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Abstract

The red seaweed Laurencia dendroidea belongs to the Rhodophyta, a phylum of eukaryotic

algae that is widely distributed across the oceans and that constitute an important source of

bioactive specialized metabolites. Laurencia species have been studied since 1950 and

were found to contain a plethora of specialized metabolites, mainly halogenated sesquiter-

penes, diterpenes and triterpenes that possess a broad spectrum of pharmacological and

ecological activities. The first committed step in the biosynthesis of triterpenes is the cycliza-

tion of 2,3-oxidosqualene, an enzymatic reaction carried out by oxidosqualene cyclases

(OSCs), giving rise to a broad range of different compounds, such as the sterol precursors

cycloartenol and lanosterol, or triterpene precursors such as cucurbitadienol and β-amyrin.

Here, we cloned and characterized the first OSC from a red seaweed. The OSC gene was

identified through mining of a L. dendroidea transcriptome dataset and subsequently cloned

and heterologously expressed in yeast for functional characterization, which indicated that

the corresponding enzyme cyclizes 2,3-oxidosqualene to the sterol precursor cycloartenol.

Accordingly, the gene was named L. dendroidea cycloartenol synthase (LdCAS). A phyloge-

netic analysis using OSCs genes from plants, fungi and algae revealed that LdCAS grouped

together with OSCs from other red algae, suggesting that cycloartenol could be the common

product of the OSC in red seaweeds. Furthermore, profiling of L. dendroidea revealed cho-

lesterol as the major sterol accumulating in this species, implicating red seaweeds contain a

‘hybrid’ sterol synthesis pathway in which the phytosterol precursor cycloartenol is con-

verted into the major animal sterol cholesterol.
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Oceanos e da Terra, supported by CAPES

scholarship. JP is postdoctoral fellow of the

Research Foundation Flanders. PA is indebted to

the VIB International Fellowship Program for a

predoctoral fellowship. RCP and FLT thank CNPq

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0165954&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction

The genus Laurencia belongs to the phylum Rhodophyta (red algae) and is widely distributed

across the oceans [1]. Laurencia species are found between the intertidal and subtidal zones at

a depth of 3m and are recognized as a crucial source of specialized (secondary) metabolites [2–

5]. The specialized metabolites that are stored in Laurencia species are mainly halogenated

compounds that play important ecological roles, such as chemical defence against bacterial

colonization and infection [6–9]. Most of the described specialized metabolites isolated from

red seaweeds are terpenes, especially triterpenes, sesquiterpenes and diterpenes [10, 11].

Besides ecological roles, these compounds have a wide array of activities and valuable medical

properties [9]. Triterpenoids isolated from Laurencia species with important pharmacological

properties include the squalenoid-derived triterpenoids, thyrsiferol and venustatriol (both iso-

lated from L. viridis) and laurenmariannol and (21α)-21-hydroxythyrsiferol (isolated from L.

mariannensis) with cytotoxic activity against P-388 cells [12, 13]. Furthermore three squalene-

derived brominated triterpenes dehydrothyrsiferol, 10-epidehydrothyrisiferol and isodehy-

drothyrsiferol isolated from L. viridis also had cytotoxic activities against cancer cell lines [14].

All terpenes are synthesized from the universal building blocks isopentenyl pyrophosphate

(IPP) and dimethylallyl pyrophosphate (DMAPP) that can be generated via either the mevalo-

nate (MVA) or the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Most bacteria,

including the photosynthetic cyanobacteria, use the MEP pathway to synthesize terpenes. In

contrast, animals, fungi, archaea and some Gram-positive bacteria exclusively rely on the

MVA pathway for terpene synthesis [15]. It is suggested that plants acquired the MEP pathway

through cyanobacterial endosymbiosis and consequently use both pathways for terpene bio-

synthesis [16]. In plants, the IPP and DMAPP generated through the cytosolic MVA pathway

is mostly used for the synthesis of sesquiterpenes and triterpenes, whereas IPP and DMAPP

generated through the plastidial MEP pathway are mostly used for the synthesis of all other

types of terpenes [17, 18]. Green algae do not possess the genes for the MVA pathway and

their sesquiterpene and triterpene building blocks are consequently derived from the MEP

pathway [19–21]. However, red algae such as Laurencia species retained both IPP pathways

during their evolution and use both biosynthetic routes [22].

