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Increasingly, children and adolescents with dyslipidemia qualify for pharmacologic intervention. As they 
are for adults, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors (statins) are the mainstay of 
pediatric dyslipidemia treatment when lifestyle modifications have failed. Despite the overall success of 
these drugs, the magnitude of variability in dose-exposure-response profiles contributes to adverse events 
and treatment failure. In children, the cause of treatment failures remains unclear. This review describes the 
updated guidelines for screening and management of pediatric dyslipidemia and statin disposition path-
way to assist the provider in recognizing scenarios where alterations in dosage may be warranted to meet 
patients’ specific needs.
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INTRODUCTION

Cardiovascular disease remains the number 
one cause of mortality in the United States.1 
Despite significant advances in medical and sur-
gical management for heart disease and stroke, 
the burden of cardiovascular disease remains 
alarming. Coronary artery disease (CAD) alone 
accounts for 1 of every 7 deaths in the United 
States.1 Although CAD has historically been per-
ceived as a disease of middle to late adulthood, 
data now support onset at a much younger age. 
Clinically silent precursors to CAD, fatty streaks, 
have been observed in children as young as 3 
years of age with coronary involvement identi-
fied at adolescence.2 By the time individuals 
reach their 20s studies suggest that the incidence 
of coronary atherosclerosis can range from 45% 
to 75%.3,4 Importantly, several studies confirm 
that the risk factors observed in adults (e.g., 
elevated low-density lipoprotein [LDL], obesity, 
hypertension, tobacco exposure, and diabetes) 
also contribute to atherosclerosis in children.5,6 
Collectively, these studies have illuminated the 

need for preventive cardiovascular services in 
children and young adults.

Trends in circulating lipid profiles support a role 
for screening in children as part of preventative 
care. The prevalence of total plasma cholesterol 
(TC) concentrations in excess of 200 mg/dL has 
risen to 10% in adolescents,7,8 a far cry from the 
estimated 0.2% of the population that can attribute 
this laboratory finding to familial hypercholester-
olemia.9,10 This may be explained, in part, by the 
rate of overweight/obesity in children, which as 
in adults, can be associated with elevated choles-
terol levels.11 Importantly, most adolescents with 
elevated TC will continue to have elevated TC 
into adulthood, and those who are overweight 
have a 2-fold higher relative risk of CAD mortality, 
independent of adult weight.12,13 When pediatric 
weight and lipid profiles are considered together, 
the prevalence of symptomatic CAD in young to 
middle-aged adults is expected to increase by 5% 
to 16% over the next 2 decades.14 This will likely 
contribute to an additional 100,000 cases of early 
coronary heart disease that are specifically due to 
childhood obesity.
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SCREENING AND MANAGEMENT 
GUIDELINES

Since the last comprehensive review of 3-hy-
droxy-3-methyl-glutaryl-coenzyme A (HMG-
CoA) reductase inhibitors (statins) by Eiland et 
al,15 the pediatric screening and management 
guidelines have changed, prompting this update 
for pediatric providers who make recommenda-
tions related to prescribing statins.

In 1992, the National Cholesterol Education 
Program (NCEP) began recommending targeted 
lipid screening in pediatric patients with risk fac-
tors for premature atherosclerotic cardiovascular 
disease.16 This strategy exposed numerous cases 
of asymptomatic dyslipidemia that previously 
would have been neglected for decades. How-
ever, additional evidence suggests that simply 
relying on family history alone will miss at least 
30% of pediatric patients with moderate dyslip-
idemia.17 These previous NCEP guidelines also 
focused on LDL screening, essentially ignoring 
the combined dyslipidemic patterns that are ob-
served in obese pediatric patients (i.e., increased 
triglycerides, increased LDL, decreased high-
density lipoprotein [HDL]).

Realizing that a large proportion of at-risk 
children would remain unidentified, the National 
Heart, Lung, and Blood Institute convened an 
expert panel on Cardiovascular Health and Risk 
Reduction in Children and Adolescents to update 
the pediatric preventive cardiovascular guide-
lines, including modifications to lipid screening 
and management in childhood and adolescence.18 
The most striking modification in the updated 
NCEP guidelines resides in the domain on lipid 
screening where the panel now recommends 
universal lipid screening for all children between 
the ages 9 and 11 years and again between 17 
and 21 years of age.18 These age groups were 
targeted specifically to screen patients prior to 
and after puberty, when it is observed that TC 
and LDL can fluctuate with growth and sexual 
maturity.19,20 The updated guidelines also suggest 
that lipid profiles can be obtained in either the 
fasting or non-fasting state given the reliability 
with either method.21 This offers the benefit of 
facilitating screening in busy clinic settings where 
non-fasting lipid profiles may be easier to obtain.

Treatment guidelines were also clarified in the 
new guidelines with the goal of minimizing the 
burden of CAD in young adults. As expected, 

diet and exercise are the first steps in which a pro-
vider managing children with lipid abnormali-
ties should implement a change. When lifestyle 
modifications fail to improve lipid profiles over 
a 6-month period, pharmacologic therapy may 
be warranted to reverse lipid abnormalities. In 
children older than 10 years of age, use of phar-
macologic management should be based on the 
average results of 2 lipid profiles obtained at least 
2 weeks apart but no more than 3 months apart. 
The thresholds used to determine when drug 
therapy should be initiated are mirrored from the 
1992 NCEP guidelines outlined in Table 1. The 
treatment algorithm is based on a combination of 
LDL level, family history, and/or associated risk 
factors and/or risk conditions (Table 2).

