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Abstract

Insects that feed by ingesting plant and animal fluids cause devastating damage to humans,
livestock, and agriculture worldwide, primarily by transmitting pathogens of plants and ani-
mals. The feeding processes required for successful pathogen transmission by sucking
insects can be recorded by monitoring voltage changes across an insect-food source feed-
ing circuit. The output from such monitoring has traditionally been examined manually, a
slow and onerous process. We taught a computer program to automatically classify previ-
ously described insect feeding patterns involved in transmission of the pathogen causing cit-
rus greening disease. We also show how such analysis contributes to discovery of
previously unrecognized feeding states and can be used to characterize plant resistance
mechanisms. This advance greatly reduces the time and effort required to analyze insect
feeding, and should facilitate developing, screening, and testing of novel intervention strate-
gies to disrupt pathogen transmission affecting agriculture, livestock and human health.

Author Summary

Insect vectors acquire and transmit pathogens causing infectious diseases through probing
on host tissues and ingesting host fluids. By connecting insects and their food source via
an electrical circuit, computers, using machine learning algorithms, can learn to recognize
insect feeding patterns involved in pathogen transmission. In addition, these machine
learning algorithms can show us novel patterns of insect feeding and uncover mechanisms
that lead to disruption of pathogen transmission. While we use these techniques to help
save the citrus industry from a major decline due to an insect-transmitted bacterial patho-
gen, such intelligent monitoring of insect vector feeding will engender advances in disrupt-
ing transmission of pathogens causing disease in agriculture, livestock, and human health.
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Introduction

The invention of an electronic method for monitoring the feeding behavior of sucking insects
[1-4] provided a potentially powerful tool to describe the cryptic behavior of the mouthparts
of fluid-feeding phytophagous insects inside a host plant (Fig 1). Coupled with histological
studies to correlate specific waveforms with the mouthparts’ position within the host [5, 6],
electronic monitoring allows researchers to follow the sequence of events that lead to ingestion
and, in the case of insect vectors, to acquisition and transmission of pathogens. The method,
variously referred to as electronic feeding monitor or electrical penetration graph (EPG), has
been applied to various studies of host plant resistance and pathogen transmission [6-12]. It
has also been used to characterize feeding by blood-feeding mosquitoes and ticks [11, 13, 14].

A major constraint to the utility of the method is the amount of time required to interpret
the waveforms produced. Currently, a trained human observer is required to characterize each
waveform and assign the corresponding feeding state on a second-by-second basis. During a
typical experiment, EPG recordings generate gigabytes of data. Classification of these data into
insect feeding states corresponding to intercellular passage, cell sampling, salivation, phloem
ingestion, xylem ingestion and other activities associated with feeding or pathogen transmis-
sion is typically accomplished by comparison to published standards [6]. Computer

Fig 1. Electrical penetration graph recordings of insect feeding. To monitor insect feeding within a food source, the insect is tethered to a gold wire
and attached to an electrode. For our purposes, we investigated feeding of the Asian citrus psyllid, a hemipteran vector of the pathogen causing citrus
greening disease. A second electrode is placed in the moist soil at the base of the plant (citrus). As the insect feeds, the monitor records voltage changes
across the insect-plant circuit. Different feeding states produce characteristic voltage patterns that can be interpreted by machine learning algorithms
more efficiently than by humans.

doi:10.1371/journal.pchi.1005158.9001

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005158 November 10, 2016 2/14



®'PLOS

COMPUTATIONAL

BIOLOGY

Machine Learning of Insect Vector Feeding

classification methods based on motif recognition have been devised, but suffer from low accu-
racy [15]. Most analysis currently requires expert training and manual annotation that pre-
clude high-throughput analysis. This onerous and time-consuming process is a major
limitation to the broader and more in-depth application of this otherwise useful technique.

We focused on removing the data analysis bottleneck through application of machine learn-
ing algorithms designed to teach a computer program to recognize and learn from insect feed-
ing states with little or no human input [16]. To do so, we relied on EPG recordings from an
insect-plant-pathogen model system where automated processing and analysis of insect feed-
ing data could have an immediate and measurable impact on development of effective inter-
vention strategies through screening of plant varieties resistant to pathogen transmission. In
this system, the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae) transmits the
phloem-limited and persistently propagated bacterium Candidatus Liberabacter asiaticus
(CLas), implicated as the causative agent of citrus greening disease [17-19]. Citrus trees
infected with this pathogen rapidly develop debilitating symptoms affecting tree health and
fruit quality; the pathogen kills the tree within three to five years [20].