A key step in the biosynthesis of triterpenes and sesquiterpenes is the sequential condensa-

tion of two units of IPP with DMAPP to yield farnesyl pyrophosphate (FPP). For the synthesis

of triterpenes, two units of FPP are fused head-to-tail to form squalene, which is subsequently

epoxidized to 2,3-oxidosqualene, the direct triterpene precursor [21, 23]. In most organisms,

the epoxidation of squalene is carried out by squalene epoxidase [24], however, several species,

including the diatom Phaeodactylum tricornutum, lack a conventional squalene epoxidase

[21].

The great diversity of triterpene structures, with more than 100 different carbon skeletons

known in the kingdom of life, is due to different oxidosqualene cyclases (OSCs) and, in partic-

ular, to the number of rearrangement steps that the different OSC enzymes can catalyse in the

third stage of the cyclization reaction [25–27]. The OSCs belong to a gene superfamily divided

into 10 groups according to their product specificity and higher rank phylogeny [28]. They

are used both in primary metabolism (e.g. lanosterol/cycloartenol) or specialized metabolism

[29, 30].

Some OSC enzymes have more than one final product, e.g. an OSC from Citrullus colo-
cynthis produces cucurbitadienol and lanosterol [31]. Furthermore, OSC enzymes can produce

precursors for both non-sterol triterpenes, like lupeol, and sterol triterpenes, like cycloartenol

[32]. To characterize the enzymatic product, OSC genes are often ectopically expressed in

yeast [21, 30, 33–35] or in plants via transient expression in Nicotiana benthamiana [36, 37].
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To date, approximately 50 OSC genes have been cloned from various plant species, e.g. Ara-
bidopsis thaliana, Artemisia annua, Lotus japonicus and Oryza sativa (S1 Table). So far, such

studies have not been performed for OSC genes from red seaweeds. In this context, our aim

was to clone and functionally characterize an OSC from the red seaweed L. dendroidea by

expression in a sterol-engineered yeast strain.

Material and Methods

Identification and Cloning of LdCAS

To screen for potential OSCs, we performed a TBLASTX search in the transcriptome assembly

of L. dendroidea [38] using the nucleotide sequence of the characterized A. annua cycloartenol

synthase (CAS) (GenBank accession KM670093 [39]) as query. The domain composition of

the sequence coding for the OSC from L. dendroidea was obtained through search for con-

served domains using the National Center for Biotechnology Information (NCBI) Conserved

Domain Database (CDD) [40].

Afterwards, L. dendroidea specimens obtained from an unialgal culture (see 38 for details)

were frozen in liquid nitrogen and ground to a fine powder using a mortar and pestle. Total

RNA was extracted with the Qiagen RNeasy1 Mini Kit (Hilden, Germany) and cDNA was

prepared with the Bio-Rad iScriptTM cDNA Synthesis Kit (Hercules, United States). The full-

length coding sequence of LdCASwas amplified from this L. dendroidea cDNA using the prim-

ers LdCAS_Fw and LdCAS_RV (Table 1). The obtained PCR fragment was GatewayTM recom-

bined into the GatewayTM vector pDONR207 and the resulting entry clone was sequence

verified and further recombined into the in-house generated destination vector pESC-URA-

tHMG1-DEST [41] to yield pESC-URA-tHMG1-DEST[GAL1/LdCAS].

Generation and Culturing of Saccharomyces cerevisiae (Yeast) Strains

All primers used to create novel yeast strains and all yeast strains created and/or used in this

study are listed in Table 1 and Table 2, respectively. Yeast strains PA14, TM097, and TM122

were derived from strain TM1 in the S288c BY4742 background (26).

Yeast strain PA14 was derived from strain TM1 [21] by knocking out the TRP1 gene using

CRISPR/Cas9. A plasmid for CRISPR/Cas9 in yeast that contains both Cas9 and a gRNA cas-

sette was generated according to the system reported by DiCarlo and co-workers [42]. To this

Table 1. Primer sequences used in this study.

