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Abstract

The gradual loss of diversity and the establishment of clines in allele frequencies associated with 

range expansions are patterns observed in many species, including humans. These patterns can 

result from a series of founder events occurring as populations colonize previously unoccupied 

areas. We develop a model of an expanding population and, using a branching process 

approximation, show that spatial gradients reflect different amounts of genetic drift experienced by 

different subpopulations. We then use this model to measure the net average strength of the 

founder effect, and we demonstrate that the predictions from the branching process model fit 

simulation results well. We further show that estimates of the effective founder size are robust to 

potential confounding factors such as migration between subpopulations. We apply our method to 

data from Arabidopsis thaliana. We find that the average founder effect is approximately three 

times larger in the Americas than in Europe, possibly indicating that a more recent, rapid 

expansion occurred.
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A range expansion is the spread of a population from a geographically restricted region to a 

much larger region. Range expansions are a common occurrence in many species, and they 

happen on time scales that differ by several orders of magnitude; viruses and bacteria may 

spread across the globe in a few weeks (Brockmann and Helbing 2013), invasive species are 

able to colonize new habitats over decades (Davis 2009); and many species have dispersed 

into their current habitat over the last few millennia, following changes in environmental 

conditions (Taberlet et al. 1998; Hewitt 1999).

The population genetic theory of range expansion is based on two largely distinct types of 

models. The first type follows from the seminal papers of Fisher (1937) and Kolmogorov et 

al. (1937) and is often called the Fisher–Kolmogorov–Petrovskii–Piscounov (Fisher–KPP) 

model. These models describe the diffusive spread of alleles in continuous space, and they 

are analyzed with methods from statistical mechanics. The other type, called the serial 
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founder model, assumes a collection of discrete locations that can be colonized (Cann et al. 

1987; Austerlitz et al. 1997; Hewitt 1999; Ramachandran et al. 2005). This class of models 

is similar to the stepping stone models used in analyzing isolation by distance in equilibrium 

populations (Kimura 1964).

The Fisher–KPP model describes the change in allele frequency at a spatial location due to 

dispersal and fitness differences in a continuously distributed population. The model can be 

applied to range expansions by equating the advantageous allele with presence of a species, 

and the deleterious allele with its absence (see, e.g., Barton et al. 2013, for a recent review). 

The solution to the resulting partial differential equation has the form of a traveling wave 

and is similar in form to logistic growth. This model has been tested against data by 

Hallatschek et al. (2007), who compared growing colonies of E. coli to the predictions from 

the Fisher–KPP equation.

Some of the predictions of the Fisher–KPP model are inconsistent with observations of 

many macroscopic systems. In particular, the Fisher–KPP model predicts that local 

populations start with extremely small population sizes, which leads to strong genetic drift. 

In the experiments of Hallatschek et al. (2007), all local genetic variability was quickly 

eliminated, and no polymorphisms were shared between individuals sufficiently far from 

each other. This prediction does not fit what is seen in humans: An expansion of humans 

from Africa to Eurasia was suggested based on the topology of a mitochondrial-DNA tree 

(Cann et al. 1987). This finding has been replicated in numerous studies (Ramachandran et 

al. 2005; DeGiorgio et al. 2009; Henn et al. 2012), yet many genetic variants are shared by 

all human populations. The serial founder model does not lead to such extreme 

differentiation because the intensity of founder effect at each step is an independent 

parameter. Each group that founds a new population can be of any size and the pattern of 

population growth after founding can be adjusted arbitrarily. Austerlitz et al. (1997) and Ray 

et al. (2010) assumed logistic growth. DeGiorgio et al. (2011) and Slatkin and Excoffier 

(2012) assumed instantaneous growth after population founding.

A complete serial founder model, including selection, founder events, and migration 

between subpopulations, has so far been proven intractable. However, a recursion approach 

(Austerlitz et al. 1997) and simulations (Klopfstein et al. 2006; Burton and Travis 2008) 

have been successfully applied to investigate the behavior of the model. In addition to 

models that explicitly include spatial dependence, there are other approaches that make 

additional simplifications. Perhaps the simplest model of this kind is that of a demographic 

expansion without any spatial component. In this case, the expansion is fully described by a 

change in the rate of coalescence (Gravel et al. 2011; Li and Durbin 2011). This model is a 

good approximation for a range expansion when migration between subpopulations is very 

large. In that case, we would not expect the creation of any spatial structure.

A slightly more complicated model has been used to estimate the number of founder 

lineages of the population: If a new population is founded by colonists from a larger source 

population, the number of founders and the timing of the founding event can be estimated 

(Anderson and Slatkin 2007; Leblois and Slatkin 2007).
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A further step is the infinite-island approximation (Excoffier 2004). In this model, an 

originally small, panmictic population expands instantly into a metapopulation with a large 

number of identical subpopulations. In this model, inference of demographic parameters can 

be based on the mismatch distribution and the difference in coalescent time distribution 

between and within subpopulations. However, while this model distinguishes within-deme 

from between-deme variation, it assumes that all subpopulations are exchangeable, so that 

the geographic locations of the subpopulations do not matter.