Contrasted with the adult guidelines which 
establish a threshold for treatment at ≥190 mg/
dL, the implications of expanded drug use in 
children below this threshold are self-evident. A 
recent publication quantified this impact in just 
the adolescent population (17-21 years of age), 
which effectively spans both pediatric and adult 
criteria. Applying the pediatric recommendations 
to this population would result in 6-fold more 
patients qualifying for statin therapy than would 
be eligible based on the adult guidelines (2.5% 
vs. 0.4%, respectively). This equates to approxi-
mately 400,000 adolescents.22 This discrepancy 
illustrates the challenge faced by providers who 
care for adolescents who are transitioning into 
adulthood; specifically, whether the risk of expos-
ing significantly more children to chronic lipid-

Table 1. Treatment Cutpoints for Statin Therapy*

LDL Presence of Concurrent Factors

≥190 mg/dL None

160-189 mg/dL Positive family history of early 
CVD
or
1 high-level RF for early CVD
or
2 moderate-level RF for early CVD

130-159 mg/dL 2 high-level RF for early CVD
or
1 high-level and 2 moderate-level 
RF for early CVD

CVD, cardiovascular disease; LDL, low-density lipoprotein; RF, risk 
factor
* Decisions regarding pharmacologic treatment of dyslipidemia 
were based on the average results of 2 lipid profiles obtained at 
least 2 weeks apart but no more than 3 months apart.

Pediatric Statin Administration
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lowering medications is offset by the anticipated 
reduction in morbidity and mortality from CAD. 
The risk of this chronic extrahepatic exposure of 
statins in the developing child is described briefly 
in Distribution below. Undoubtedly, additional 
investigations will be needed to clarify future 
guideline updates and risk of statin exposure in 
a developing child.

OVERVIEW OF THE STATINS

As shown by the guidelines, HMG-CoA reduc-
tase inhibitors are now the mainstay of pharma-
cologic treatment for dyslipidemia in both adults 
and children, due to their demonstrated efficacy 
in the primary and secondary prevention of CAD 
coupled with a relatively mild side effect pro-
file.15,23-28 The first 3 statins approved in the United 
States (lovastatin in 1987, simvastatin in 1991, and 
pravastatin in 1991) are fungus-derived (Tables 
3-5) semisynthetic agents, whereas the remaining 
U.S. Food and Drug Administration-approved 
compounds (fluvastatin in 1993, atorvastatin in 
1996, rosuvastatin in 2003, and pitavastatin in 
2009) are synthetic agents (Table 6).29

Pharmacology
Statins decrease the hepatic synthesis of choles-

terol by blocking the conversion of HMG-CoA to 
mevalonate, the rate-limiting step in cholesterol 
synthesis. In response to a subsequent decrease 
in intracellular sterols, expression of the genes 
encoding the cell-surface LDL receptor is up-
regulated. This, in turn, enhances the hepatic 
uptake of LDL and reduces the circulating levels 
of LDL in the serum.30 However, statins appear 
to possess other effects including a decrease 

in inflammatory mediators downstream from 
HMG-CoA reductase (see Future Considerations 
below).31-33 Thus, it remains debated whether the 
reduction in CAD and plaque formation occurs 
as a result of the statins’ lipid-lowering effects or 
other anti-inflammatory effects.

Efficacy in Children
Clinical trials of statins in children have includ-

ed lovastatin, simvastatin, pravastatin, fluvas-
tatin, rosuvastatin, atorvastatin, and pitavastatin 
and most of the studies focused on lipid-lowering 
and safety (Tables 3-6). With few exceptions, ex-
posure to the statins conferred no added safety 
risk compared with placebo. However, the trials 
described in Tables 3 to 6 ranged from 1 month 
to 2 years and thus, a paucity of data describing 
the safety of chronic exposure to statins initiated 
during childhood exists. Moreover, for nearly all 
agents, reductions in LDL exceeded 20%, and 
some agents achieved reductions in excess of 40% 
to 50%. There also appeared to be some degree 
of dose dependence in LDL response within 
this class of drugs. However, in many studies, 
the variability associated with mean response 
profiles was exceedingly large, almost equivalent 
in magnitude to the response itself (Tables 3-6). 
At present, the cause of this variability remains 
unknown.

With such a high degree of variability in LDL 
reduction at a given statin dose and the un-
known long-term developmental consequences 
of regular pediatric statin use, identifying the 
dose that maximizes efficacy and minimizes 
the risk of toxicity (i.e., dose optimization) is of 
great clinical importance for a developing child. 
Notably, all studies presented used a “one-size-

Table 2. Risk Factor Definitions for Dyslipidemia Guidelines18

Positive Family History myocardial infarction, angina, coronary artery bypass graft/stent/angioplasty, sudden 
cardiac death in parent, grandparent, aunt, uncle at <55 yr for males, < 65yr for females

High level risk Hypertension that requires drug therapy (BP ≥ 99th percentile + 5 mm Hg), current 
cigarette smoker, BMI at the ≥ 97th percentile, presence of special high-risk conditions

Moderate level risk Hypertension that does not require drug therapy, BMI ≥ 95th percentile, <97th 
percentile, HDL cholesterol < 40 mg/dL, presence of moderate risk conditions

Special high-risk 
conditions

Type 1 or 2 diabetes mellitus, chronic kidney disease/end-stage renal disease/post-
transplantation, post-orthotopic heart transplantation, Kawasaki disease with current 
aneurysms

Special moderate-risk 
conditions

Kawasaki disease with regressed coronary aneurysms, chronic inflammatory disease 
(systemic lupus erythematosus, juvenile rheumatoid arthritis), HIV infection, nephritic 
syndrome

BMI, body mass index; BP, blood pressure; HDL, high-density lipoprotein; HIV, human immunodeficiency virus; RF, risk factor

J Wagner, et al
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fits-all” dosage scheme, effectively ignoring the 
contributions of ontogeny and genetic variation 
in statin disposition that are assuredly present in 
pediatric patients.

Given that the use of statins will inevitably 
increase as a result of mandatory lipid screening 
programs and the observed difficulties with ad-
herence to dietary/behavioral modifications, the 
pediatric community should proactively pursue 
a more comprehensive understanding of these 
agents in children and adolescents before their 
widespread use. The following section discusses 
developmental, physicochemical, and pharmaco-
genetic factors that influence the dose-exposure 
profile for the statins. Notably, the paucity of data 
for pediatric statin disposition requires extrapola-
tion from in vitro and adult data.

