitative PCR (qPCR).

The abundance of the phnJ transcript was quantified in the cDNA
products using qPCR. The qPCRs were performed on an Eppendorf real-
time Mastercyclerep and processed in duplicates with 0.5 wl cDNA, 10 pl
SYBR green FastMix for iQ (catalog no. 95071; Quanta), 0.25 pl each
primer (25 mM), and 9 pl nuclease-free water. The reaction protocol was
as follows: 95°C for 2 min 30 s, followed by 40 cycles of 95°C for 155, 62°C
for 15 s, and 68°C for 30 s.

Accession number(s). The metagenomic data obtained in this
study have been deposited in the NCBI database with accession num-
ber SAMNO03292416.

RESULTS AND DISCUSSION
Potential for phosphonate degradation in Lake Matano and
other freshwater environments. Heterotrophic bacteria isolated
from Lake Matano were recently shown to utilize a diverse array of
P sources, including 2-AEP (Table 1) and to make large changes in
the RNA content and lipid composition of the cells when P starved
(38). To assess the probability of methane production from MPn
degradation in Lake Matano surface water, reads mapping to
genes encoding the C-P lyase pathway (Fig. 1A) were quantified.
All of the genes necessary for cleavage of MPn to methane and
phosphate are present in the metagenomic data set from the sur-
face water of Lake Matano (Fig. 1C). This pathway includes sub-
units of the phosphonate transporter (phnDEC), activation of the
phosphonate by ATP (phnIGHL), release of diphosphate (phnM),
and cleavage of the C-P bond, which results in release of methane
(phnJ) (48).

The odds ratios compare the frequency of each protein in the
metagenomic data set to its frequency in the COG database (42).
An odds ratio greater than 1 indicates that a predicted protein is
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FIG 1 C-P lyase pathway in Lake Matano. (A) C-P lyase proteins that transport phosphonates (PhnCDE) and cleave the C-P bond (PhnGHIJKLM), based on
data in references 48 and 66). Phn] is responsible for the release of methane (or another organic group) from the intermediate. (B) Odds ratios of genes encoding
proteins in the C-P lyase pathway in metagenomic data from the Lake Matano chemocline (40), where P is not limiting (37). Odds ratios were calculated for each
COG category in the metagenomic data set by calculating the ratio (A/B)/(C/D), where A is the number of reads in the metagenome that are in a given COG
category, B is the number of reads in the metagenome that are in all other COG categories, C is the number of proteins in the COG database that are in a given
COG category, and D is the number of proteins in the COG database that are in all of the other COG categories. COG categories with odds ratios of <1 are not
considered enriched; none of the genes involved in transport or degradation of phosphonates are enriched in the chemocline. (C) Odds ratios of genes encoding
proteins in the C-P lyase pathway in metagenomic data from Lake Matano surface water, where P is limiting. COG categories with odds ratios of >1 are

considered enriched in the Lake Matano data set compared to the COG database (42).

present in the metagenomic data set at a higher frequency than
expected based on its frequency in protein databases (42). Below
the chemocline in Lake Matano, the phosphate concentration in-
creases to ~10 wM, making the microbes at this depth less P
starved than those in the surface water (37, 49). Because the odds
ratios for nearly all of the genes required for MPn transport and
degradation are less than 1 in the metagenomic data from the
P-replete chemocline (Fig. 1B) but greater than 1 in the P-limited
surface water (Fig. 1C), we hypothesized that MPn could serve as
a P source for some organisms in Lake Matano, which would
release methane as a by-product.

The Newbler GS De Novo Assembler was used to assemble the
metagenomic reads from the Lake Matano surface water, and
530,076 reads (66.39% of the total number of reads) were assigned
to 18,727 contigs. Amino acid sequences of C-P lyase proteins
from E. coli (50) were used to query the contigs, and Contig00268
and contig00117 were chosen for further annotation. Con-
tig00268 has 5,357 nucleotides and carries a partial phnl sequence,
phnJKLM, a predicted inositol monophosphatase (IMPase), and
a partial gene encoding the ATP-binding motif of an ABC trans-
porter. Contig00117 has 7,056 nucleotides and carries the phos-
phonate transporter-encoding phnDCE, along with an alkaline
phosphatase gene and a partial penicillin-binding protein-encod-
ing gene (Fig. 2).

