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Left–right (L-R) asymmetry of the internal organs of vertebrates is presaged by

domains of asymmetric gene expression in the lateral plate mesoderm (LPM)

during somitogenesis. Ciliated L-R coordinators (LRCs) are critical for biasing

the initiation of asymmetrically expressed genes, such as nodal and pitx2, to the

left LPM. Other midline structures, including the notochord and floorplate, are

then required to maintain these asymmetries. Here we report an unexpected

role for the zebrafish EGF-CFC gene one-eyed pinhead (oep) in the midline to pro-

mote pitx2 expression in the LPM. Late zygotic oep (LZoep) mutants have

strongly reduced or absent pitx2 expression in the LPM, but this expression

can be rescued to strong levels by restoring oep in midline structures only.

Furthermore, removing midline structures from LZoep embryos can rescue

pitx2 expression in the LPM, suggesting the midline is a source of an LPM

pitx2 repressor that is itself inhibited by oep. Reducing lefty1 activity in LZoep
embryos mimics removal of the midline, implicating lefty1 in the midline-

derived repression. Together, this suggests a model where Oep in the midline

functions to overcome a midline-derived repressor, involving lefty1, to allow for

the expression of left side-specific genes in the LPM.

This article is part of the themed issue ‘Provocative questions in left–

right asymmetry’.
1. Introduction
(a) Nodal signalling in left – right patterning
Left–right (L–R) patterning in the vertebrate embryo emerges as genes become

asymmetrically expressed during somitogenesis. Genes encoding components of

the Nodal signalling pathway, including the nodal ligand and the downstream

target pitx2, are expressed in the left lateral plate mesoderm (LPM) but remain

absent from the right side (reviewed in [1–5]). Nodal is a transforming growth

factor-beta (TGF-b) superfamily member that signals through serine/threonine

kinase receptors to phosphorylate Smad2 and Smad3 (reviewed in [6,7]). This

requires EGF-CFC proteins, such as that encoded by the zebrafish gene one-
eyed pinhead (oep), which act as co-receptors for Nodal ligands [8–11]. Smad2

and Smad3 then interact with the co-Smad, Smad4, as well as transcription fac-

tors, such as FoxHI, to induce transcription of downstream targets [12–18].

These targets include the asymmetrically expressed genes pitx2, nodal itself and

the lefty repressors that restrict the extent of Nodal signalling. Owing to the feed-

back nature of the pathway, lefty expression denotes both areas where Nodal

signalling has occurred and areas where Nodal signalling is now being repressed

(reviewed in [6,7]). Lefty is thought to repress Nodal signals by physically associ-

ating with both Nodal itself as well as with EGF-CFC co-receptors including

Oep [8,10,11].

Prior to the emergence of nodal expression in the left LPM, nodal is expressed

at the midline around so-called left–right coordinators (LRCs). These are the
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ventral node in mouse embryos [19], the gastroceol roof plate

in Xenopus laevis [20], and Kupffer’s vesicle (KV) in zebrafish

and Medaka fish [21–23]. Some evidence, including pheno-

types of hypomorphic- or tissue-specific knock-out alleles

of Nodal in the mouse, suggests that Nodal ligand emanating

from this LRC domain is required for initiation of Nodal
expression in the LPM [24–28]. In zebrafish, knockdown of

the Nodal orthologue southpaw (spaw) results in a loss of

spaw expression in the LPM, although transcription of spaw
around the zebrafish LRC is unaffected [29]. Together, this

suggests that LRC–Nodal activity induces expression of

LPM–nodal. Subsequently, Nodal spreads throughout the

left LPM and induces other asymmetrically expressed genes.