Since the first report of this pathogen in Florida in 2005, this vector-pathogen complex has
devastated the United States citrus industry. The Florida citrus industry alone has seen five
years of unprecedented decline resulting in billions of dollars of lost revenue and jobs [21]. In
2015, the U.S. Department of Agriculture predicted a precipitous drop in citrus production in
2016 to 69 million boxes in Florida, well below a peak of 242 million boxes as recently as 2004
[22]. All citrus varieties are susceptible to CLas. Citrus production in Florida including fresh
fruit and juice is facing a complete collapse if significant progress is not achieved soon [23].

Management of this pathogen-insect vector complex has been extremely challenging. Inten-
sive pesticide management has done little to halt the spread [24] and currently it is believed
that 100% percent of Florida citrus groves are infected with the disease [25]. Critical to revers-
ing the spread of this pathogen and recovering productivity of Florida citrus groves is develop-
ment of pathogen transmission intervention strategies such as development of resistant citrus
genotypes that prevent or reduce insect feeding [26].

Here we use random forests, hidden markov models, and heirarchical cluster analysis to
reduce the time required to analyze EPG data. In addition, these analyses point to the presence
of additional undescribed feeding states suggesting that the behavior of psyllid stylets within
the host plant is more complex than has been recognized.

Results
Teaching the Computer to Recognize Insect Feeding Waveforms

To evaluate such pathogen transmission intervention strategies, we first sought to remove the
data analysis bottleneck present in the current paradigm for monitoring feeding of insects
using EPG recordings. To do so, we taught the computer to recognize insect feeding states
using pattern recognition algorithms. Specifically, we developed high-throughput automated
classification of insect feeding states using supervised classification of Fourier-transformed raw
EPG data with random forests models. Random forests models are an ensemble machine learn-
ing method that relies on bootstrap aggregation of decision trees [27]. These models have been
successfully applied for diverse classification tasks including land cover classification and 3D
facial recognition [28, 29].

The computer learned to recognize patterns of insect feeding remarkably well. Overall clas-
sification accuracy of random forests models trained on the six human recognized feeding
states (Table 1) can reach 97.4+£0.1% (95% CI) when compared with human expert annotation
(Fig 2; confusion matrix and accuracy statistics in S1, S2 and S3 Tables). Accuracy improved,
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Table 1. Psyllid Feeding States. Six recognized feeding states of the Asian citrus psyllid and associated
activities as verified from histological studies [6]. Feeding states E1 and E2, phloem salivation and ingestion,
are when transmission of the pathogen causing citrus greening disease can occur in this system. Represen-
tative samples of EPG recordings from these feeding states can be found in S3 and S4 Figs.

Insect Feeding State Activity
C Stylet passage through plant cells
D Contact with Phloem Tissue
E1 Phloem Salivation
E2 Phloem Ingestion
G Xylem Ingestion
NP Non-Probing

doi:10.1371/journal.pchi.1005158.t001

and can reach close to 100%, when these models are simply asked to identify phloem feeding.
Phloem feeding was our primary interest in this case because ingestion and salivation in
phloem sieve elements are when pathogen acquisition and inoculation of CLas are presumed
to occur (Fig 3). Importantly, these supervised classification algorithms achieved high accuracy
when trained on a random 5% subsample of the full dataset. This obviated the need for human
manual annotation of 95% of the data and engenders timesavings that begin to enable high-
throughput analysis.

Ideally, automated classification of EPG recordings would obviate all human input and
allow for real-time monitoring of insect feeding states within the plant or vertebrate subject.
This may be possible. Greater than 95% accuracy was achieved using a leave-one-out classifica-
tion scheme wherein a supervised random forest classifier was trained on a random 5% sub-
sample of 26 of 27 available recordings and then used to classify the remaining recording (S1
Fig). In some cases, accuracy decreased due to variation in waveform patterns generated by
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Fig 2. Prediction of insect feeding states from electrical penetration graph recordings. Insect feeding states (C, D, E1, E2, G, NP) as predicted
by random forest models trained on five percent of human classified data. Feeding states were classified with 97.4 + 0.1% (95% CI) out of sample
accuracy. Black time series are voltages across an insect plant circuit for Asian citrus psyllid feeding on Carrizo citrange (a common citrus rootstock).
Actual feeding states were determined and manually annotated through visual examination of frequencies on a second by second basis. Large
depolarizations (feeding states E1 and E2), where the time series drops to approximately minus two volts are characteristic of phloem feeding when
acquisition and inoculation of the greening pathogen are presumed to occur.