Slightly more realistic are the models of DeGiorgio et al. (2011) and Slatkin and Excoffier 

(2012). DeGiorgio et al. (2011) derived coalescence time distributions under a serial founder 

model, assuming a small bottleneck at each founder event. In the model of Slatkin and 

Excoffier (2012), the expansion is modeled as a spatial analog of genetic drift, where each 

founder event corresponds to a generation in a standard Wright-Fisher model. Neither of 

these models has been used for inference. The most elaborate methods for inference under a 

range expansion are simulation based. Techniques such as approximate Bayesian 

computation (Beaumont et al. 2002) can be used (Itan et al. 2009). However, these 

approaches tend to lead to a “black box.” Simulation models are difficult to validate and they 

generally do not lead to an intuitive understanding of the process.

In this article, we develop a serial founder model of a range expansion. We then develop 

some intuition about how allele frequencies are expected to behave under this model. Next, 

we introduce a branching process approximation and show how the resulting model leads to 

a simple prediction about the model’s behavior that can be the basis for inferring the net 

strength of a founder effect. We test the model and the validity of our approximations using 

simulations, and we apply our method to an Arabidopsis thaliana (L.) Heynh. Single 

nucleotide polymorphism (SNP) data set (Horton et al. 2012).

Results

RANGE EXPANSION MODEL

During a range expansion, individuals who colonize previously uninhabited space are 

descendants of those living close to the expansion front (Klopfstein et al. 2006; Hallatschek 

et al. 2007). Furthermore, as the name “serial founder model” implies, the movement into a 

previously unoccupied area is accompanied by founder effects. The reduction in effective 

size at the expansion front results in an increase in the intensity of genetic drift. Allele 

frequencies at the expansion front will have a higher variance, and alleles are more likely to 

become fixed or lost. In other words, genetic drift is stronger at the expansion front than 

away from the front. It is this difference in that we are aiming to describe and use for 

inference.

A schematic of the model is given in Figure 1. In brief, we assume that the population starts 

from a single deme in a one-dimensional (1D) array of empty locations and evolves in 

discrete generations. Every generation, the population expands to occupy a previously 

vacant location. The new deme is colonized by the offspring of individuals in the most 

recently founded deme. We assume that the colonizing process results in a founder event that 

temporarily reduces the effective population size. During the same time step, all other demes 
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experience genetic drift at a rate determined by their effective population size, which is 

larger than the size of the colonizing group. At time step t, the deme at the expansion front 

will have experienced t founder events, whereas the population at the expansion origin will 

have experienced t generations of genetic drift. If we compare two populations r and s steps 

away from the origin at time t, (0 ≤ r < s ≤ t), the population at r will have experienced r 
founder events and t − r generations of genetic drift, and the population at s will have 

experienced s founder events and t − s generations of drift. Thus, the population at s will 

have experienced s − r more founder events and s − r fewer generations of genetic drift than 

the population at location r.

Thus, if the order of large-drift founder effects and small-drift generations does not matter, 

the amount of drift a deme experienced will increase linearly with the distance from the 

origin. As shown in the section Discrete Time Expansion Model in the Appendix, this is 

indeed a good approximation for our model. The slope of the curve of allele frequency 

versus geographic distance will depend on the difference in the number of founder events 

experienced. The stronger the founder effects during each colonization, the larger the slope.

One way to measure the difference in the net effect of drift is to use the directionality index 

we introduced previously (Peter and Slatkin 2013). The directionality index ψ(A, B) for two 

populations A and B is defined as

(1)

Here, fA, j is the derived allele frequency of SNP j in population A, and we sum only over 

SNPs that have at least one derived allele in both populations. In Peter and Slatkin (2013), 

we showed using simulations that ψ increases approximately linearly with distance from the 

origin of colonization. Therefore, ψ captures the signal described above. If more than two 

locations are sampled, we compute the matrix of ψ for all pairs of locations sampled.

OVERVIEW OF THEORETICAL RESULTS

In this section, we summarize the formal analysis needed to support the claims made above. 

The derivations are given in the Appendix. We start by defining two stochastic processes, 

{Xt} and { }, for t = 0, 1, 2, …. Xt and  describe the allele frequency in generation t at 

the expansion origin and the wave front, respectively (see Fig. 1). We are particularly 

interested in Zt =  − Xt|Xt > 0,  > 0 the difference in allele frequency between front and 

origin, conditioned on alleles being present in both populations. In the section section 

Discrete Time Expansion Model in the Appendix, we show that the expected difference in 

allele frequency is

(2)
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where f0 is the initial frequency of the allele in deme X0, and L(t) and  are the 

probabilities that an allele is lost by time t at the origin of the expansion and the wave front, 

respectively.

To make this result more explicit, we need to further specify {Xt} and { }. We assume that 

both processes evolve according to a branching process (Harris 1963) with mean one. 

Furthermore, let the offspring distributions of {Xt} and { } be F and , respectively. 

Making these assumptions, we show in the section Branching Process in the Appendix that 

equation 2 can be written as

(3)

In other words, we expect a linear increase in the difference in allele frequency with distance 

between samples, with the slope depending on the variances of the offspring distributions.