Oligo Sequence Description

combi1715 5’-TAATACGACTCACTATAGGG-3’ T7 sequencing primer

combi2287 5’-GGAATAAGGGCGACACGG-3’ bla internal Rv

combi3244 5’-GTTAACCGGCCGCAAATTAAAGCC-3’ HpaI-CYC1t Rv

combi3245 5’-ggggacaagtttgtacaaaaaagcaggcttaAAGGGAACAAAAGCTGGAGC-3’ attB1-SNR52p Fw

combi3246 5’-ggggaccactttgtacaagaaagctgggtaAAAGCCTTCGAGCGTCCC-3’ attB2-CYC1t Rv

combi3247 5’-GTTAACGCTAGCGAGGGAACAAAAGCTGGAGC-3’ HpaI-NheI-TEFp Fw

crispr014 5’-AGAGTTCCTCGGTTTGCCGATCATTTATCTTTCACTGCGGAGAAG-3’ TRP1 gRNA left Rv

crispr031 5’-GGCAAACCGAGGAACTCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGG-3’ TRP1 gRNA right fw

crispr059 5’-AACTGCATGGAGATGAGTCGTGGCATTAATAACAGAGTTCCTCGGTTTGCCAGTTATT-3’ TRP1 HR donor Fw

crispr060 5’-AATAACTGGCAAACCGAGGAACTCTGTTATTAATGCCACGACTCATCTCCATGCAGTT-3’ TRP1 HR donor Rv

crispr119 5’-AGGTAGTTCTGGTCCATTGG-3’ TRP1 RFLP fw

crispr120 5’-ACACCATTTGTCTCCACACC-3’ TRP1 RFLP rev

LdCAS_Fw 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGTTGTTTGGCGACTCAATG-3’ LdCAS fw

LdCAS_RV 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTATTATTGCTGCTGGCACGCTTTC-3’ LdCAS rev

doi:10.1371/journal.pone.0165954.t001
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end, the Cas9 expression cassette was PCR-amplified from p414-TEF1p-Cas9-CYC1t

(Addgene plasmid 43802) using primers combi3244 and combi3247, each containing aHpaI

restriction site at the 5’ terminus. The resulting fragment was cloned into pJET1.2 and

sequence verified. Subsequently, the Cas9 cassette was cut out usingHpaI, gel-purified and

cloned into the vector backbone of a PvuII-treated, dephosphorylated, and gel-purified pES-

C-URA plasmid (Agilent). The resulting plasmid was named pCAS1. Next, a GatewayTM cas-

sette was PCR-amplified from pDEST14 (Invitrogen, Carlsbad, United States) using primers

combi1715 and combi2287. The PCR fragment was treated with XbaI and NheI, gel purified

and cloned into the NheI-linearized and dephosphorylated pCAS1, yielding pCAS-ccdB. The

TRP1 knock-out construct was generated by PCR amplification of SNR52p and sgRNA-CYC1t

from p426-SNR52p-gRNA.CAN1.Y-SUP4t (Addgene plasmid 43803) using primers

combi3245 and crispr014 and combi3246 and crispr031, respectively. The individual frag-

ments were fused by overlap extension PCR, subcloned into pDONR221, sequence verified

and finally GatewayTM recombined into pCAS-ccdB, yielding pCAS-TRP1. Subsequently, 200

ng of pCAS-TRP1 and 10 μmol of double-stranded DNA (prepared by annealing the single-

stranded oligonucleotides crispr059 and crispr060) as homologous recombination donor were

co-transformed in yeast strain TM1. The resulting colonies were analyzed for positive CRISPR

events by replica plating on SD medium (Clontech, Mountain View, United States) with or

without tryptophan. Tryptophan auxotrophs were further confirmed by Sanger sequencing.

Auxotrophic strains were cured of pCAS-TRP1 by counter-selection on plates containing 1

mg/mL 5-fluoroorotic acid (Zymo Research, Irvine, United States) and the resulting TM1-der-

ived trp1 strain was named PA14.

Subsequently, the PA14 strain was transformed with the LdCAS expression construct or the

empty pESC-URA-tHMG1-DEST vector to yield strain TM122 and the control strain TM097,

respectively.