Based on blastn analysis, Contig00268 has more than 83% cov-
erage and 65% identity to gene clusters from three actinobacterial
strains: Rhodococcus opacus strain PD630, R. opacus strain R7, and
Mpycobacterium simiae strain MO323. The three actinobacterial
strains lack the accessory phnNP and the regulatory gene phnO

December 2016 Volume 82 Number 23

Applied and Environmental Microbiology

that are part of the C-P lyase gene cluster in E. coli (50). The three
actinobacterial strains all carry an inositol monophosphatase
(IMPase)-encoding gene downstream of the C-P lyase gene clus-
ters, and M. simiae encodes a penicillin-binding protein and an
inositol 1-phosphate synthase upstream of the C-P lysase, while
the R. opacus strains encode it downstream of the C-P lyase. In the
two R. opacus strains, a predicted ABC transporter lies immedi-
ately downstream of the C-P lyase cluster (not shown). The best
hit of blastn analysis for Contig00117 was also most similar to an
Actinobacterium, Isoptericola dokdonensis DS-3, with 32% cover-
age and 71% identity. The predicted PhnE amino acid sequences
in Contig00117, R. opacus, and M. simiae appear to have two PhnE
domains (TIGR01097), in contrast to the E. coli PhnE, which has
only one (Fig. 2). Several glyphosate- and phosphite-utilizing mi-
crobes have phn gene clusters with two copies of phnE (51, 52). In
the gene cluster on Contig00117, these appear to be fused: no stop
codon between the two phnE genes could be found, so we predict
that they encode a single polypeptide.

The product of phnJ is responsible for cleavage of the C-P bond
in phosphonate compounds and thus for release of methane from
MPn (53), so the distribution of this gene in freshwater metag-
enomic data sets was assessed. Metagenomic data derived from
freshwater samples and archived at the Integrated Microbial Ge-
nomes resource (https://img.jgi.doe.gov/) or the European Nucle-
otide Archive (http://www.ebi.ac.uk/ena) were queried for the
presence of phnJ. Eighteen of the 23 data sets (78%) had homologs
of phnJ (Table 3), suggesting that phosphonate bond cleavage may
occur in a variety of freshwater environments, including lakes,
lake sediments, bogs, rivers, and streams.
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FIG 2 Phosphonate-related gene clusters in Lake Matano metagenomic data. Contig00268 has high identity (66%) to the gene cluster encoding the multienzyme
C-P lyase complex, phnIJKLM, from Rhodococcus opacus strains PD630 and R7 (only R. opacus strain PD630 is shown) and organization similar to that of the phn
gene cluster from E. coli, whose C-P lyase pathway has been well studied (50, 67). Genes are colored based on their functions: transporter genes (phnCDE) are light
gray, regulatory genes (phnFO) are white, phosphonate degradation genes (phnGHIJKLM) are dark gray, and the phnNP accessory genes are black.

Methanogenesis has been observed in oxic surface waters of
lakes (4-6, 8, 10). However, it has not been directly observed in
Lake Matano surface waters, so we assessed the metagenomic data
set from 10 m to determine whether surface water methanogenesis
seemed likely. No reads mapping to archaeal rRNA sequences (5S,
16S, or 23S) are present in this data set. Ninety-five reads (of a
total of 798,463 reads) mapped to archaeal genomes. Most of
these (75 of 95 reads) mapped to the class Halobacteria, the
members of which are not methanogenic. The remaining 20
reads were initially mapped to the methanogen genera Metha-
nococcus and Methanomicrobium; however, when these reads were
used as blastn queries against the NBCI nonredundant database,
only 4 were identified as similar to sequences from methanogen
genomes (Methanoculleus and Methanococcus). After the metag-
enomic reads were used as queries in a blast search against the

COG database, the results were screened for reads mapping to
methanogenesis pathways, but none were identified. Additionally,
the amino acid sequence of McrA from Methanosarcina barkeri
DSM804 (RefSeq: WP_011305916.1) was used as a query against
the metagenomic data set, and no reads with homology to McrA
were identified. We thus conclude that if water column methano-
genesis occurs in the epilimnion of Lake Matano, it is either local-
ized deeper than 10 m or carried out by a very small number of
organisms not detected in our metagenomic survey.