Further support for an essential role of Nodal signalling

in inducing asymmetric expression in the LPM comes from

the analysis of mutations in the EGF-CFC genes oep in zebra-

fish and Cryptic/Cfc1 in mouse. These genes are expressed

bilaterally in the LPM, and in the embryonic midline and

its precursors [30,31]. Cryptic mutants lack expression of

Nodal, Lefty2, and Pitx2 in the LPM, and have organ laterality

defects including right pulmonary isomerism and randomiz-

ation of heart looping [32,33]. Similarly, zebrafish oep is

required for L–R patterning. Maternal-zygotic oep (MZoep)

mutants lack most mesendoderm [9]. This early requirement

for oep in Nodal signalling is rescued by oep mRNA injection

into 1-cell stage embryos, generating ‘late zygotic’ oep (LZoep)

embryos [9,33]. These embryos are fully viable and develop

to adulthood. All major structures and organs, ranging

from midline and central nervous system to heart and pan-

creas, appear morphologically normal. However, as oep
activity in later development is not provided by injected

mRNA, LZoep mutants have L–R patterning defects [33];

they do not express nodal/cyclops or pitx2 in the LPM nor

in an additional asymmetric expression domain in the

dorsal diencephalon [33–35]. LZoep mutants also display a

randomization of heart looping and pancreas positioning in

the viscera, and of parapineal positioning in the brain

[33,34]. The importance of EGF-CFC genes in L–R develop-

ment also extends to humans, as CFC1 mutations are

associated with human L–R patterning defects [36].

How Nodal signals are transferred from LRC to LPM is not

fully understood. One possibility is that Nodal ligand directly

travels from the lateral edges of the LRC to the LPM, a process

that requires sulfated glycosaminoglycans (sGAGs; [27,37]).

Moreover, Ca2þ signals are also observed around LRCs

[38–40], and these signals can spread laterally towards the

LPM via gap junctions [41,42]. Indeed, it has been hypothesized

that Ca2þ signals aid in the transduction of Nodal ligand from

LRC to LPM by inducing the secretion of sGAGs [41,43,44].

(b) Roles for midline structures in initiating and
maintaining L – R asymmetries

Although the striking domain of asymmetric gene expression

occurs in the LPM, various midline structures are critical for

both initiating and maintaining these asymmetries. In ver-

tebrates, a major model for how L–R asymmetries are initiated

involves an asymmetric fluid flow within LRCs, driven by the

rotation of polarized motile cilia [19,20,23,45–53]. In support

of this model, a plethora of mutants that exhibit cilia motility

abnormalities also display defects of L–R patterning (for just a

few examples see [54–58]). How asymmetric fluid flow is

sensed by the embryo to drive downstream asymmetries in
gene expression around LRCs is not fully understood, but the

process likely involves both sensory cilia and the polycystin

transmembrane proteins Pkd1l1 and Pkd2 [39,59–67].

Downstream of fluid flow and Polycystin function, R . L asym-

metries in Dand5 (also called charon in zebrafish and Medaka,

Cerl2 in mouse and Coco in Xenopus), a member of the DAN

family of Nodal inhibitors, emerge at the lateral edges of LRCs

[28,68–75]. This results in more active Nodal emanating from

the left side of LRCs and, presumably as a result, the activation

of Nodal preferentially in the left LPM. As such, asymmetries

in Dand5 are critical for establishing unilateral left-sided Nodal
expression in various vertebrate embryos.

Once asymmetric gene expression is established in the

LPM, midline structures are also critical for maintaining asym-

metries. Initial analysis of zebrafish mutants, in which an intact

notochord fails to form, revealed defects in asymmetric gene

expression in the LPM with subsequent abnormalities in car-

diac asymmetry [76–78]. Similar results were obtained upon

extirpation of midline structures in Xenopus [76,79]. In embryos

without intact midline structures, gene expression normally

restricted to the left side becomes bilaterally expressed in the

left and right LPM. Based on these results, the midline (predo-

minantly notochord and floorplate) was proposed to act as a

barrier in L–R patterning. In the barrier model, the midline

would act to prevent Nodal activity within the left LPM from

accessing the right LPM, which remains capable of expressing

nodal. The barrier activities of the midline would be perturbed

upon loss of midline structures, allowing Nodal signals from

the left access to the right LPM, resulting in bilateral expression

of left side-specific genes.