doi:10.1371/journal.pcbi.1005158.9002
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Fig 3. Computers can recognize insect feeding with high accuracy. Overall accuracy of supervised random forest classification of insect feeding
as monitored by electrical penetration graph recordings on nine citrus genotypes. Accuracy is out of sample overall accuracy estimated from
predictions of supervised random forest models trained to recognize six humanly defined and identified insect feeding states (in black) or just phloem
feeding (in grey) using a randomly subsampled training set representing five percent of the overall recording. Points and error bars represent mean
accuracy and ninety-five percent confidence intervals respectively.

doi:10.1371/journal.pchi.1005158.g003

insect feeding on different varieties (S2 Fig). Further development of more sophisticated
machine learning algorithms should enhance our ability to accurately classify insect feeding
and pathogen transmission in real time to more precisely follow stylet behavior within the
host.

Learning from the Computer

In addition to the abilities of machine learning algorithms to enable high-throughput screening
of pathogen transmission intervention strategies, such models can be used to extend our under-
standing of the dynamics of insect feeding. We can learn from the computer how to recognize
additional patterns of insect feeding. Currently, six distinct feeding states are recognized from
EPG recordings of the Asian citrus psyllid based on human observation of waveform patterns
correlated with histological studies [6]. We wondered if unsupervised pattern recognition mod-
els could identify additional, as yet unrecognized, feeding states.

To do so, we applied hidden Markov models to Fourier-transformed raw EPG data without
supplying the algorithm any information about human-annotated insect feeding states. Hidden
Markov models use Markov processes to model and uncover hidden states affecting given
observations [30] and are used in natural language processing and in predicting protein topol-
ogy [31-33]. We provided the model with Fourier-transformed time series data from EPG
recordings and asked it to classify the data into as many as 12 feeding states (Fig 4). By doing
this, the computer could recognize and highlight additional feeding states not discerned
through histological studies. Eight-state hidden Markov models successfully resolved phloem
feeding states (when pathogen transmission occurs in this system) and identified two addi-
tional feeding states within the human-recognized C feeding state thought to correlate with
insect stylet passage through plant tissue [6] (Fig 4). These two additional feeding states suggest
that the insect is performing two rapidly alternating tasks during passage of the stylets through
nonvascular tissues. Additionally, Bayesian information criterion scores from multistate
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Fig 4. Computers can recognize additional feeding states. Hidden Markov Models (HMMs) of insect feeding states. (A) Bayesian information criterion
(BIC) for HMMs of different numbers of feeding states. BIC conservatively penalizes the likelihood function with increasing numbers of feeding states.
Minimum BIC scores indicate a more appropriate number of feeding states; the decreasing BIC scores suggest that the model can resolve more feeding
states than the six currently recognized. (B) Three and half hour sample of electrical penetration graph recordings from Asian citrus psyllid on Carrizo
citrange citrus. (C) Human-annotated insect feeding states from visual inspection of (B) on a second by second basis. (D) Feeding states recovered from an
eight state Hidden Markov Model. The model resolves phloem feeding states E1 and E2 in accordance with human annotation and recognizes more feeding
states within the human annotated C feeding state (dashed box in (C) and (D).

doi:10.1371/journal.pcbi.1005158.9004

hidden Markov models [34] suggest that there may be many more than the six currently recog-
nized feeding states further emphasizing the dynamic nature of phloem, xylem, and potentially
blood feeding in piercing/sucking arthropods (Fig 4).

Similarities Between Feeding States

More information regarding insect feeding patterns can be obtained by applying pattern recog-
nition algorithms to the six human-recognized waveforms identified by histology [6]. Applying
hierarchical cluster analysis to frequency distributions extracted from Fourier-transformed
EPG data for each feeding state revealed similarities within ingestion (G, E1, and E2) feeding
states (Fig 5: left dendrogram) [35]. The frequencies (Fig 5: density plots) produced by psyllid
ingestion from xylem (feeding state G), were not significantly different (P > 0.05, from heir-
archical cluster analysis) from those produced by phloem salivation and ingestion (E1 and E2,
respectively). In contrast, probing and non-probing feeding states (NP, C, and D, respectively)
during which ingestion does not occur, produced significantly different frequency patterns
compared with those of states associated with pathogen transmission (G, E1, and E2). These
results suggested that ingestion from xylem and phloem by the Asian citrus psyllid is accom-
plished by mechanically similar means.