Because we assume that high-drift founder events occur at the expansion front, we expect it 

to have a higher offspring variance. Under a Cannings model (Ewens 2004), the effective 

size of a population is directly related to the offspring variance through the equation Ne = N/
Var(F), where Ne and N denote the effective size and census size, respectively. Similarly, we 

can define an effective founder size ke, the effective size of the founder event process at the 

wave front, to be ke = N/Var( ). Then, as shown in the section Effective Population Size in 

the Appendix, equation 2 can be written as

(4)

It is worth noting that in equation 4, only the ratio  enters the equation. In some cases, it 

might be possible to interpret Ne and ke directly. For example, if we think of a species 

colonizing a system of islands, Ne corresponds to the effective population size of that 

species on a given island and ke corresponds to the effective number of founders that 

colonized that island. In a continuously distributed population, however, subpopulations are 

not clearly defined. We would get a different  ratio for each choice of deme size. We can 

circumvent this problem either by arbitrarily choosing a deme size, and then presenting 

ke/Ne conditional on that deme size, or we can fix the founder effect size ke/Ne to a certain 

value (e.g., 0.99) and compare expansions using the distance over which that founder effect 

occurs (see the section Rescaling in the Appendix). The larger the distance, the weaker the 

founder effect. We may refer to a founder event that reduces the effective size at the front by 

n percent as a n%-founder effect, for example, a 1% founder effect has a ke/Ne ratio of 0.99.

Finally, in the section Estimation in the Appendix we show how we can estimate Zt from 

genetic data using ψ. As ψ is defined between pairs of populations, we can record the 
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distance between pairs of samples and ψ for all pairs of populations. These results suggest 

that we can estimate the net founder effect that characterizes the loss of genetic diversity 

with increasing distance from the expansion origin by using a simple linear regression on the 

frequencies of shared alleles with increasing distance between samples.

SIMULATIONS

We validate our analytical results by performing extensive simulations under two different 

models. The first is the forward-in-time stepping stone model described by Slatkin and 

Excoffier (2012). The second model is a backward-in-time stepping stone model, based on 

the Kingman coalescent (Wakeley 2009).

Forward simulations—We first consider the discrete-time Wright–Fisher model. In 

Figure 2, we give results for various initial allele frequencies f0, setting ke = 0.1N (first row), 

ke = 0.5N (middle row), and ke = 0.9N (bottom row). Using equation 4, we would predict Zt 

to be 4.5t, 0.5t, and t/18, respectively. Those predictions are given by the red lines; the points 

represent the simulated data. We find that we get better estimates when (1) the effective 

founder size is low, (2) the time after the expansion is short, and (3) the effective population 

size is high. In particular, we find that the allele frequency difference between demes far 

apart is smaller than expected when the founder effect is very strong. In that case, many 

alleles become fixed, and the difference between the Wright–Fisher and the branching 

process models becomes quite apparent.

In Figure 3, we investigate the effect of demes growing to their carrying capacity via logistic 

growth, as opposed to instantaneous growth that we assume in most other cases. Here, we 

can apply the result that under nonconstant founder population sizes, the effective founder 

size is simply the harmonic mean of all founder sizes, divided by the number of generations. 

In Figure 3, simulations were performed with a carrying capacity of 10,000, and each new 

colony was founded with an initial propagule of 500 individuals.

Backward simulations—We also performed backward-in-time simulations (1) to test the 

robustness of the branching process predictions to migration, (2) to test the effect of 

estimation from a subsample, and (3) to remove the initial allele frequency as an explicit 

parameter. Coalescent simulations were performed in a continuous-time model with discrete 

expansion events. In particular, most of the time lineages merge according to the standard 

structured coalescent. The only exceptions are the expansion events, which are represented 

by a single generation of a Wright–Fisher model, followed by moving all lineages in the 

newly colonized deme back to the founder deme (see Methods section for details). Thus, 

unlike the Kingman coalescent, this model allows for multiple mergers at the wave front. 

Under this model,

(5)

because the founder events result in an increase in the offspring variance by a factor of 

(2ke)−1. We estimate Zt using ψ defined in Peter and Slatkin (2013), which we justify in 
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the section Estimation in the Appendix. Results are displayed in Figure 4. First, we show 

samples taken immediately after the expansion reaches the boundary of the habitat (top 

row). Second, we explore the limiting behavior of a very old expansion with samples taken 

20N generations after the expansion finishes (bottom row). We find that recent expansions 

are detected easily, almost independently of the migration rate, and the simulated data 

closely follow the predictions from our approximate model. The bottom row shows how the 

signal deteriorates. We see different behaviors for high and low migration rates: in the low 

migration rate regime we do not have any power for inference, because lineages all coalesce 

within their demes before they have the opportunity to coalesce with lineages from other 

locations. The result is data sets in which there is almost no shared variation among 

populations. In that case, ψ is a poor summary statistic. For high migration rates (M = 100), 

we see a different decay pattern: The signal of expansion has almost vanished because 

migration has dispersed alleles almost evenly throughout the population. The result is that 

the signal of the range expansion is no longer apparent and the population approaches one in 

which there is isolation-by-distance at equilibrium.