Bilateral expression of pitx2 and other genes in the LPM is

also seen upon loss of lefty1 function in mouse and zebrafish

[80,81]. lefty1 is expressed in the floorplate of mouse embryos

and in the notochord in zebrafish [82–84] and has been pro-

posed to act as the molecular component of the midline that

restricts Nodal signalling to the left side. In mouse, Lefty1 is

induced in the midline by Nodal signals from the left LPM,
and may thus serve as a barrier to Nodal signals preventing

their access to the right LPM [85]. Many results pertaining to the

barrier/repressor function of the midline were synthesized into

a self-enhancement and lateral-inhibition (SELI) model in the

mouse embryo [86]. In this model, Nodal is induced in both

the left and right LPM, though at a much lower level in the

latter. Thus, the critical threshold for robust activation and

spreading (the self-enhancement) is not reached in the right

LPM as it is in the left. Left LPM Nodal induces Lefty in both

the left LPM and midline and these repressive signals raise

the threshold for Nodal enhancement in the right LPM (the lat-

eral inhibition), thereby maintaining unilateral expression. In

the absence of Lefty repressors, Nodal is more strongly induced

in the right LPM and, moreover, Nodal signals might also

spread from the left LPM to the right LPM, ultimately resulting

in bilateral expression of Nodal signals even in the presence of

correct initial symmetry breaking at the LRC.

In addition to the floorplate/notochord lefty barrier, two

additional ‘midline barriers’ that also involve repression of

Nodal signals have been described in zebrafish [80]. Zebrafish

expression of Nodal/Spaw in the LPM induces its own

expression, but in contrast with mouse, does not induce the

expression of lefty in the LPM. Instead, lefty1 expression in the

notochord is driven by Spaw as it propagates anteriorly

within the LPM at these stages [87,88]). lefty2 is induced

within the left side of the heart field once Spaw reaches the
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anterior left LPM [80]. Removal of lefty2 from embryos allows

spaw expression from the left anterior LPM to proceed across

the region anterior to the notochord, into the right LPM,

where it proceeds towards the posterior. This demonstrates

that lefty2 expression in the heart prevents spaw expression

from spreading from the left to the right LPM. Similarly, bone

morphogenetic protein (BMP) signalling is required to prevent

Spaw in the left LPM from inducing spaw expression in a

domain posterior to KV. In the absence of BMP signalling,

spaw is ectopically expressed throughout the posterior LPM

around the tailbud, and from there spreads to the right LPM.

Thus, along with lefty1 expression in the notochord, these two

‘barriers’ confine nodal/spaw expression to the left LPM from

an area lateral to KV to an area lateral to the anterior

notochord in zebrafish [80].

Current models suggest that the midline is essentially pas-

sive, responding to Nodal signals from the LPM by expressing

lefty1 and then preventing Nodal signals from activating in the

right LPM. However, lefty1 expression in the posterior noto-

chord in zebrafish begins prior to the expression of nodal in

the LPM, demonstrating that this domain of lefty1, whose func-

tion is currently unknown, cannot be initiated by Nodal signals

from the LPM. Based on the results reported here, we propose

that this early domain of lefty1 contributes to establishing the

threshold required for Nodal signals to initiate and propagate

in the LPM. We demonstrate an active role for the Nodal co-

receptor Oep in repressing early Lefty activity in the midline,

prior to the emergence of asymmetric gene expression, to

allow for expression of the Nodal target pitx2 in the LPM.
2. Material and methods
(a) Zebrafish
Danio rerio strains were raised under standard conditions at 288C.

We used the PWT strain for experiments as this strain was found

to have a very low level of abnormal asymmetric gene expression

[60]. Transplanted and injected embryos were raised at 288C until

shield stage and then placed at 258C overnight. The next morn-

ing, embryos were returned to 288C until they reached 18–20

somites, when they were fixed for in situ analysis. All embryos

were staged according to [89]. The oeptz257 mutant was used in

this study [90–93].