Pathogen Transmission and Resistant Varieties

Further analysis of feeding states provided insight into the nature of pathogen transmission
and allowed identification of characteristics that render certain plant varieties more resistant to
pathogen infection. Development of resistant citrus genotypes is of primary interest to citrus
growers as other methods of controlling citrus greening have proved unsuccessful [24].
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Fig 5. Insect feeding across citrus genotypes. Hierarchical cluster analysis of electrical penetration graph recordings of insect feeding. Top
Dendrogram, unsupervised clustering of frequency distributions of insect feedings by individual recording. Left dendrogram, clustering of insect
feeding based on frequency distributions from each feeding state (Density Plots). Letters correspond to six human recognized insect feeding states. In
dendrograms, heights of nodes indicate relative similarity metrics while blue and green numbers associated with nodes indicate approximately
unbiased bootstrapped confidences and similarity ranks respectively. Heatmap, Shading represents scaled median feeding bout time for each feeding
state. Black indicates highest level of feeding within that state while white indicates no feeding. Trifoliate varieties tend to have less phloem (feeding
states E1 and E2) feeding when pathogen acquisition and inoculation occur (red box).

doi:10.1371/journal.pchi.1005158.9005

Trifoliate genotypes (Table 2), such as Poncirus trifoliata and its hybrids, are under consider-
ation for commercial development. These have been noted for their tolerance to citrus greening
[18]. The level of tolerance is yet to be determined, however. When directly inoculated with
CLas by graft inoculation with infected buds, trifoliate varieties displayed symptoms of disease

Table 2. Citrus Genotypes. Nine citrus genotypes and associated varieties used in this analysis. Trifoliates
and trifoliate hybrids are being considered for their potential tolerance to citrus greening disease.

Genotype Variety
Flying Dragon Trifoliate
Kryder Trifoliate
Towne G Trifoliate
Yamaguchi Trifoliate
Carrizo Trifoliate Hybrid
Citrangor Trifoliate Hybrid
Troyer Trifoliate Hybrid
Citrus macrophylla Non-Trifoliate
Valencia Non-Trifoliate

doi:10.1371/journal.pchi.1005158.t002
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progression similar to susceptible Citrus trees [36]. In contrast, under field conditions where
trifoliate varieties were only subjected to infection by insect transmission, trifoliate varieties
displayed reduced or delayed symptoms. [37].

To compare and contrast insect feeding on different genotypes of trifoliate and non-trifoli-
ate citrus varieties, we applied a hierarchical cluster analysis to 27 recordings of Asian citrus
psyllid feeding on nine citrus genotypes [35]. Despite receiving no information on human-
annotated feeding states, the computer recognized differences in insect feeding across geno-
types. Cluster analysis tended to group recordings of the same variety (Fig 5: top dendrogram).
Poncirus (trifoliate) citrus genotypes in particular were more similar to each other and grouped
together; multidimensional Euclidean distances within trifoliate genotypes were on average
8.1% (95% CI: 2.2, 13.3%) less than between-variety differences.

These groupings of genotypes correspond to patterns of insect feeding (Fig 5: Heatmap).
Genotypes that experienced little to no phloem feeding (states E1 and E2) were grouped
together (Fig 5: red box). Those genotypes with limited opportunity for pathogen transmission
tended to be trifoliates or trifoliate hybrids that experienced significantly (@ = 0.05) less phloem
feeding by the psyllid compared with other genotypes (Fig 6). The observed low incidence of
phloem feeding on P. trifoliata and trifoliate hybrids suggests a mechanism to explain the
observed tolerance of citrus genotypes in the field, despite demonstrated susceptibility to the
pathogen by graft inoculation [36, 37]. Poncirus trifoliata may possess physical traits that con-
fer resistance to transmission by interfering with the vector’s ability to attain the phloem. Our
results suggest that psyllid feeding may be hindered by physical barriers to stylet passage con-
ferred by fibrous rings of sclerenchyma cells associated with vascular tissue in P. trifoliata [38].