The yeast strains TM097 and TM122 were cultivated in the presence of methyl β-cyclodex-

trin (MβCD) as described [30]. On day 1, for each strain five individual yeast colonies were

used to inoculate 5 mL of synthetic defined (SD) medium containing glucose with the–Ura

dropout (DO) supplement (Clontech). The pre-cultures were grown for 24 h at 30˚C with agi-

tation (200 rpm). To induce heterologous gene expression, the pre-cultures were washed with

1 mL of sterile water and used to inoculate 15 mL of SD Gal/Raf medium containing galactose

and raffinose with the–Ura DO supplement (Clontech). The induced cultures were incubated

for 24 h and on day 3, methionine and MβCD were added to 1 mM and 5 mM, respectively.

After a further 24 h incubation, MβCD was added once again to 5 mM. After a final 24 h incu-

bation, the yeast cultures were stored at 4˚C for three days and on day 8, 1 mL of each culture

was extracted thrice with 500 μL of hexane. The pooled organic fractions were evaporated and

derivatized with 10 μL of pyridine (Sigma-Aldrich, St. Louis, United States) and 50 μL of N-

methyl-N-(trimethylsilyl)trifluoroacetamide (Sigma-Aldrich) prior to gas chromatography-

mass spectrometry (GC-MS) analysis. The authentic cycloartenol standard (Sigma-Aldrich)

was derivatized following the same method.

Table 2. Yeast strains used in this study.

Strain Genotype Reference

S288c BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Moses et al., 2014

TM1 S288c BY4742; Perg7::PMET3-ERG7 Moses et al., 2014

PA14 TM1; trp1Δ0 This study

TM097 PA14; pESC-URA-tHMG1-DEST This study

TM122 PA14; pESC-URA-tHMG1-DEST[GAL1/LdCAS] This study

doi:10.1371/journal.pone.0165954.t002
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Sterol extraction from L. dendroidea

Dried L. dendroidea material was ground to a fine powder under liquid nitrogen. Five milli-

gram of the obtained powder was saponified by boiling it for 2 hours in 500 μL of 40% KOH

and 500 μL of 50% EtOH. The resulting mixture was extracted thrice with 500 μL of hexane.

The organic fractions were pooled, evaporated in vacuo and derivatized with 10 μL of pyridine

(Sigma-Aldrich, St. Louis, United States) and 50 μL of N-methyl-N-(trimethylsilyl)trifluoroa-

cetamide (Sigma-Aldrich, St. Louis, United States) prior to GC-MS analysis. An authentic cho-

lesterol standard (Sigma-Aldrich, St. Louis, United States) was derivatized following the same

method.

GC-MS analysis

GC-MS analysis was performed using a GC model 6890 and MS model 5973 (Agilent, Santa

Clara, United States). A VF-5ms capillary column (Varian CP9013, Agilent) was operated at a

constant helium flow of 1 mL/min and 1 μL of the sample was injected in splitless mode. The

oven was initially held at 80˚C for 1 min, ramped to 280˚C at a rate of 20˚C/min, held at 280˚C

for 45 min, ramped to 320˚C at a rate of 20˚C/min, held at 320˚C for 1 min, and at the end of

the run cooled to 80˚C at a rate of 50˚C/min. Throughout the analysis, the injector was set to

280˚C, the MS transfer line to 250˚C, the MS ion source to 230˚C, and the quadrupole to

150˚C. A full electron ionization (EI) mass spectrum was generated by scanning the m/z range

of 60–800 with a solvent delay of 7.8 min.

Phylogenetic analysis

All OSC sequences reported in [26] were downloaded from the Phytozome database (A. thali-
ana) and NCBI (other species). Additional OSC sequences released after this study were

screened in literature and included in our phylogenetic analysis. Subsequently, a Python script

[43, 44] was used to obtain only the coding sequences to facilitate the alignment. The coding

sequences were translated into amino acids and aligned using the software SeaView [45]

employing the Clustal Omega algorithm [46]. After this, we constructed a neighbour joining

tree using the Kimura 2 parameter model [47] with 1,000 bootstrap replicates. In the end, the

tree was edited using FigTree.