DISPOSITION

Physiochemical Considerations
Despite sharing a common mechanism of ac-

tion, the statins differ in their physicochemical 
properties (e.g., octanol-water partition coeffi-
cient, pH stability/solubility). These properties 
are incredibly important to the overall disposi-
tion of each agent and explain why the statins 
should be considered independently when 
tailoring dosage to individual patient popula-
tions. Two statin agents (lovastatin and simvas-
tatin) are formulated as lactone prodrugs which 
require hydrolysis to become activated inhibi-
tors of HMG-CoA reductase.56,57 The remaining 
statins are administered in their active hydroxy 
acid forms.31,58,59 Consequently, lovastatin and 
simvastatin are the most lipophilic as delivered 

(simvastatin > lovastatin), readily translocating 
across membranes,60,61 whereas pravastatin and 
rosuvastatin are the most hydrophilic agents, 
requiring transporter-mediated disposition.58,60,61

Another unique element of the statins lies with 
the pH-dependent chemical interconversion that 
can occur at any step in the disposition pathway 
and heavily influences the amount of active drug 
available at the target. For instance, formation of 
the inactive 3-alpha-hydroxy-pravastatin acid 
and lactone isomers in the acidic environment 
of the stomach prior to absorption can disrupt 
the amount of pravastatin acid delivered to the 
drug target (i.e., the liver).62,63 Not surprisingly, 
isomer formation influences the pharmacody-
namic effects of these drugs and is highly variable 
among healthy human subjects.63,64 Although 
these data require replication in a larger cohort 
before changes can be made to the drug label, 
the extent of chemical interconversion should be 
taken into consideration in populations where 
statin response is highly variable.

Absorption
All statins are administered orally, thus, the 

extent of their systemic availability is determined 
by the aforementioned physicochemical proper-
ties of the drug, the physicochemical milieu of 
the patient’s gastrointestinal environment, and 
the functional status of their intestinal transport-
ers, which can be influenced by ontogeny and 
genetics.

Pravastatin preferentially undergoes transport-
er-mediated absorption, conferring a relatively 
robust absorption rate despite its hydrophilic 
properties.65 In vitro, pravastatin appears to be 

Table 3. Lovastatin: Summary of Safety and LDL reduction in Pediatric Trials

Reference Population Lovastatin 
Dosing

LDL reduction 
(%)

Variance 
(%)

Safety

Clauss et al34 n = 54;
11-18 yr (females only)
FH

20 mg/day × 4 wks
40 mg/day × 20 wks

23 at wk 4
27 at wk 24

SE 3.3
SE 3.4

no difference vs. 
placebo

Stein et al35 n = 132 (65 placebo);
13.3 ± 2.5 yr (males only)
FH 

10 mg/day × 8 wks
20 mg/day × 8 wks
40 mg/day × 8 wks
40 mg/day × 24 wks

17
24
27
25

SE 2
SE 1
SE 2
SE 2

no difference vs. 
placebo

Lambert et al36 n = 69;
13.3 ± 2.7 yr (males only)
FH 

10 mg qd × 8 wks
20 mg/day × 8 wks
30 mg/day × 8 wks
40 mg/day × 24 wks

21
24
27
36

15 - 27
19 - 29
19 - 35
33 - 39

no SAE,
increase in CK

CK, creatinine kinase; FH, familial hyperlipidemia; SAE, serious adverse events; SE, standard error

Pediatric Statin Administration
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a substrate for the influx transporters OATP1A2 
and OATP2B1. Notably, OATP2B1 uptake ap-
pears to be pH-sensitive, diminishing greatly 
as the pH increases from 5.0 to 7.4.66-68 This 
observation suggests that the primary impact 
of OATP2B1 translocation occurs at the level 
of the enterocyte, where it is exposed to lower 
pH values, as opposed to the hepatocyte, where 
the systemic pH is higher and less uptake is 
expected. Pravastatin is not a substrate for the 
efflux transporters MDR1 and BCRP but, in vitro, 
appears to be a substrate for the efflux transporter 
MRP2, which is located on the apical surface of 
the enterocyte and liver.68-71 In vivo, increased 
expression of MRP2 conferred by a ‘gain of func-
tion’ sequence variation (ABCC2 c.1446C>G), 
increases presystemic clearance and reduces the 
bioavailability of pravastatin at the level of the 
enterocyte.72

Rosuvastatin similarly undergoes transporter-
mediated absorption and, although not fully 
characterized, also appears be a substrate for 

OATP2B1 and BCRP.73,74 However, rosuvastatin 
does not display the same pH sensitivity suggest-
ing that OATP2B1 may be relevant to rosuvas-
tatin disposition at the level of both the intestine 
and liver.73 In vivo, a genetic variation in the gene 
encoding BCRP (ABCG2 c.421C>A) contributes 
to an increase in rosuvastatin exposure by way of 
diminished export back into the intestinal lumen 
and into the biliary canaliculus.75,76

Fluvastatin, moderately more lipophilic than 
pravastatin or rosuvastatin, undergoes passive 
diffusion but in vitro is a substrate of OATP2B1.73 
Similarly, in vitro data reveal that atorvastatin is 
an OATP2B1 substrate at acidic and neutral pH; 
however, the high passive diffusion rates that are 
observed and lack of disruption in absorption 
by known inhibitors of OATP2B1 suggest that 
this transporter plays a very minor role in the 
absorption of atorvastatin.73 Pitavastatin, also 
moderately lipophilic, undergoes passive diffu-
sion and there is no evidence that transporter-
mediated influx significantly influences the 

Table 4. Pravastatin: Summary of Safety and LDL Reduction in Pediatric Trials

Reference Population Pravastatin Dosing % LDL 
Reduction

% Variance Safety

Hedman et al43 n = 20;
4.9-15.6 yr
FH

10 mg/day × 8 wk 21 Not reported No SAE

Hedman et al44 n = 19;
4.4 - 18.9 yr
cardiac transplant

10 mg/day × 8 wk 27 SD 27 No SAE, mild 
increase in CK

Hedman et al45 n = 35;
4.1 - 18.5 yr
FH
n = 35

10 mg/day
Titration by 10 mg at 8, 16, 
24, 52, 104 wk per LDL goal

25 at wk 8
27 at wk 16
29 at wk 24
33 at wk 52

32 at wk 
104

SD 11
SD 13
SD 13
SD 14
SD 13

No SAE

Hedman et al46 n = 20;
4.9 - 15.6 yr
FH

10 mg/day × 8 wk 20 (TT)
23 (TC)