Two-dimensional simulations—We also performed simulations on a two dimensional 

(2D) stepping stone model to investigate the robustness of our results in a 2D habitat. We 

simulated expansions both under a migrant pool model and a propagule pool model (Slatkin 

and Wade 1978). In a migrant pool model, all neighboring populations send migrants at 

equal rates to a newly colonized deme, whereas under the propagule pool model, one 

possible founder population is selected to send out a “propagule,” which colonizes the new 

deme. We find that if the sampling transect is parallel to the orientation of the stepping stone 

grid, then the choice of colonization model does not matter, and we obtain results similar to 

those from the 1D model. However, for a diagonal transect, the results differ between the 

two models: The propagule pool model again behaves similar to the 1D model, whereas the 

behavior of the migrant pool model is different (Fig. 5). The reason for this in the migrant 

pool model, there are many different pathways by which a deme can be colonized, and the 

number of pathways increases with distance from the origin. As a consequence, the amount 

of drift increases nonlinearly with increasing distance from the origin. In contrast, in the 

propagule pool model, only a single pathway is chosen. We also find that in the 2D model, 

the signal of the expansion disappears more quickly than in the 1D model if the migration 

rates are equal. In the 1D model at a migration rate of M = 1 the expansion is still detectable 

after 20N generations, but in the 2D model the population has almost reached equilibrium by 

that time.

APPLICATION TO A. THALIANA

Arabidopsis thaliana is a small, annual plant thought to be native to Europe and introduced 

to North America and elsewhere (Jorgensen and Mauricio 2004). The biogeography and 

population structure of A. thaliana has been well studied (Jorgensen and Mauricio 2004; 

Nordborg et al. 2005; Horton et al. 2012). Although the earliest studies showed relatively 

little population differentiation on a global scale, genome-wide genetic data show evidence 

of widespread genetic differentiation among populations (Nordborg et al. 2005; Horton et al. 

2012). Based on a principal component analysis (PCA) analysis (Fig. 6a), we defined five 
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regions for further examination: Scandinavia, Americas, and Western, Central and Eastern 

Europe.

In the Americas (Fig. 6c), we find a most likely origin of introduction is the Great Lakes 

region, not the east coast. But as we only have one sampling location on the east coast, 

support for this conclusion is weak. An additional problem is that, as we showed in our 

previous paper (Peter and Slatkin 2013), using ψ to infer an origin leads to biased results 

when the true origin is at the boundary of the habitat.

Scandinavia (green dots in Fig. 6 a, c) shows the most diversity within a region according to 

the PCA plot and the second highest founder effect size. The most differentiated samples, 

shown in the bottom left of Figure 6, are from Northern Sweden and Finland, whereas 

samples that cluster with the Central and Eastern European Accessions are predominately 

found in southern Sweden. We find evidence of immigration from the east, with the most 

likely origin of the Scandinavian accessions lying in Finland. Based on the PCA analysis, we 

might expect the accessions from southern Sweden to show evidence of a range expansion 

from the south, and that is indeed the case when we consider only these southern samples.

If we analyze these southern Scandinavian samples together with the samples from Austria, 

the Czech Republic, Russia, Lithuania, and Tajikistan (Fig. 6d, pink and brown dots in the 

PCA), we find evidence of an expansion out of eastern Asia, possibly from a refugium close 

to the Caspian Sea. For the Central European samples, we find an origin close to the border 

between Austria and Italy. This is likely a proxy for a refugium in either southern Italy or the 

Balkan region, as the inferred origin was covered by an ice sheet during the last glacial 

maximum. Finally, for the western European samples we find the weakest founder effect in 

the regions we analyzed, with a 1% founder effect at a scale of 38.6 km, almost an order of 

magnitude weaker than the strongest founder effect we inferred in the Americas. This 

difference may, however, be partly due to the aggregation of the British and continental 

samples. If we analyze only the French, Spanish, and Portuguese samples (excluding the 

British samples), we find a founder effect of 18.7, comparable to what we found for the 

other continental European regions. In contrast, if we analyze the British samples separately, 

we estimate an 1% decrease to occur over 47.8 km, and the slope in allele frequency is in 

fact not significantly different from isolation-by-distance at equilibrium.

Discussion

In this article, we study range expansions using a serial founder model to develop a method 

for inferring the net effect of founder events during a range expansion. A linear or 

approximately linear decline of genetic diversity with distance has been observed previously 

in humans (Ramachandran et al. 2005; DeGiorgio et al. 2009) and in simulations (DeGiorgio 

et al. 2009; Peter and Slatkin 2013). In previous work, we showed in simulations that the 

directionality index ψ, defined in equation 1, increases approximately linearly with distance 

from the origin of the range expansion (Peter and Slatkin 2013). In this article, we connect 

these empirical observations with a theoretical model that explains this decay in terms of 

differences in variance in the number of offspring per family. In populations with a higher 

offspring variance, the population’s effective size becomes smaller.
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Although branching processes have a long history in population genetics (Ewens 2004), they 

differ from other commonly used models such as the Wright-Fisher model and the Kingman 

coalescent in that the total number of individuals in the population is not constant (or 

following a predetermined series of population sizes). Instead, only the expected number of 

individuals is constant, leading to different population dynamics. For example, a neutral 

branching process will eventually die out almost surely, something that cannot happen under 

the Wright–Fisher model. Therefore, the results presented here are valid only for parameters 

for which the branching process model provides a good approximation. Our approximation 

breaks down if there are only few shared variants between populations. However, in this 

case, phylogeographic methods are more appropriate than population-genetic ones. 