Results and Discussion

Identification of LdCAS

Mining of L. dendroidea transcriptome data [38] revealed only one full-length OSC with an

open reading frame of 739 amino acids. This OSC was cloned from L. dendroidea cDNA and

named LdCAS. The LdCAS sequence was submitted to GenBank (accession number

KX343073). The search for LdCAS conserved domains returned one hit, the squalene cyclase

(SQCY) domain subgroup 1 (NCBI CDDS ID: cd02892), which has an alpha 6 –alpha 6 barrel

fold and belongs to the Isopren C2 like superfamily (NCBI CDDS ID: cl08267). Further, using

the CAS1 from A. thaliana (UniProtKB ID: P38605), we were able to identify all five farnesyl-

transferase B subunit (PFTB) repeats in LdCAS. The mutagenesis sites, where the change of

residues leads to the production of distinct compounds, and the active sites of AtCAS1 and

LdCASwere all the same, suggesting that our LdCAS is indeed a cycloartenol synthase, as

AtCAS1 is the cycloartenol synthase from A. thaliana, previously isolated and characterized

[29].

A phylogenetic tree using the amino acid sequences from putative OSCs from other species

formed seven major groups (Fig 1). LdCAS clustered together with the OSCs from Chondrus

OSC Characterization from a Rhodophyta
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crispus, a red seaweed, and with fungi and green algae OSCs (Fig 1, cluster 1). It is postulated

that ergosterol is the final product of the CAS-dependent sterol biosynthesis pathway found in

the genome of the green algae Chlamydomonas reinhardtii, as observed in fungi, despite the

absence of the MVA pathway in green algae [48]. Since there is no other study that functionally

characterized an OSC from red seaweeds, we could suggest that cycloartenol is the product of

the OSC in red seaweeds.

The genes coding for cycloartenol, lanosterol and cucurbitadienol synthases were all

grouped together (Fig 1, cluster 2). These products are generated from the same precursor–the

protesterol cation. The modification of the protesterol cation by carbon removal leads to lanos-

terol and cycloartenol (see [49, 50] for further details). The modification of this molecule with

a second methyl and hydrogen migration leads to curcubitadienol [51]. A third group of OSCs

(Fig 1, cluster 7) consisted mainly of β-amyrin synthases. Other enzymes found within this

group produce lupeol and mixed products. The phylogenetic tree showed four other minor

groups. One group (Fig 1, cluster 4) was formed by some lupeol synthases and other enzymes,

while another group (Fig 1, cluster 6) is composed mainly by A. thaliana enzymes. The last

two groups (Fig 1, clusters 3 and 5) are mainly constituted by a broad group of multifunctional

OSCs, which make a range of cyclization products.

Fig 1. Neighbour-joining tree of OSCs from several organisms. OSC amino acid sequences (S1 Table) were

aligned using Clustal Omega [59] with default parameters as implemented in the program SeaView [45] and all gaps

were eliminated. The molecular evolutionary model chosen was Kimura 2 parameter [47]. The tree was

reconstructed in SeaView with 1,000 bootstrap replicates. The name of each tip is the OSC name (source on S1

Table). Usually the first two characters represent the name of the species and the last three the product.

doi:10.1371/journal.pone.0165954.g001
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The division of the OSC family according their product and higher rank phylogeny is simi-

lar to that observed in other studies. Xue et al. [28] divided the OSC family of plants into ten

groups based on this pattern: pentacyclic triterpenes, lanosterol, cucurbitadienol, cycloartenol

and unknown function within dicots and pentacyclic triterpene, isoarborinol, parkeol, cycloar-

tenol and unknown function within monocots. Gas-Pascual et al. [52] included species from

other kingdoms and found seven distinct OSC groups: lupeol, β-amyrin, promiscuous β-

amyrin, plant lanosterol and cycloartenol from plants, protists and algae plus planctomycete.

Together, these studies indicate that functional characterization is necessary to properly define

the product specificity of an OSC since some phylogenetic groups have more than one product

or because they are composed of multifunctional OSCs.

Functional characterization of LdCAS in S. cerevisiae

To determine the enzymatic activity of LdCAS, we carried out functional characterization by

means of heterologous expression in the yeast S. cerevisiae. Therefore, we first generated a S.
cerevisiae strain capable of inducing terpene hyperproduction, as described previously [30, 53].