SD 10
SD 12

No SAE

Hedman et al46 n = 12;
4.4 - 18.7 yr
cardiac transplant 

10 mg/day × 8 wk 34 (TT)
8 (TC) 

SD 21
SD 8

No SAE

Knipscheer et al47  n = 72;
8 - 16 yr
FH

5 mg/day × 12 wk
10 mg/day × 12 wk
20 mg/day × 12 wk

23
24
33

18-28
19-29
29-37

No difference 
between 
groups

Wiegman et al48 n = 214;
13 ± 3 yr
FH

20 or 40 mg/day (< 14 vs. ≥ 
14yr) × 104 wk

24 SD 17 No difference 
vs. placebo

CK, creatinine kinase; FH, familial hyperlipidemia; LDL, low-density lipoprotein; SAE, serious adverse events; SD, standard deviation; TC, 
SLCO1B1 521TC heterozygote genotypes; TT, SLCO1B1 521TT wild-type genotypes.

J Wagner, et al
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disposition of this drug. However, pitavastatin 
absorption can be attenuated presystemically 
by P-glycoprotein (P-gp).77,78 Finally, there is no 
reported transporter-mediated absorption in-
fluencing the simvastatin or lovastatin lactones.

Another factor for consideration with respect 
to the absorption of statins is the impact of coad-
ministered meals. Regardless of whether the drug 
is delivered by solution or capsule, concurrent 
administration of fluvastatin with food markedly 
reduces exposure and delays absorption (area un-
der the curve [AUC], −17% to −24%; Cmax, −60% 
to −73%; Tmax, +56%).79 This was also observed 
with pravastatin (AUC, −30%; Cmax, −49%; Tmax, 
+50%)80 and rosuvastatin (AUC, −93%; Cmax, 
−93%; Tmax, +10% ).81 However, meals markedly 
slow the rate of absorption for atorvastatin (Tmax, 
+124%) and pitavastatin (Tmax, +143%). In fed 
states, atorvastatin Cmax (−48%) and pitavastatin 
Cmax (−55%) are reduced, although the impact 
on the extent of exposure for atorvastatin (AUC, 
−13%) and pitavastatin (AUC, −15%) is less 
pronounced.82,83 In contrast, lovastatin concen-
trations drop when administered under fasting 

conditions (~33%),84 whereas simvastatin can be 
taken without regard to meals.85

A final observation is the differential effect of 
morning versus evening dosage for the statin 
agents. When pravastatin is given in the evening, 
the Cmax and AUC are reduced by approximately 
60% compared with those for morning dosage.86 
Similarly, the Cmax and AUC of atorvastatin are 
reduced by roughly 30% when administered in 
the evening.87 Fluvastatin concentrations are re-
ported to be higher following evening dosage,88 
while no significant differences were observed 
for rosuvastatin.89 These differences in drug ex-
posure relative to the timing of dosage could be 
secondary to physiologic patterns of gastric emp-
tying. Circadian changes in drug absorption have 
been observed in response to increased gastric 
emptying times in the evening.90 Additionally, 
the diurnal pattern of cholesterol biosynthesis 
(peak, 12:00 midnight to 4:00 am) in relation to 
an evening dose could increase amount of statin 
used by the hepatocyte and thereby affect the 
plasma exposure of a statin.91,92 Whether these 
differences definitely arise as a result of changes 

Table 5. Simvastatin Summary of Safety and LDL Reduction in Pediatric Trials

Reference Population Simvastatin Dosage % LDL 
Reduction 

% Variance Safety

de Jongh et al37 n = 173;
14.4 ± 2.1 yr
FH

10 mg/day × 8 wk
20 mg/day × 8 wk
40 mg/day × 8 wk
40 mg/day × 24 wk

31 at wk 8
35 at wk 16
38 at wk 24
41 at wk 48

SD 11
SD 12
SD 16
SD 39

No SAE,
Slight decrease in 
DHEA-S

Ferreira et al38 n = 36;
10.3 ± 4 yr
HC

10 mg mg/day × 4 wk 37 SD 12 No difference vs. 
placebo

Dirisamer et al39 n = 20;
13 ± 2.4 yr
FH

5 or 10 mg/day (LDL < 220 
vs. ≥ 220)
step-wise titration up to 
20 mg × 52 wk 

25 (5 mg)
30 (10 mg)
36 (20 mg)

Not reported No differences 
between groups

de Jongh et al40 n = 50;
14.2 ± 3.1 yr
FH

10 mg/day × 8 wk
20 mg/day × 8 wk
40 mg/day × 12 wk

40 19% No differences vs. 
placebo

Stefanutti et al41 n = 16;
4 - 12 yr
FH

10 mg/day × 52 wk 29 Not reported No difference vs. 
placebo

Garcia-de-la-
Puente et al42

n = 25;
4 - 17 yr
renal disease

5 or 10 mg/day (≤30 vs. 
>30 kg) × 4 wk
10 mg or 20 mg titration 
(at wk 4) × 8 wk

34 Not reported No difference vs. 
placebo

DHEA-S, dehydroepiandrosterone-sulfate; FH, familial hyperlipidemia; HC, hypercholesterolemia; LDL, low-density lipoprotein; SAE, serious 
adverse events; SD, standard deviation.

Pediatric Statin Administration
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in absorption, distribution or elimination or in-
trinsic cholesterol production patterns remains 
unclear; however the observation that these 
patterns do not appreciably alter lipid-lowering 
properties of the affected statins limits the clinical 
relevance of these findings.