Otherwise, the branching process approximation appears to be useful as long as many 

variants have a most recent common ancestor during the expansion or before the expansion 

started. If that is not the case, as in the large-migration-rate simulations sampled 20N 
generations after the expansion finished as shown in Figure 4, we find that ψ will be very 

close to zero, because the signal of the expansion vanishes as time increases. Another 

parameter region where our approximation breaks down is when the mean allele frequencies 

become large (Fig. 2). In that case, allele frequencies stop increasing under the Wright–

Fisher model as alleles become fixed. In the branching process model, allele frequencies 

continue to increase.

The effective founder size ke defined here is a variance effective size. The expected allele 

frequency difference Zt is largely independent of the expansion speed, conditional on ke. 

The reason is that, even though more segregating variants will be lost during a more rapid 

expansion, the difference between the expansion front and the rest of the population remains 

the same. Similarly, we find that Zt is independent of the exact sampling time; waiting after 

the expansion finishes will add the same amount of genetic drift in both populations. But as 

long as shared alleles are maintained, we will be able to detect the signal of the expansion if 

the migration rate is low. Our simulations showed that strong migration will return a 

population quickly to isolation-by-distance equilibrium.

Our main result summarized the genetic effect of a range expansion in terms of the net 

founder effect per unit distance. Although we are not able to separately determine the extent 

of genetic drift per founder event, we capture the combined effect when there is expansion 

into a large geographic area. If dispersal distances can be determined by some other means, 

then we can estimate how much smaller the founder size is than Ne.

The analysis of the A. thaliana data shows both the utility and some of the limitations of our 

approach. We are able to identify expansion origins and infer the strength of the founder 

effect from genetic data. In the A. thaliana data set, we find that the founder effect is much 

stronger in the Americas than in continental Europe. It would be interesting to find out if the 

same pattern is found for other introduced or invasive species. In Europe, our results are 

consistent with previous analyses by Nordborg et al. (2005) and Franois et al. (2008). 

Nordborg et al. (2005) found that Arabidopsis likely colonized Scandinavia both from the 

east, through Finland, and from the south. We similarly infer an eastern Scandinavian origin 

when analyzing all samples, and a southern origin when considering only the samples from 

southern Sweden or if we jointly analyze them with eastern European samples. Overall, we 
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identify a likely ice-age refugium close to the Pyrenees in southern France or eastern Spain, 

a likely refugium near the Caspian sea and a refugium in central southern Europe, either in 

the Balkans or Italy. Denser sampling would be required to obtain a more accurate picture. 

In the Americas, we find that Arabidopsis experienced very strong founder effects, and we 

identify a most likely point of introduction on east coast.

Methods

FORWARD WF-SIMULATIONS

Forward simulations were performed using a simulator implemented in R. Simulations were 

started with a fixed initial frequency f0 and allowed to evolve for a fixed number of 

generations. Every t − 1 generations, colonists from the rightmost deme founded a new 

population, first with a single Wright–Fisher generation of size ke and then of size N 
afterwards. All demes except the newly founded one underwent t generations of random 

mating at the same time. Thus, after gt generations, g demes have been colonized. Zt was 

estimated from 106 replicate alleles. We also assumed logistic instead of instantaneous 

population growth (see Fig. 3).

BACKWARD SIMULATIONS

Backward-in-time simulations were performed under a structured coalescent model 

(Wakeley 2009) with migration and colonization. Migration is included in the structured 

coalescent by allowing lineages to move between neighboring subpopulations. Modeling 

colonization with a founder effect requires more care. Going forward in time, we want to 

first take a subsample of the most recent colonized population and let the resulting propagule 

establish the new deme. To simulate this process going backwards in time, we need to 

perform these steps in reverse order. We take all lineages from the most recently colonized 

deme and model the founder event by allowing additional coalescences. The founder event 

reduces the number of lineages according to the backwards transition probably of the 

Wright–Fisher model (Wakeley 2009, p. 62):

(6)

where ke is the effective founder size, Qt is the number of lineages at time t, (time measured 

backwards),  is the Stirling number of the second kind, and N[j] is the jth falling factorial. 

If the number of lineages is reduced, we choose lineages to coalesce with equal probability. 

Then, the colonization step is modeled by moving all remaining lineages to a neighboring 

colonized deme. To compare predictions of this model to predictions from the branching 

process model, we have to consider the excess variance in offspring distribution resulting 

from these expansion events, which is , such that for this coalescent model
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(7)

Thus, the smaller the effective founder size ke, the larger the allele frequency gradient will 

be. 1D and 2D simulations were performed using the same simulator. For 1D simulations, 

we simulated a population consisting of 141 demes, with the expansion starting in the center. 

A total of 11 samples of size n lineages were taken distances of 0, 5, 10, …, 50 from the 

origin.

For the 2D simulations, we sampled both a diagonal and horizontal transects. The horizontal 

transect, parallel to the demic structure, had length 30. The diagonal transect, where demes 

were colonized every  time units, had length , so that demes on both transect are 

colonized in approximately the same time.