The yeast strain that we used was PA14, which is a modified version of the previously gener-

ated TM1 strain [30], containing an additional auxotrophic selection marker (see Material and

Methods) and generated using the CRISPR/Cas9 genome editing tool [42]. As in the TM1

strain, the lanosterol synthase (ERG7) promoter in strain PA14 was replaced by a methionine

repressible promoter. Addition of methionine to the yeast cultivation medium reduces the bio-

synthetic flux towards the sterols, leading to the accumulation of 2,3-oxidosqualene that can

be used as a substrate for heterologously expressed OSCs. Additionally, a truncated feedback-

insensitive version of the S. cerevisiae 3-hydroxy-3-methylglutaryl-CoA reductase 1 (tHMG1)

enzyme was expressed from the high-copy-number plasmid pESC-URA to further increase the

flux through the MVA pathway and thus further enhance the 2,3-oxidosqualene pool available

for the heterologously expressed OSC.

Two yeast strains were generated from strain PA14. Strain TM122 expressed both tHMG1

and LdCAS from the pESC-URA-tHMG1-DEST plasmid, whereas the control strain TM097

only expressed tHMG1 from the pESC-URA-tHMG1-DEST plasmid. Both yeast strains were

cultivated in the presence of MβCD as described [30]. After yeast cultivation, the extract of the

spent medium of the TM122 strain was checked by GC-MS and compared to the extract of the

spent medium of the control strain TM097. This analysis revealed the presence of a chro-

matographic peak unique to strain TM122 at 26.2 min with the same retention time and elec-

tron ionization (EI) spectrum as an authentic cycloartenol standard (Fig 2). The finding that

LdCAS encodes a cycloartenol synthase is further underscored by previous studies suggesting

cycloartenol to be the precursor of all sterols in marine seaweeds [54].

Sterol profile of L. dendroidea and implications on sterol synthesis in red

seaweeds

As primary metabolites, sterols are essential structural components of cell membranes. Choles-

terol, the main animal sterol, provides structural integrity and fluidity to the cell membrane. In

fungi, the major sterol is erogsterol. Campesterol, stigmasterol and sitosterol are the most

abundant phytosterols. Like for animals, the main sterol in red seaweeds was reported to be

cholesterol [55]. To validate the sterol composition of the red seaweed L. dendroidea, sterol

profiling was carried out by GC-MS (Fig 3). This analysis confirmed that, like other Rhodo-

phyta, L. dendroidea accumulates cholesterol as its major sterol.

As the phytosterol precursor cycloartenol is the cyclization product of 2,3-oxidosqualene,

and the major accumulating sterol in red seaweeds is the ‘animal’ sterol cholesterol, the sterol

OSC Characterization from a Rhodophyta
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biosynthesis in red seaweeds may be a hybrid pathway between the plant and animal sterol

synthesis pathways. Notably, unlike other plants, Solanaceae plant species also accumulate

cholesterol as a major sterol [56, 57]. The biosynthesis of cholesterol in Solanaceae has not

been elucidated yet, but was shown to involve a sterol side chain reductase enzyme (SSR) 2

that catalyzes the conversion of cycloartenol into cycloartanol by reduction of the C-24(25)

double bond. This reduction step forms the branch point between the synthesis of phytosterols

and cholesterol in Solanaceae [56] and it could thus be postulated that a similar reduction step

takes place in the cholesterol synthesis of red seaweeds. Notably, this SSR2 enzyme seems to

have arisen from DWF1 [56], a reductase enzyme involved in phytosterol synthesis that cata-

lyzes the reduction of C-24(28) double bonds in C-24 alkylsterols and that is homologous to

24-dehydrocholesterol reductase (DHCR24), the animal C-24(25) reductase that catalyzes the

conversion of desmosterol into cholesterol [58]. Hence, a key step in the synthesis of choles-

terol in red algae may be the reduction of the C-24(25) double bond by a DHCR24-like

enzyme.

Conclusion

We were able to clone and characterize for the first time an OSC enzyme from a red seaweed.