Concurrent with and subsequent to oral 
absorption, the statins (with the exception of 
pitavastatin) are subject to extensive first-pass 
extraction, effectively reducing their bioavailabil-
ity.29,59,93-96 Because drug-metabolizing enzymes 
mediate statin metabolism, these reactions are 
reviewed in Metabolism below. However, we 
point out here that when first-pass occurs at the 
level of the intestinal enterocyte, the absolute 
bioavailability of these agents is reduced, in-
fluencing both efficacy and toxicity. In contrast, 
when hepatocytes are the principal mediators of 
first pass, a more favorable scenario is set where 
concentrations at the target organ (i.e., the liver) 

increase while peripheral exposure decreases, 
thereby leading to enhanced efficacy and fewer 
side effects (e.g., myalgias).97

Distribution
Hepatic uptake for the highly lipophilic statin 

lactones occurs by passive diffusion,60 but for 
most of the statins, it is facilitated by transporter-
mediated processes. OATP1B1, encoded by the 
solute-carrier organic anion transporter gene 
SLCO1B1, is the principle transporting protein 
into the hepatocyte for most statins and has 
been reviewed extensively.60,98-100 Among the 
transporters with a minor role in statin disposi-
tion, pitavastatin, rosuvastatin, and fluvastatin 
are substrates for OATP1B3 (SLCO1B3),60,101,102 
rosuvastatin and fluvastatin appear to be sub-
strates for OATP2B1 (SLCO2B1),73,103,104 and ro-
suvastatin also appears to be a substrate for the 
sodium-dependent cotransporting polypeptide 

Table 6. Synthetic Statins: Summary of Safety and LDL Reduction in Pediatric Trials

Agent (reference) Population Dosage % LDL Reduction % Variance Safety

Fluvastatin
(van der Graaf et al49)

n = 84;
12.6 ± 2.1 yr
FH

20 mg/day for 6 wk
Titration to 40- or 
80-mg intervals per 
LDL × 96 wk 

34 29 - 39 N/A, no placebo 
arm

Atorvastatin
(McCrindle et al50)

n = 187;
14.1 ± 2.0 yr
FH or 
severe HC

10 mg/day titration 
to 20 mg at wk 
4 based on LDL 
continuing over 
26 wk

40 SE 1 No difference vs. 
placebo

Atorvastatin
(Gandelman et al51)

n = 39;
6 to <18 yr
FH

5 or 10 mg/day × 8 
wk (< 10 vs ≥ 10yr)
Titration per LDL 
at wk 4 

37 (5 mg)
43 (5 mg to 10 mg)

38 (10 mg)
41 (10 mg to 20 mg)

SD 11
SD 6
SD 8

SD 12

No difference 
between groups

Atorvastatin
(Argent et al52)

n = 18;
13 ± 4
renal 
transplant

5 or 10 mg/day (< 
40 kg vs. ≥ 40 kg) × 
36 wk

57 SD 7 No difference vs. 
untreated

Rosuvastatin
(Avis et al53)

n = 176;
13.8 ± 1.7
FH

5, 10, 20 mg/day 
titration at wk 12 
per LDL × 40 wk

38
45
50

SD 13
SD 17
SD 14

No difference vs. 
placebo

Rosuvastatin
(Marais et al54)

n = 44;
8 - 63 yr
hoFH

20 mg/day × 6 wk
40 mg/day × 6 wk
80 mg/day × 6 wk

19
23

21.4

SD 16
SD 15
SD 21

No SAE

Pitavastatin
(Braamskamp et al55)

n = 106;
6 - 17 yr
FH

1 mg/day × 12 wk
2 mg/day × 12wk
4 mg/day × 12wk

23.5
30.1
39.3

SE 2.1
SE 2.1
SE 2.2

DHEA-S 
significantly 
decreased (4 mg 
group) 

DHEA-S, dehydroepiandrosterone-sulfate; FH, familial hyperlipidemia; HC, hypercholesterolemia; hoFH, homozygous familial hyperlipid-
emia; LDL, low-density lipoprotein; SAE, serious adverse events; SD, standard deviation; SE, standard error.
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(NTCP) which may account for as much as 35% 
of its hepatic uptake.103 Fluvastatin also appears 
to enter the hepatocyte by passive diffusion.105-107 
As above, cellular uptake of the simvastatin and 
lovastatin lactones relies primarily on passive 
diffusion; however, simvastatin and lovastatin 
acid are substrates of OATP1B1 in vitro and in 
vivo.108,109 Notably, the simvastatin and lovastatin 
lactones appear to inhibit OATP1B1-mediated 
transport.110,111

The clinical relevance of OATP-mediated statin 
disposition has been demonstrated in a number 
of drug-drug interaction studies. A 7-fold increase 
in the AUCs of atorvastatin acid and 2-hydroxy 
atorvastatin acid and a 3-fold increase in AUC of 
4-hydroxy atorvastatin acid were observed when 
this statin was coadministered with rifampin (a 
known inhibitor of OATP1B1 and OATP1B3).112-114 
In the presence of cyclosporine (a potent inhibitor 
of OATP1B1 and CYP3A4) atorvastatin AUCs 
were 6- to 15-fold increased,115-117 fluvastatin 
AUC was 3-fold increased,118 lovastatin AUC 
was 20-fold increased,119 pitavastatin AUC was 
5-fold increased,99 pravastatin AUC was 5- to 
10-fold increased,44,119,120 rosuvastatin AUC was 
7-fold increased,121 and simvastatin AUC was 
3- to 8-fold increased.122,123 Certainly, CYP3A4 
inhibition from cyclosporine can contribute to 
the overall increases observed in statin exposure; 
however, this can be concluded to play a minor 
role given that rosuvastatin, pravastatin, and 
pitavastatin are not significantly metabolized 
by CYP3A4.124-128 In fact, pravastatin, the most 
hydrophilic compound, had a 10-fold increase 
in AUC when administered to children and 
adolescents who were taking triple immunosup-
pressive therapy containing cyclosporine and 
no other CYP substrates.44 Gemfibrozil, also an 
inhibitor of OATP1B1 and CYP2C8, produced a 
2-fold increase in AUCs of atorvastatin, lovas-
tatin, pitavastatin, pravastatin, rosuvastatin, and 
simvastatin.99,129-133