Utilization of MPn as a P source by Lake Matano isolates.
Seven isolates were screened for growth on MPn. Four were capa-
ble of growth on MPn as the sole P source and were selected for
further analysis (Table 1). All four strains grow at the same rates
on MPn, K,HPO,, or both and reach stationary phase at approx-
imately the same time (Fig. 3, dashed lines). These isolates do not

TABLE 3 Distribution of phn] in freshwater metagenomic data sets deposited at IMG or ENA?

Sample source Environment type phn] Study (reference(s])

Lake Damariscotta, Maine, USA Lake + ENA-PRJEB4844 (43)

Lake Ekoln, Sweden Lake + ENA-PRJEB4844 (43)

Lake Erken, Sweden Lake — ENA-PRJEB4844 (43)

Lake Mendota, Wisconsin, USA Lake + ENA-PRJEB4844 (43)

Lake Vittern, Sweden Lake + ENA-PRJEB4844 (43)

Sparkling Lake, Wisconsin, USA Lake + ENA-PRJEB4844 (43)

Trout Bog Lake, Wisconsin, USA Lake + ENA-PRJEB4844 (43)

Lake Erie, Canada/USA Lake + GOLD project ID Gp0111910
Lake Sakinaw, British Columbia, Canada Lake + GOLD project ID Gp0052015 (68, 69)
Lake Grosse Fuchskuhle, Germany Mixed culture from lake + GOLD project ID: Gp0057572 (70)
Lake Superior, Canada/USA Lake + GOLD study ID Gs0053068
Sandusky Bay, Ohio, USA Lake - GOLD study ID Gs0053068 (71)
Lake Ontario, Canada/USA Lake sediment - GOLD study ID Gs0053068
Lake Washington, Washington, USA Lake sediment + GOLD study ID Gs0060820 (72)
Laguna de Carrizo, Spain Lake sediment - GOLD study ID Gs0063259 (73)
Delaware River, Delaware/New Jersey, USA River + GOLD study ID Gs0063440
Lake Michigan, Canada/USA Lake + GOLD study ID Gs0110155 (74)
Crystal Bog, Wisconsin, USA Bog + GOLD study ID Gs0110170
Loktak Lake, India Lake + GOLD study ID Gs0111445 (75)
Notre Dame University, Indiana, USA Anoxic pond sediments + GOLD study ID Gs011357
University of Edinburgh, Edinburgh, UK Pond + GOLD study ID Gs0114295
Streams affected by fracking, Pennsylvania, USA Stream + GOLD study ID Gs0114818 (76)

“ The nucleotide sequence of phn] from Pseudomonas stutzeri (accession no. AAR91738.1) or E. coli (accession no. AAC77059.1) was used to query all of these data sets; a data set
was scored as positive if it had at least one hit with an E value of <10~ '°. Approximately 25% of samples from Yellowstone National Park also had phnJ homologs. IMG, Integrated

Microbial Genomes & Microbiomes.
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FIG 3 Growth and methane production of isolates grown with phosphate, MPn, or both. Cells were grown at 30°C in serum bottles in NBRIP medium (44) with MPn
(0.2 mM), K,HPO, (0.2 mM), or both (0.2 mM each) supplied as P sources. Prior to measuring growth curves, cells were grown in NBRIP with K,HPO, as the only P
source. Growth was measured by monitoring the optical density at 660 nm, and methane in the headspace was measured by gas chromatography coupled with a flame
ionization detector (GC-FID), Agilent 7890A (G3440A). All isolates grew at similar rates on all P sources (dashed lines). Methane was produced by LM-1, LM-5, and
LM6-1 when MPn was present (A, B, C, solid lines). LM-Y produced methane only when MPn was present and phosphate was absent (D, solid lines).

appear to be capable of consuming the methane released as a car-
bon or energy source, since they do not grow when MPn is pro-
vided as the sole P, C, and energy source (data not shown).

Methane was produced only in the presence of MPn (Fig. 3,
solid lines). In the presence of both MPn and 200 uM K,HPO,,
strain LM-Y did not produce any methane (Fig. 3D). However, the
other isolates produced some methane in the presence of K,HPO,
when MPn was also present (Fig. 3A to C). No methane was pro-
duced by any strain when MPn was not provided, indicating that
the methane is a product of MPn metabolism.