I I
Trifoliate C . Non-Trifoliate
itrus Variety

Fig 6. Resistance to pathogen transmission. Phloem feeding (feeding states E1 and E2) by Asian citrus psyllid on trifoliate and non-
trifoliate citrus varieties. The vertical axis is the median percent time an insect spends on each bout of phloem feeding, where pathogen
transmission and inoculation can occur. Trifoliate varieties are significantly more (a = 0.05) resistant to phloem feeding, an explanation for
observed tolerance of trifoliate varieties to citrus greening disease.

d0i:10.1371/journal.pchi.1005158.9006
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Discussion

These analyses hold direct implications for prevention of transmission of CLas by its hemip-
teran insect vector, the Asian citrus psyllid. The low incidence of phloem feeding on varieties
of P. trifoliata genotypes and Poncirus x Citrus hybrids confirms these genotypes as sources of
resistance for cultivar development, and suggests a potential mechanism for their resistance to
infection that can be selected for in the future through traditional breeding or genetic modifica-
tion [26]. Further development of these strategies and resistance mechanisms will benefit from
high-throughput screening and analysis using machine learning algorithms.

While this type of analysis provides insights directly applicable to preventing the spread of
greening disease in citrus through high-throughput screening and identification of resistance
mechanisms, analysis of insect feeding as described here holds implications for all insect vec-
tor-pathogen systems. These results are broadly applicable to development of resistant varieties
[39, 40] and management of other plant diseases, including Zebra chip that affects the staple
crop potato and is caused by a bacterium closely related to citrus greening disease [41]. Insights
into the dynamics of insect feeding gained from machine learning analysis of electrical penetra-
tion graphs can be used to design novel intervention strategies to disrupt transmission of
insect-transmitted pathogens of agricultural crops, livestock, and humans. Testing and screen-
ing of strategies such as genetic manipulation, RNAi, or chemical deterrents to feeding and
transmission will benefit from high-throughput, human independent classification via
machine learning. These electrical penetration graph analyses that extend human insight and
reduce time investment will engender advances in both basic and applied investigation of insect
transmitted pathogens and advance discovery of tools to prevent the spread of disease in agri-
cultural crops, livestock, and humans.

Materials and Methods

Psyllid Preparation and Recording

EPG recordings were performed using a Giga-8 DC-EPG system (Wageningen, the Nether-
lands) to record the feeding activities of adult Asian citrus psyllids on nine trifoliate and citrus
varieties. Psyllids were tethered to recording equipment using fine gold wire and silver con-
ducting glue then settled on the adaxial midrib of a leaf (Fig 1). To complete the circuit, a sec-
ond electrode electrode (ground electrode) was inserted into the saturated soil (70-80%
moisture content) of the pot containing the citrus plant. EPG recordings were conducted
within a Faraday cage in a climate-controlled laboratory (25 + 1°C, 60 + 5% RH) for 8 to 21 h
under lighted conditions. Waveforms were classified by visual inspection by a trained expert
according to previous reports [6, 42] into six feeding states: salivary sheath secretion and stylet
passage (C), first contact with phloem (D), salivation at phloem (E1), phloem ingestion (E2),
xylem ingestion (G) or no probing (NP). Twenty-seven EPG recordings totaling 470 hours on
nine different citrus varieties were used to explore machine learning for waveform recognition.

Data Preprocessing

Raw voltage data from psyllid feeding were recorded using WinDaq Data acquisition and Play-
back software (DataQ Instruments). Data were classified by visual inspection and annotated
using the WinDagq data browser then exported to comma separated value files. Raw data from
comma-separated values were then loaded in the R version 3.2.2 computing environment [43]
and converted from the time domain to the frequency domain using fast fourier transform
[44]. The six frequencies with the highest magnitudes, often harmonics, were extracted for use
in machine learning algorithms.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005158 November 10, 2016 9/14
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Supervised Random Forests Classification

Fast Fourier transformed data were randomly split into training and test sets for each record-
ing. A random five percent subset of each recording was used to train a supervised random for-
ests model with 3 repeated 10 fold cross validation and was then tested on the remaining
ninety five percent of the recording. This procedure was used to classify all six human recog-
nized feeding states, and to differentiate between phloem (E1 and E2) and nonphloem (C, D,
NP, and G) feeding states. Out of sample accuracy, based on comparison to human expert clas-
sification of the test set, and ninety-five percent confidence intervals averaged for all feeding
states are reported. 50:50, and 95:5 training to test set schemes were also considered for the
analysis and did not produce differences in overall accuracy. A 5% training to 95% test set was
considered most advantageous in terms of reducing human labor while maintaining high accu-
racies. Using randomly sampled training sets less than 5% of the overall dataset increased the
likelihood of missing certain feeding states and lowered classification accuracy accordingly.