Cumulatively, the data from the above-
described studies provide compelling evidence 
that OATP1B1 is a critically important determi-
nant of drug disposition for most of the statins. 
Consequently, functional polymorphisms in the 
SLCO gene families are also expected to influ-
ence statin disposition and, thus, have been 
the subject of considerable interest.99,134 Much 
of this work stems from a study of pravastatin 
pharmacokinetics, where extreme outliers were 

attributed to 2 single-nucleotide variants in 
SLCO1B1.135 These mutations were observed in 
the promoter region ( −11187G>A) and in exon 
5 (c.521T>C) and were associated with a 50% 
reduction in non-renal clearance.136 This finding 
was independently confirmed in heterozygous 
carriers of SLCO1B1*15 (containing the 388A>G 
and 521T>C variants) who demonstrated mean 
pravastatin exposures (AUC 0–12) that were 93% 
higher and heterozygous carriers of the *17 hap-
lotype (containing the −11187G>A, 388A>G, and 
521T>C variants) who had exposures that were 
130% higher than non-carriers.137

Ultimately, the functional consequence of 
SLCO1B1 sequence variations on statin exposure 
are reflected by the dependence of the individual 
statin on OATP1B1 for cellular uptake. Heterozy-
gosity for SLCO1B1*5 and *15 haplotypes is asso-
ciated with a 3-fold, 2.5-fold, and 2-fold increase 
in exposure for simvastatin acid, atorvastatin and 
pravastatin, respectively, with very little effect on 
fluvastatin.99 SLCO1B1 genotype also influences 
the effect of rifampin on atorvastatin exposure 
wherein a 9-fold increase in AUC is observed in 
patients with a fully functional 521TT genotype 
versus a 5-fold increase in AUC observed for the 
521CC genotype.138 We would be remiss not to 
allude to the in vitro data which suggest that the 
C800T variant of NTCP may confer enhanced 
uptake of rosuvastatin, but there are no clinical 
data to support a role for this mutation in vivo.103

These studies underscore the critical role of 
OATP1B1 in statin disposition. By extension, this 
has important implications for drug safety, where 
an increase in systemic exposure mediated by 
reduced OATP1B1 activity can increase the risk 
of myopathy in statin-treated patients. The Statin 
Response Examined by Genetic Haplotype Mark-
ers (STRENGTH) trial demonstrated this with the 
observation that patients who were heterozygous 
for a non-coding sequence variation in linkage 
disequilibrium with c.521T>C experienced a 4.5-
fold increase in risk of myopathy. Patients who 
were homozygous for this mutation experienced 
a 16.9 increase in risk of myopathy.139

All statins, except for pravastatin, are exten-
sively protein bound. 56,57,65,95,96,125,140,141 Therefore, 
the circulating concentration of free drug is rela-
tively low for most agents in this class. However, 
the extent of distribution into peripheral tissues 
in humans is not well characterized. In theory, 
the statins with reduced lipid solubility (e.g., 
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pravastatin) should demonstrate less extensive 
tissue distribution, which would ostensibly pro-
vide a safer alternative in children, where brain 
and gonadal tissues are still maturing. In vitro 
and in vivo data support this supposition, dem-
onstrating that lower exposures are observed for 
pravastatin than for lovastatin and simvastatin in 
the central nervous system,142,143 and pravastatin 
also manifests a lower risk of myopathy than 
simvastatin and atorvastatin do.144-149 However, 
there are contradictory data which suggest that 
pravastatin can influence gene expression in 
the central nervous system to the same extent 
as some of the other statins.143 Until the active 
transporters responsible for tissue distribution 
of the statins and their ontogeny in children are 
more fully elucidated, practitioners will need to 
rely on the adverse event profiles reported from 
clinical studies.

Metabolism
Although in vitro reaction phenotyping studies 

suggest that cytochromes P450 (CYP) 2C8, 2C9, 
2C19, 2D6, 3A4, and 3A5 are all capable of me-
tabolizing the statins, current data suggest that 
CYP3A4 is a major contributor to simvastatin, 
lovastatin, and atorvastatin metabolism.95,150-152 
In the presence of the CYP3A4/5 inhibitor tro-
leandomycin, simvastatin acid metabolism is 
decreased by 90%.150 When administered concur-
rently with the CYP3A4 inhibitor itraconazole, 
15- to 19-fold increases are observed in simv-
astatin and lovastatin AUCs.98,126-128 The impact 
of itraconazole on the AUC of atorvastatin is 
more modest (+47%),151 and the coadministra-
tion of CYP3A4 inhibitors has no significant 
effect on clearance of pravastatin, fluvastatin, 
rosuvastatin, or pitavastatin, consistent with the 
limited role of CYP3A4 in the metabolism of these 
compounds.153 In vitro and in vivo data suggest 
that fluvastatin is a substrate for CYP2C9,154-156 
whereas pravastatin, pitavastatin, and rosuvas-
tatin do not undergo appreciable CYP-mediated 
metabolism.

Despite the fact that CYP3A4 activity is highly 
variable, mutations driving this variability have 
not been fully elucidated.157 However, a sequence 
variation in intron 6 of this gene associated 
with reduced CYP3A4 expression and activity 
(rs35599367 C>T, designated CYP3A4*22) has 
also been associated with the need for 0.2- to 
0.6-fold lower doses of atorvastatin, lovastatin, 

and simvastatin to adequately manage lipid pro-
files.158,159 With fluvastatin, patients homozygous 
for the *3 allele of CYP2C9 (which confers re-
duced activity in this enzyme) demonstrate 3-fold 
lower clearance values of the active fluvastatin 
enantiomer. Notably, the resultant lipid profiles 
were not correlated with CYP2C9 genotype.160 
Collectively, these studies support a role for al-
lelic variations in drug-metabolizing enzymes 
influencing the pharmacokinetics and, in some 
cases, pharmacodynamics of the statins that rely 
on these pathways for clearance.