Application—The data set of Horton et al. (2012), along with the coordinates for the 

accessions, was downloaded from the project’s website at http://bergelson.uchicago.edu/

regmap-data/. Genotypes of the sister species Arabidopsis lyrata kindly provided by 

Matthew Horton were used to determine the ancestral state for each SNP. SNPs for which 

we could not unambiguously determine the ancestral state, either because no homolog A. 
lyrata allele was found or the allele of A. lyrata was not present in A. thaliana, were 

removed. Similarly, we removed all individuals for which we did not have sampling 

coordinates. Because A. thaliana is a selfing plant and highly inbred accessions were 

sequenced, we had only a haploid genotype per individual. Because our methodology 

requires at least two sampled haplotypes, we restricted our analysis to locations with at least 

two accessions sampled. In addition, selfing may lead to closely related individuals. If only 

closely related individuals were sampled, our results might be biased because we had 

underestimated the effective population size of that sample. Therefore, we removed seven 

locations (all of which had only two samples) where the plants differed at less than 1.5% of 

sites (average heterozygosity of all locations was 7.1%, with a standard deviation of 3.2%). 

This resulted in a total of 149 locations with at least two samples, representing 855 

individuals, with 121,412 SNPs genotypes remaining. As a single, uniform expansion 

throughout Europe seems rather unlikely, we performed a PCA analysis to find the main 

axes of population differentiation (Fig. 6a). The resulting pattern divided the samples 

broadly into five different groups, and we analyzed data from these groups separately. These 

groups are as follows: Americas (black), Western Europe (blue), Central Europe (red), 

Eastern Europe (brown), and Scandinavia (green). For each group, we inferred the origin of 

the range expansion using equation 5 of Peter and Slatkin (2013). For visualization, we 

evaluated this equation on a grid (with locations not falling on land excluded) and estimated 

the best fit for the slope parameter (v) using linear regression, with the location with the 

highest r2 corresponding to the least-squares estimate of the origin of the expansion (Fig. 6 

b–f).

The expected value of ψ depends on the ratio of the effective founder size ke to the effective 

population size Ne and the number of demes that the population colonized. The number of 

Peter and Slatkin Page 11

Evolution. Author manuscript; available in PMC 2016 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bergelson.uchicago.edu/regmap-data/
http://bergelson.uchicago.edu/regmap-data/


demes is relevant, because if we divide the population into more demes, it will undergo more 

but weaker founder effects over the same physical distance. Conversely, if we assume that 

demes are large, then there are fewer founder events but each one is stronger. Using the 

model developed in this article, we cannot distinguish between these possibilities without 

additional information. If, however, the mean dispersal distance and local population 

densities were known, we could estimate ke relative to the neighborhood size. Alternatively, 

if the dispersal distance is unknown, we may fix the ratio r = ke/Ne to an arbitrary constant, 

and instead report the required distance xe over which the effective founder size is ke. This 

has the advantage that the resulting quantity does not require any assumptions about the 

demic structure of the population; the larger xe, the weaker the founder effect of the 

population. For illustration purposes, we calculate the ratio ke/Ne for deme sizes of 1, 10, 

and 100 km, as well as xe for all groups and report them in Table 1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Derivation of main results

DISCRETE TIME EXPANSION MODEL

We model a range expansion in a 1D habitat with potential deme positions 0, 1, 2, … labeled 

di, i = 0, 1, …. All but deme d0 are empty at the start of the process. We denote the 

frequency of the derived allele of a biallelic marker in deme di at time t as fi(t), and we 

assume that f0(0) = f0, where f0 is some constant. The population behaves as a Markov 

process, so that the allele frequencies at time t depend only on frequencies at t − 1. Each 

time step, genetic drift will change allele frequencies according to some probability 

distribution. In addition, deme dt will become colonized by the offspring of individuals 

present at time t − 1 in deme dt−1 according to some other probability distribution. We 

assume there is no migration between demes.

Let {Xt} = { f0(0), f0(1), … f0(t)} and { } = { f0(0), f1(1), … ft(t)} be stochastic processes 

describing evolution away from the wave front and at the wave front, respectively. Because 

we disallow migration, {Xt} and { } are independent conditional on f0. The allele 

frequency of the demes di, 0 < i < t is described by the processes { } = { f0(0), f1(1), … 

fi(i), fi(i + 1) … fi(t)}. In words, demes are colonized when the wave front first reaches 

them, and the subsequent evolution depends only on the allele frequencies at the time when 

they are colonized. From this construction, it follows that for i < j, { } and { } are 

conditionally independent given fi(i). Together with the Markov property, this implies that 

the difference in allele frequency in two demes is a function of distance, that is, they obey
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(A1)

Throughout this section, we assume that Xt|X0 = f0 is constant, which is satisfied if there 

are no new mutations and no selection, and we further assume that Var(Xt) < ∞. For 

example, for the critical branching process model we introduce in the following section 

Var(Xt) = σt, where σ is the offspring variance in one generation. Then, the autocovariance 

for s < t is,

(A2)

and similarly for , because {Xt}, { } are martingales.

Next, we define the conditioned processes {Yt} = {Xt|Xt > 0} and , 

which describes the evolution of allele frequencies conditional on the alleles not being lost.

Then, we have

(A3)

because

(A4)

Here, L(t) = (Xt = 0) denotes the probability that an allele is at frequency zero in generation 

t, and we remove the dependency of L(t) from f0 for notational convenience.