To further investigate the relationship between MPn concen-
tration and methane production, strain LM-Y was grown in
NBRIP with different concentrations of MPn (Fig. 4). This strain
has been shown to decrease RNA content and replace its phospho-
lipids with amino- and glycolipids when P is limited, so the cells
may increase their P content without necessarily altering the
growth yield (38). As the MPn concentration increases, the cell
yield and total methane production also increase, suggesting that
availability of additional P promotes additional growth, as ex-
pected (Fig. 4). Both yield and methane production are similar
when 100 or 200 uM MPn is added, suggesting that at concentra-
tions of >100 wM MPn, sufficient P is available to maximize
growth yield in NBRIP and the excess P; in solution may even
inhibit further degradation of MPn (54).

Effect of phosphate on methane release from MPn. Addition
of 200 M phosphate to the cultures with initial MPn concentra-
tions of 200 wM reduced the amount of methane produced by
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strains LM-1, LM-5, and LM6-1 by 40 to 60% but completely
repressed methane production in the culture of LM-Y. To better
understand the effect of phosphate on phosphonate consumption
by this strain, LM-Y was grown with 50 uM MPn and 0 to 100 uM
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FIG 4 Growth and methane production of LM-Y grown on different MPn
concentrations. MPn was added to final concentrations of 5 to 200 uM. Cells
were grown ~36 h, and ODg, and methane concentrations in the headspace

were measured at different times during incubation. The maximum methane
concentration and ODy, were reached after about 24 h of incubation.
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FIG 5 Phosphate represses methane production from MPn in LM-Y. All cul-
tures were grown with 50 wM MPn and the indicated concentration of
KH,PO,. Since no CH, production was observed when KH,PO, was used, we
assume that there is no inhibition in the absence of KH,PO,, and 100% inhi-
bition in the presence of =50 wM KH,PO,. Percent repression was calculated
as described in equation 2.

KH,PO, (Fig. 5). Methane production was completely inhibited
in cultures grown with 50 uM MPn and 50 or 100 uM KH,PO,
(Fig. 5A). In cultures grown with 50 uM MPn and 0 uM, 4 wM, or
10 wM P;, the amount of methane produced decreased as KH,PO,
increased (Fig. 5A). The relationship between added KH,PO,
concentration and percent repression of methane production is
linear (Fig. 5B), and we extrapolate that methane production
would be completely repressed at P; concentrations above 30 M.

Expression of phnJ during growth on different P sources. The
phn] gene encodes the enzyme that catalyzes release of methane
from the intermediate a-D-ribose-1-methylphosphonate-5-phos-
phate (53). We examined the expression of this gene in all four
bacterial strains grown with 0.2 mM phosphate, 0.2 mM MPn, or
both in the medium. LM-Y, the only strain in which methane
production from MPn is abolished in the presence of phosphate
(Fig. 3), appears to express phnJ only when MPn is present and
phosphate is absent (Fig. 6). The other three strains, which pro-
duce methane when MPn is provided, whether or not it is the only
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FIG 6 Transcript abundance of phnJ in isolates grown with phosphate, MPn,
or both. Liquid subsamples (1.5 or 3.0 ml) were removed from all cultures
during mid-exponential and stationary phases of growth on each P source
(MPn, K,HPO,, or both). Transcript levels were calculated relative to phnJ in
cells grown with phosphate and harvested during the exponential growth
phase. Expression of phnJ was highest in cells grown with MPn as the sole P
source; in strains LM-1, LM-5, and LM6-1, expression was lower but still
detectable when both MPn and phosphate were supplied as P sources. Expres-
sion of phnJ in LM-Y in the presence of both MPn and phosphate is indistin-
guishable from its expression in the presence of phosphate only.

P source (Fig. 6), express phnJ under both conditions. However,
the phnJ transcript is less abundant in the presence of phosphate
(Fig. 6 and Table 4).

Environmental significance. Here, we show that freshwater
heterotrophic bacteria are capable of producing methane from
MPn and that the pathway for phosphonate degradation is wide-
spread in freshwater lakes. We further demonstrate that in Lake
Matano, Alphaproteobacteria, Gammaproteobacteria, and likely
Actinobacteria can take up phosphonate compounds and cleave
the C-P bond to acquire P and that this activity is repressed in the
presence of P;. Similarly, the phn] gene is expressed in these strains
only in the presence of MPn, and its expression level is modulated
by addition of P;. In sum, this work shows that methane produc-
tion in freshwater systems may occur as a result of phosphate
limitation, as microbes acquire P from phosphonates.