UDP-glucuronosyl transferase (UGT)-cata-
lyzed conjugation is the primary route by which 
statins and their metabolites are further biotrans-
formed in hepatocytes.161,162 The open acids are 
conjugated by UGT to form an acyl glucuronide 
that subsequently cyclizes to form a lactone ring 
(i.e., lactonization). This process results in a loss 
of pharmacologic activity and is common to all 
statins present in the open acid form. Notably, 
carboxyl esterase can reverse the lactonization 
process thereby regenerating the open acids. 
Alternatively, the lactones can be directly me-
tabolized by the CYPs in a process that appears 
to occur more rapidly than is observed for open 
acids.60,163 Although important in the disposition 
of statins, the overall contribution of UGTs is 
quantitatively less substantial than that of the 
CYPs.163 As above, pravastatin, rosuvastatin, 
and pitavastatin do not undergo extensive UGT-
mediated conjugation.

Although conjugation plays a more limited 
role in statin disposition, recent data suggest 
that allelic variants of UGT may have a modest 
effect of statin activity. The UGT1A3*2 allele 
has been associated with increased lactoniza-
tion activity for atorvastatin.164 Homozygosity 
of the UGT1A3*2 allele was accompanied by a 
1.7- and 2.7-fold increase in AUC of the parent 
and 2-hydroxyatorvastatin lactones, respectively, 
compared to that in patients who are homozy-
gous for UGT1A3*1. Furthermore, this increase 
in lactone formation correlated with a reduction 
in the maximal effect of atorvastatin on total and 
LDL cholesterol-lowering from baseline.165

Excretion
Biliary excretion of the UGT-conjugated statins 

occurs through several transporters, including 
multidrug resistance 1 (MDR1; ABCB1), mul-
tidrug resistance-associated protein 2 (MRP2; 
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ABCC2), breast cancer resistance protein (BCRP; 
ABCG2), and bile salt exporting pump (BSEP; 
ABCB11). However, the quantitative importance 
of these efflux transporters in the overall disposi-
tion profile of the statins has yet to be fully eluci-
dated. Nonetheless, the consequences of genetic 
variations in the efflux transporters relevant to 
the statins have also recently been examined. 
In vitro, there is no consensus regarding MDR1 
expression or activity in the common allelic 
variants of ABCB1 (c.1236C>T, c.2677G>T/A, 
c.3435C>T).166 In vivo, these allelic variants do 
not appear to significantly influence the inter-
individual variability in fluvastatin, pravastatin, 
lovastatin, and rosuvastatin pharmacokinetics,167 
but significantly increase the exposure of simv-
astatin and atorvastatin acid by 60% and 55%, 
respectively.168

Conversely, the ABCG2 c.421C>A variant, 
which has been associated with transport activ-
ity in vitro,169 appears to increase the exposure 
of atorvastatin, fluvastatin, simvastatin lactone, 
and rosuvastatin by 72%, 72%, 111%, and 144%, 
respectively, in subjects with the AA genotype 
compared to those in patients with the wild-type 
CC genotype.75,170 Note that this genotype does 
not appreciably impact the pharmacokinetics of 
simvastatin acid or pravastatin.170 As discussed 
in Absorption above, pravastatin is subject to 
MRP2-mediated transport in vitro at the level 
of the enterocyte and hepatocyte.69-71 In vivo, the 
ABCC2 c.1446C>G variant decreases the expo-
sure of pravastatin (AUC, −68%) compared to 
wild-type controls secondary to a “gain of func-
tion” mutation.72 It remains unknown whether 
this decrease in exposure is due to enhanced pre-
systemic and/or hepatic clearance. Conversely, 
Mrp2-deficient rats have significantly diminished 
biliary clearance of pravastatin,71 and in vitro 
data suggest that BSEP may be an alternative 
mechanism by which pravastatin is cleared from 
the hepatocyte.171

Renal clearance is far less pronounced than 
biliary excretion. Most of the statin agents 
have minimal renal clearance (< 10%) after an 
orally administered dose,56,57,59,79,124,172 except for 
pravastatin in which 20% is renally cleared.62 The 
exposure of pravastatin acid is not impacted by 
diminished renal function; however, exposure of 
the 3-alpha-hydroxy-pravastatin metabolite was 
significantly increased (AUC, +48%) compared 
to that in subjects with normal renal function.173 

Halstenson et al173 suggest that this increased 
interconversion occurs secondary to decreased 
gastric pH, which is a direct result of kidney-
related metabolic changes. Hepatic conversion 
to 3-alpha-5-beta, 6-beta-trihydroxy isomeric 
metabolite occurs more frequently in severe renal 
impairment, suggesting that more pravastatin 
acid is cleared hepatically. Although renal im-
pairment does not appear to alter the exposure 
of pravastatin acid, the impact of both metabo-
lites on statin disposition and response require 
further investigation. In vitro, pravastatin is a 
substrate of organic anion transporter 3 (OAT3), 
a transporter located on basolateral membrane 
of the proximal tubule, and it is responsible for 
its uptake in the kidney.174,175 In vitro, gemfibrozil 
inhibits pravastatin uptake in OAT3-expressing 
cells.176 In vivo, coadministration of pravastatin 
and gemfibrozil lead to an increase in pravastatin 
exposure (AUC, +202%) and decreased renal 
clearance (−40%).131 This 40% reduction in renal 
clearance does not solely explain the increase 
in pravastatin exposure, but it could serve as a 
contribution to pravastatin disposition. Further 
investigation by Nishizato et al136 found that 
several OAT3 single-nucleotide polymorphisms 
did not affect pravastatin pharmacokinetics.136 
However, the single-nucleotide polymorphisms 
included in this analysis have not been associated 
with decreased transporter function. Overall, 
patients with renal impairment do not require 
dose adjustments, but the impact of renal clear-
ance with pravastatin administration requires 
further elucidation.