A leave one out classification scheme was pursued to determine the possibility of classifica-
tion without additional human input. To that end, a random five percent subsample of each
feeding state from each of 26 human annotated recordings was used to train a random forests
model with 3 repeated 10 fold cross validation. The model was then asked to classify the 27
recording; results of such classification were compared with human expert annotation to deter-
mine out of sample accuracy. This procedure was then repeated and used to classify each of the
27 recordings, one of which was left out each time.

Unsupervised Hidden Markov Model Classification

To explore the possibility of additional insect feeding states beyond those six currently recog-
nized by humans, hidden Markov models were applied to the dominant frequencies extracted
from Fourier transformed data and asked to separate the electrical penetration graph time
series into up to 12 feeding states. Parameter estimation for the hidden Markov models was
accomplished through use of the expectation maximization algorithm and the posterior state
sequence was recovered by the Viterbi algorithm [45-47]. Bayesian information criterion was
used to penalize additional feeding states [34].

Cluster Analysis

To explore similarities between varieties and insect feeding states, hierarchical cluster analysis
was applied to density distributions of dominant frequencies extracted from Fourier trans-
formed electrical penetration graph recordings. Variety similarity was determined through
bootstrapping 1000 times the difference in Euclidean distance among and between frequency
density distributions of trifoliate varieties. Comparison of unsupervised classification using
hierarchical clustering to human annotated states was accomplished through construction of a
heatmap presenting the percent median feeding bout time scaled within each feeding state.
Comparison of phloem feeding between trifoliate and non-trifoliate varieties was accomplished
through bootstrapping 1000 times the difference in median phloem (feeding states E1 and E2)
feeding time.

Computing Environment

After exportation from the WinDaq data collection and browser software, all data were loaded
into R version 3.2.2 for further analysis [43]. RStudio was used as a development environment
[48]. Packages provided additional functionality and facilitated analysis: data.table [49], dplyr

[50], tidyr [51], and pryr [52] for data management, caret [53] and randomForest [54] for
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implementation of random forest models, foreach [55], doParallel [56], and doMC [57] for
parallel implementation of analysis, pvclust [58] and ggdendro [59] for hierarchical cluster
analysis, depmixS1 [60] for implementation of Hidden Markov Models, and ggplot2 [61] for
developing graphics.

Supporting Information

S1 Fig. Classification of insect feeding across genotypes. Random forest models applied in a
leave one out manner to classify electrical penetration graph recordings. Accuracy is out of
sample accuracy from random forest models trained on a random five percent subsample from
each of 26 recordings then applied to the twenty seventh, a process that was repeated for each
recording. Points and error bars denote mean accuracy and ninety-five percent confidence
intervals respectively.

(EPS)

S2 Fig. Variation in Psyllid feeding across citrus genotypes. Principle coordinates analysis of
electrical penetration graph recordings depicting variation in Asian citrus psyllid feeding on
five citrus varieties. Axes represent a projection of Euclidean distances from a twelve dimen-
sional feature set into two dimensions. Central points and ellipses denote mean and boot-
strapped two-dimensional ninety-five percent confidence intervals respectively. Variation
between varieties, the distances between ellipses of the same color, is greater than variation
within feeding states, size of the ellipses.

(EPS)

S3 Fig. Representative samples of Psyllid feeding by feeding state. Samples are taken from
feeding bouts on Carrizo citrange as depicted in Fig 2.
(EPS)

S4 Fig. Focused samples of Psyllid feeding by feeding state. Samples are taken from feeding
bouts on Carrizo citrange as depicted in S3 Fig and Fig 2.
(EPS)

S1 Table. Confusion Matrix for random forests classification of data in Fig 2. Values in
table below represent number of seconds classified from a multihour recording.
(TEX)

$2 Table. Overall statistics for random forests classification of data in Fig 2.
(TEX)

S3 Table. Class statistics for random forests classification of data in Fig 2.
(TEX)
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