Phosphonates, including MPn, may comprise up to 10% of
dissolved organic phosphorus (DOP) in some lakes (55-57),
though many freshwaters have no detectable phosphonates (58,
59) or only very small quantities thereof (60, 61). However, ho-
mologs of phnj are present in 18 of 23 metagenomic data sets from
freshwater environments (water and sediment), including bogs,
lakes, ponds, rivers, and streams (Table 3). The number of data
sets in which phnJ is found and the diversity of environments
indicate that the ability to degrade phosphonates is widespread in
freshwater environments. Additionally, based on the abundance
of phnD, which encodes one subunit of the phosphonate trans-
porter, picocyanobacteria in the Great Lakes are predicted to be
capable of phosphonate uptake (62). Given the broad distribution
of phosphonate uptake and degradation pathways, phosphonates
may be undetectable in freshwater systems not because they are
not present but because they are rapidly broken down. In fact,
phosphonates in marine systems have been shown to be highly
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TABLE 4 Relative expression levels of phnJ expression in isolates grown under different conditions

Avg * SD of relative levels of phn] transcripts

Phase P source” LM-1 LM-5 LMe6-1 LM-Y
Exponential growth Phosphate 1.00 1.00 1.00 1.00
MPn + phosphate 13.92 £ 6.05 9.97 £ 1.77 13.75 = 1.09 1.35 £ 0.32
MPn 68.26 = 9.94 32.50 = 3.33 64.90 = 11.16 261.81 * 45.67
Stationary Phosphate 0.35 = 0.06 0.06 = 0.01 0.19 = 0.06 0.17 = 0.01
MPn + phosphate 0.6 = 0.01 0.54 £0.21 0.52 = 0.04 0.17 = 0.03
MPn 0.94 £0.32 1.60 = 0.28 0.70 = 0.04 1.36 £ 0.06

“ Relative levels of phn] transcripts in cells grown with phosphate (0.2 mM), phosphate + MPn (0.2 mM each), or MPn alone (0.2 mM) were determined, normalized based on total RNA,
and compared to levels in cells grown on phosphate during exponential growth phase. For each sample, two biological replicates and two technical replicates were analyzed.

reactive (63), and the same may be true in freshwater environ-
ments, which are typically P limited (64). This P limitation may
result in microbial acquisition of P from a wide variety of sources
(38), ultimately leading to release of organic by-products such as
methane.

The steady-state concentration of methane at 40 m in Lake
Matano is ~3 wM, 3 orders of magnitude greater than the satura-
tion concentration (7). Many freshwater lakes are supersaturated
with regard to methane, often more than can be explained by
methanogenesis in anoxic sediments or bottom waters (5, 6, 10).
In some of these systems, surface water methane is produced by
methanogenesis in oxic surface waters (5, 10). However, in se-
verely P-limited systems, demethylation of P-containing com-
pounds may also contribute to surface water methane production.
Because Lake Matano has less than 50 nM total P; in the surface
water (37), planktonic organisms there must be capable of imme-
diate uptake and utilization of P in any available form (38). Both
physiological experiments with isolates and bioinformatics anal-
ysis of metagenomic data indicate that heterotrophic bacteria in
Lake Matano surface water are capable of producing methane as a
by-product of acquisition of P from phosphonate compounds.
Given the prevalence of genes encoding phosphonate biosynthesis
and degradation in freshwater metagenomic data sets, P metabo-
lism in freshwater systems may have unexpectedly large effects not
only on P cycling but also on release of greenhouse gases. The
current models for methane cycling in fresh waters use lake size,
shape, nutrient status, temperature, and primary production to
predict rates of methane production (19, 21, 65) but do not in-
clude methane production by any pathway in oxic water columns,
even though this phenomenon has been observed in many lakes
(4-6, 8, 10) and is known to be important in the ocean (12, 13).
Because lakes may release as much as ~100 Tg methane globally
each year, or ~20% of total annual natural methane emissions,
which is more than the emissions from the world’s oceans (1, 2),
understanding the environmental and biological factors contrib-
uting to methane emissions from freshwater systems is critical to
making more-accurate predictions of both freshwater and global
methane emissions (9, 18-21).
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