Given the current state of our knowledge 
of the disposition pathways for the available 
statins (most of which mature prior to adoles-
cence) and the relative absence of data on the 
ontogeny of transporter expression which could 
influence recommendations for statin dosage 
in children, considerations for the selection of 
statin agents in the pediatric population will 
largely reflect the same considerations used with 
adult patients. To maximize the dose-exposure 
profile, considerations include whether the 
patient is receiving gastric acid-modifying 
therapy and whether greater adherence is an-
ticipated to a regimen that requires medication 
administration with or without meals. To influ-
ence the exposure-response profile, one should 
consider the genetic constitution of the patient, 
the concurrent administration of drugs that 
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compete as substrates for transport pathways, 
and comorbidities that may alter circulating 
protein stores of the presence of protein-binding 
displacers in the circulation. Future studies on 
the pharmacokinetics of statins in the pediatric 
population, and an expansion of our knowledge 
on the developmental patterns of transport 
expression, will permit clinicians to further in-
dividualize the selection and dosage of statins 
in this population.

FUTURE CONSIDERATIONS

Owing to their pleiotropic effects, the statins 
have been extensively evaluated for non-
hyperlipidemic conditions, a few of which are 
detailed in Table 7, and many of which can impact 
children. For example, patients with sickle cell 
disease can develop oxidative stress and chronic 
inflammation to their distal vasculature as a re-
sult of transient vaso-occlusion and subsequent 

Table 7. Statin Studies Under Non-Hyperlipidemic Conditions

Condition Investigated Mechanism(s)

Autoimmune myocarditis181,182 Inhibit expression of inflammatory cytokines
Reduce infiltration of T cells
Improve myocardial repolarization

Cardiac allograft vasculopathy183-190 Improve prognosis post-transplant
Reduce expression of cell adhesion molecules
Reduce graft rejection
Reduce circulating monocytes
Improve survival

Cancer191-195 Stimulate antiproliferation
Promote apoptosis
Inhibit angiogenesis
Inhibit cell migration

Chronic kidney disease196-198 Decrease decline in GFR
Prevent contrast induced acute kidney injury
Decrease risk of stroke

Fracture injuries, bone healing, & osteoporosis199-204 Promote mesenchymal cell differentiation to osteoblasts
Protect osteoblasts from apoptosis
Reduce osteoclast activity and bone resorption

HIV205-211 Slow progression of vascular disease on ART
Improve flow-mediated vasodilation
Implement immunomodulation
Reduce all-cause mortality

Immunomodulation212-214 Inhibit interferon production
Decrease T cell activation

Infection215-218 Reduce risk of mortality from bacterial and viral infection

Lupus219-222 Reduce C-reactive protein
Reduce circulating chemokines
Improve endothelial function

Polycystic ovary syndrome223-225 Reduce markers of inflammation
Reduce androgenic steroid concentrations

Rheumatoid arthritis226-231 Reduce risk of mortality
Reduce joint pain/swelling
Reduce markers of inflammation

Rotator cuff injury232,233 Stimulate migration and adhesion of tenocytes
Protect against hyperlipidemia-associated RC injury

Sickle cell disease178,234-236 Reduce thrombin generation/lower circulating procoagulants 
Improve endothelial dysfunction

ART, antiretroviral therapy; GFR, glomerular filtration rate; HIV, human immunodeficiency virus; RC, rotator cuff
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reperfusion injury.177 Hoppe et al178 found that 
biomarkers of vascular dysfunction, including 
C-reactive protein and interleukin 6, were de-
creased in adolescents with sickle cell disease 
from 50% to 70% after a 3-week trial of low (20 
mg) or moderate (40 mg) doses of simvastatin.

Additionally, statins have been used after 
cardiac transplantation to prevent coronary al-
lograft vasculopathy (CAV). In pediatric cardiac 
transplantation, the prevalence of CAV has been 
reported to be as high as 17% in one retrospective 
analysis.179 Greater-than-optimal LDL concentra-
tions (>100 mg/dL) post transplantation have 
been reported in 39% of pediatric patients 1 year 
after transplantation,180 which can be secondary 
to post-transplantation steroid and immunosup-
pressive therapy. The addition of pravastatin 
therapy in pediatric cardiac transplant recipients 
yielded a lower incidence of CAV.179

Most of the remaining conditions for which 
statins have been explored exploit the anti-in-
flammatory and antiproliferative effects of these 
drugs (Table 7). Thus, it would not be unexpected 
to see statin coadministration in the presence of 
infections, fractures, and malignancies in chil-
dren. However, it should be appreciated that 
there are an equally large number of publica-
tions that refute a role for statins in these same 
conditions (Table 7). In the absence of sufficient 
prospective clinical trials to inform the role of 
these agents for indications other than hyperlip-
idemia, the practitioner must carefully weigh the 
risk-benefit ratio of these agents and thoughtfully 
examine the in vitro concentration-effect profiles 
to inform whether and at what dose these agents 
should be used in pediatric patients.

CONCLUSIONS

With precursors of CAD appearing in child-
hood, the establishment of pediatric preventive 
cardiology services is rapidly emerging. How-
ever, the most appropriate management of those 
children and adolescents, where lifestyle changes 
fail, remains challenging. Despite the overall suc-
cess of statins, variability in drug response in the 
pediatric cohort remains concerning. Although 
not discussed above, genes involved with drug 
response may contribute to some of the vari-
ability in LDL reduction among children and 

adults receiving statin therapy.237-241 However, 
it remains unknown whether a consistent statin 
concentration (i.e., exposure) at the drug target 
was achieved in these studies. Therefore, future 
investigations must be designed to characterize 
these dose-exposure relationships in the devel-
oping child so that exposure can be controlled 
when attempting to determine response in this 
population. Once the covariates that influence 
statin disposition in children are validated, 
future clinical trials will be better informed to 
fully characterize the entire dose-exposure-
response relationship. With these data, dosage 
will be optimized to maximize efficacy while 
minimizing toxicity in the individual pediatric 
patient. In the interim, understanding the statin 
disposition pathway will assist pediatric provid-
ers who make recommendations related to statin 
prescribing where alteration of drug delivery and 
dosage may be appropriately tailored to meet 
their specific patient needs.
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