Through phylogenetic analysis we postulated that the product generated by LdCAS of L. den-
droidea is cycloartenol. This finding was confirmed by the functional characterization of

LdCAS in yeast and literature reports suggesting that cycloartenol is the sterol precursor of sea-

weed sterols. Furthermore, sterol profiling revealed that cholesterol is the major L. dendroidea
sterol, implicating sterol synthesis in red seaweeds may be carried out via a hybrid of the plant

and animal sterol synthesis pathways.

Fig 2. Expression of LdCAS in S. cerevisiae leads to the production of cycloartenol. (A) Overlay of GC-MS chromatograms from spent medium of the

control yeast strain TM097 (black) and yeast strain TM122 expressing LdCAS (red). A peak unique to strain TM122 was observed with a retention time of

26.2 minutes. (B) Overlay of GC-MS chromatograms from spent medium of the control yeast strain TM097 (black) and yeast strain TM122 expressing

LdCAS (red) and the GC-MS chromatogram of an authentic cycloartenol standard (green). The peak unique to strain TM122 has the same retention time as

the authentic cycloartenol standard. (C) Comparison of the EI-MS spectra of the authentic cycloartenol standard (top) and the cycloartenol produced in strain

TM122 (bottom).

doi:10.1371/journal.pone.0165954.g002
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22. Schwender J, Zeidler J, Gröner R, Müller C, Focke M, Braun S, et al. Incorporation of 1-deoxy-d-xylu-

lose into isoprene and phytol by higher plants and algae. FEBS Letters. 1997; 414(1):129–34. doi: 10.

1016/s0014-5793(97)01002-8 PMID: 9305746

23. Chen F, Tholl D, Bohlmann J, Pichersky E. The family of terpene synthases in plants: a mid-size family

of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011;

66:212–29. doi: 10.1111/j.1365-313X.2011.04520.x PMID: 21443633

24. Summons RE, Bradley AS, Jahnke LL, Waldbauer JR. Steroids, triterpenoids and molecular oxygen.

Philos Trans R Soc Lond B Biol Sci. 2006; 361(1470):951–68. doi: 10.1098/rstb.2006.1837 PMID:

16754609; PubMed Central PMCID: PMCPMC1578733.

25. Xu R, Fazio GC, Matsuda SPT. On the origins of triterpenoid skeletal diversity. Phytochemistry. 2004;

65(3):261–91. doi: 10.1016/j.phytochem.2003.11.014 PMID: 14751299

26. Thimmappa R, Geisler K, Louveau T, O’Maille P, Osbourn A. Triterpene biosynthesis in plants. Annu

Rev Plant Biol. 2014; 65:225–57. doi: 10.1146/annurev-arplant-050312-120229 PMID: 24498976.

27. Abe I, Liu W, Oehlschlager A, Prestwich G. Mechanism-Based Active Site Modification of Oxidosqua-

lene Cyclase by Tritium-Labeled 18-Thia-2,3-Oxidosqualene. J Am Chem Soc. 1996; 118(38):9180–1.

28. Xue Z, Duan L, Liu D, Guo J, Ge S, Dicks J, et al. Divergent evolution of oxidosqualene cyclases in

plants. New Phytol. 2012; 193(4):1022–38. doi: 10.1111/j.1469-8137.2011.03997.x PMID: 22150097.

29. Corey E, Matsuda S, Bartel B. Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase

by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic

screen. Proc Natl Acad Sci U S A. 1993; 90(24):11628–32. PMID: 7505443

30. Moses T, Pollier J, Almagro L, Buyst D, Van Montagu M, Pedreno MA, et al. Combinatorial biosynthesis

of sapogenins and saponins in Saccharomyces cerevisiae using a C-16alpha hydroxylase from

Bupleurum falcatum. Proc Natl Acad Sci U S A. 2014; 111(4):1634–9. doi: 10.1073/pnas.1323369111

PMID: 24434554; PubMed Central PMCID: PMC3910630.

31. Davidovich-Rikanati R, Shalev L, Baranes N, Meir A, Itkin M, Cohen S, et al. Recombinant yeast as a

functional tool for understanding bitterness and cucurbitacin biosynthesis in watermelon (Citrullus spp.).

Yeast. 2015; 32(1):103–14. doi: 10.1002/yea.3049 PMID: 25308777.
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