Using the conditional variance formula, we can compute the variance and autocovariance of 

{Yt}:

(A5)

(A6)

and covariance for s < t
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(A7)

(A8)

(A9)

(A10)

The last quantity of interest is the difference Zt = Yt − , which gives the difference in 

allele frequency between the wave-front and the origin of the expansion, conditional on an 

allele surviving in both locations. We find that

(A11)

(A12)

(A13)

and

(A14)

(A15)
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BRANCHING PROCESS

To further specify the moments derived in the previous section Discrete Time Expansion 
Model in the Appendix, we need to define Var(Xs), L(s), and f0, and the corresponding 

quantities at the wave front. Under a critical Galton–Watson branching process, individuals 

produce offspring independent from each other according to some offspring distribution F 
with mean one. Let Li(t) denote the probability that an allele has been lost by generation t, 
given that it started with i copies in generation 0. Kolmogorov (1938) showed that when t is 

large, L1 is well approximated by

(A16)

where F is the offspring distribution and Var(F) is assumed to be finite. We assume that a 

branching process with offspring distribution F describes neutral genetic drift away from the 

wave front, and that the colonization of new demes occurs according to a branching process 

with offspring distribution 

If the initial frequency f0 of the allele is greater than one, the corresponding expression 

becomes

(A17)

by independence of individuals. Using a Taylor expansion around t = ∞ yields

(A18)

(A19)

Thus, we find that the expected difference in allele frequency between the expansion origin 

and the front of the population increases approximately linear with distance, the slope of the 

curve being the difference in offspring variance of individuals at the wave front and 

expansion origin. From the second term in the Taylor expansion, we see that the 

approximation is suitable when t > , that is, the number of demes between the two samples 

is large, and the frequency of the allele at the founding location is small.

EFFECTIVE POPULATION SIZE

The variance effective population size for a Cannings model is defined as
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(A20)

where N is the absolute number of individuals per population. The branching process 

considered above is not a Cannings model; however, the evolution of the offspring of a 

single individual under a Cannings population is well approximated by a branching process. 

Fisher (1930) pioneered the modeling of population genetics using branching processes 

(Ewens 2004, p. 29). Under a Wright–Fisher model, the offspring distribution of a single 

individual has mean and variance very close to one. This allowed Fisher to approximate the 

evolution of an individual under the Wright–Fisher model as evolving according to a 

branching process with a Poisson(1) offspring distribution, which has offspring variance 1, a 

model we will also use here to model genetic drift away from the wave front.

To incorporate the reduced effective size of a founder effect at the wave front, we use a 

modified offspring model: with probability (1 − α), an individual at the wave front does not 

produce any offspring. With probability α, the number of offspring is Poisson distributed 

with parameter 1/α s.t. the overall expected number of offspring is still one and the variance 

is Var( ) = α−1. This allows us to define an effective founder size ke

(A21)

which measures the “increase” in genetic drift at the wave front.

Combining eq. A21 and eq. A19 yields

(A22)

From this, we see immediately that Zt = 0 if Ne = ke, and also that the effective founder 

size enters the equation only in the ratio , so that it makes sense to further define the 

relative founder size κ, which measures the strength of the founder effect.

RESCALING

The branching processes we used above assume that exactly one generation of genetic drift 

happens between each founder event. In this section, we show that the expected allele 

frequency difference between the expansion front and at the origin is invariant to additional 

generations between expansion events and to additional generations after the expansion 

finished.

Both of these results follow from the fact that for a branching process with mean one, the 

variances of subsequent generations can simply be added: Consider a nonhomogeneous 
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critical branching process {Bt} and let us denote the generating function of the distribution 

of Bt with pt(s). Then, the variance of Bt is pt(1)″. Then, the generating function of Bt+1 is 

q(pt(s)), where q(s) is the generating function of the offspring distribution of that last 

generation. The variance in offspring after this additional generation is q(pt(1))″.

(A23)

because  (1) = pt(1) = q(1) = q′ (1) = 1.

Thus, if individuals in the range expansion model have offspring variance v at the expansion 

front and variance  away from the front, the total variance after t time steps with d 
expansion events is (t − d)v + .

Now from equation A19 we have (for f0 = 1),

(A24)

Adding T generations with neutral drift between each founder event and τ generations after 

the expansion stopped, changes this only to

which simplifies to eq. A19.

We can generalize our model to relax our assumptions about population growth, for example 

by allowing for an extended bottleneck or logistic growth. Again, this will result in an 

increase in Var(Xd) and Var( ) by the same amount, which cancels in the difference.

Furthermore, we can also change how we subdivide a population into demes. It is easy to see 

that a population with expansions at times 0, 1, 2, … and offspring variances Var(F) and 

Var( ) behaves similarly to a population with expansions occurring at times 0, δt, 2δt, … 

with offspring variances  and  in the sense that Zt will be the same for 

either population. Consequently, how we subdivide space into demes is not important, only 

the ratio of the founder size to the population size matters.

ESTIMATION

To estimate Zt from genetic data, we need to take subsampling into account, that is, we 

need to estimate . In particular, the probability that an allele is lost from the 
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population (which we condition on in Zt) is not the same as it being absent from a sample 

(which we may observe in data). To model subsampling, we assume that the process starts 

with f0 copies of the derived allele and A0 copies of the ancestral allele, all evolving as 

independent branching processes. The expected number of ancestral alleles will be At = A0 

in all generations, whereas the expected number of the derived allele, conditioned on it not 

being lost, is Yt. Hence, in generation t, the probability of drawing m copies of the derived 

allele out of n is approximately binomially distributed with parameters n and . The 

mean of the expected allele frequency, conditional of sampling at least one derived allele, is

(A25)

with the  term normalizing  to allele counts. Setting A0 ≈ 2N − Yt, we obtain the 

series representation

(A26)

Hence,

(A27)

and we see that we have a bias term that increases with sample size. Hence, the easiest way 

to proceed is to down-sample larger samples to a sample size of two, the case that is 

probably the most important for the analysis of genomic data.

To compare samples of size n1 and n2, recall that the 2D-site frequency spectrum is the n1 

+ 1 × n2 + 1-matrix S whose entries fi j represent the number of polymorphisms that are at 

frequency i in one population and at frequency j in the other (0 ≤ i ≤ n1, 0 ≤ j ≤ n2). We can 

calculate a reduced site frequency spectrum matrix S′ from the full site frequency spectrum 

using

(A28)

where P1 and P2 are (2 + 1) × (n1 + 1) and (2 + 1) × (n2 + 1) matrices (with indices starting 

at 0), respectively, with entries
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(A29)

for 0 ≤ i ≤ n1 and 0 ≤ j ≤ 2 for P1. Entries in P2, are similar, except n1 is replaced by n2.

If we denote the entries of S′ with si j, we can write  as

(A30)

This statistic is identical to the statistic defined in Peter and Slatkin (2013), where we did not 

give any theoretical justification.
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Figure 1. 
Schematic of the expansion models studied. Each square corresponds to a subpopulation, 

with gray borders indicating subpopulations not colonized at a time step. Each time step, a 

new deme is colonized (black, dashed arrows), and other demes undergo neutral genetic drift 

(gray arrows). We compare the allele frequencies {Xt} at the expansion origin d0 (dashed 

borders) with the allele frequencies { } at the expansion front (shaded backgrounds).
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Figure 2. 
Forward simulations. Expected (red line) and simulated (black circles, dark gray triangles, 

light gray crosses) allele frequency differences between deme t and the a sample from the 

origin. Circles, triangles, and crosses correspond to samples taken 0, 100, and 500 

generations after the expansion reached the final deme 100. f0, initial allele frequency; k, 

effective founder size; N, effective deme size. Distance is measured in demes. Other 

parameters are time between expansion events: t = 2 and migration rate m = 0.
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Figure 3. 
Comparison between WF-simulations and predictions from the branching process model 

under a logistic growth model. Growth rates were set to 1 (panel a) and 0.5 (panel b), 

respectively. Lines correspond to 1–10 generations of logistic growth per expansion step 

(from bottom to top). Dots correspond to the simulated data, and the dashed lines are the 

analytical predictions using the harmonic mean of the population sizes. Samples were taken 

immediately after the expansion finished.
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Figure 4. 
Effect of migration rate and subsampling. Each set of points corresponds to ψ estimated 

from simulations under a specific ke value; ke varies from 100 to 500 in increments of 100 

(top to bottom: circles/triangles/plus signs/crosses/diamonds, blue to green). Gray dashed 

lines give the expectation from the branching process model. Top row: data sampled 

immediately after the expansion finished. Bottom row: data sampled a very long time (20 Ne 

generations) after the expansion finished. Other parameters are as follows: sample size n = 

10, time between expansion events te = 0.0001Ne generations.
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Figure 5. 
2D model simulations. Each set of points corresponds to ψ estimated from simulations 

under a specific ke value; ke varies from 100 to 500 in increments of 100 (top to bottom: 

circles/triangles/plus signs/crosses/diamonds, blue to green). Gray dashed lines give the 

expectation from the branching process model in one dimension.
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Figure 6. 
Results for A. thaliana data set. Panel (a): PCA analysis of the 121,412 SNPs. Colors: green, 

Scandinavia; black, Americas; blue, UK; cyan, France; light blue, Spain and Portugal; red, 

North-Western Europe; orange, Switzerland and Italy; pink, Central Europe; brown, Russia, 

Lithuania, and Western Asia. Panels (b–f): Expansion for Scandinavia, United States, 

Central Europe, Western Europe, and Eastern Europe/Asia, respectively. Brighter yellow 

regions indicate more likely origin of expansion. Red and gray regions indicate unlikely 

origin.
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Table 1

Analysis of A. thaliana data.

Region Longitude Latitude q r 1 r 10 r 100 x e r 2 p

Scandinavia 24.16 60.32 0.00065 0.99869 0.9871 0.884 7.75 0.252 4.2×1055

United States −78.63 44.22 0.00118 0.99763 0.9768 0.808 4.26 0.242 6.8×1006

Central Europe 11.40 46.84 0.00035 0.99928 0.9928 0.932 14.05 0.171 8.3×1021

Western Europe 2.47 43.33 0.00013 0.99973 0.9973 0.974 38.60 0.264 4.7×1050

Eastern range 48.29 46.92 0.00028 0.99943 0.9943 0.946 17.80 0.115 3.6×1022

Notes: The table shows the inferred latitude and longitude of the origin. q, regression slope in km−1; ri , ke/Ne, for demes of size ikm; di, distance 

(in km) over which 1 − ke/Ne = 1%; r2 and p, adjusted coefficient of determination and Bonferroni-corrected P-value.
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