(b) RNA and morpholino injections
Capped mRNA transcripts were synthesized using Ambion

mMessage mMachineTM kits and quantitated by UV spectro-

photometry. oep mRNA was transcribed from plasmid

pJZoepFlag1–2 linearized with SmaI [31]. Morpholino antisense

oligos were obtained from GeneTools, LLC and resuspended to

a stock concentration of 50 mg ml21 in dH2O. The ntla morpholino

sequence we used in these studies is described in [94]. The lefty1
morpholino used is described in [95]. RNA and morpholinos

were diluted in 5 mg ml21 phenol red dissolved in 0.2 M KCl

to concentrations that would deliver the desired amount in

100–500 pl injection volumes. Injection volumes were calibrated

by micrometer as described [9]. RNA and morpholinos were

microinjected into dechorionated embryos at the 1–2 cell stage.

Concentrations injected per embryo were as follows: oep RNA

50 pg, ntla morpholino 200 or 400 pg, lefty1 morpholino 250 pg

and control morpholino 250 pg. Note, these experiments were con-

ducted in early 2000s and the preparation of morpholinos at that

time allowed for clean phenocopies at very low concentrations.

Today, we typically use 2 ng or more of these same morpholinos

to produce the same effect. To generate LZoep embryos, oep RNA
was injected into 1–2 cell stage embryos derived from crossing

adults homozygous for the oeptz257 mutation.

(c) Shield transplantations and ablations
To label donor cells, donor embryos were injected with lysine fix-

able fluorescein dextran 10 000 MW dye (Molecular Probes)

resuspended at 5% w/v in 5 mg ml21 phenol red dissolved in

0.2 M KCl. For transplantation, donor embryos were injected

with 500 pl fluorescein dextran alone or containing the appro-

priate amount of RNA or morpholino as described above. Shield

transplantations and ablations were done as described [96]. Trans-

plantations and ablations were performed in either 1� Danieau as

described [96], or in Hank’s balanced salt solution. Any trans-

planted embryos that did not develop normally were omitted

from analysis. For example, embryos with abnormal bends or

kinks in the axis, abnormal extension of the axis, or embryos with

any degree of cyclopia were omitted. In embryos containing

shield transplants, labelling of some dorsal spinal cord neurons

was occasionally observed [97], but any embryos with substantial

labelling outside of axial mesoderm derivatives were omitted

from the analysis. Shield-ablated embryos were analysed by

in situ hybridization for both pitx2 [33] and for sonic hedgehog
(shh) [98] transcripts. Only shield-ablated embryos that seemed to

develop normally (see above), but yet had gaps of shh expression

in the notochord and floorplate, were included in the analysis.

(d) In situ hybridization and microscopy
In situ hybridization was performed using standard techniques.

Transplanted cells were detected with anti-fluorescein antibodies

conjugated to HRP (Roche) and developed using DAB substrate

and hydrogen peroxide. Plasmids used for in situ: pitx2 [33] and

sonic hedgehog (shh) [98]. Embryos were mounted in Permountw

(Fisher) and photographed on a Zeiss Axioplan microscope

equipped with a Zeiss AxioCam digital camera. Images were

adjusted for brightness and contrast with Adobe Photoshop 5.5.
3. Results
(a) Abnormal expression of pitx2 in LZoep embryos
oep mutants in which the early requirement for oep is rescued

by oep mRNA injection at the 1-cell stage—generating late-

zygotic oep (LZoep) mutants—develop L–R asymmetry

defects. In these embryos, the asymmetric expression of pitx2,

spaw, cyclops and lefty2 is predominantly absent in the LPM

and dorsal diencephalon of 18–22 somite LZoep embryos

([33–35] and R.D.B., data not shown; figure 1). While wild-

type levels of pitx2 are never observed, further characterization

reveals that a small percentage of LZoep embryos express weak

levels of pitx2 in the LPM (n ¼ 33/246; 13.5%; figure 1c,d,e). In

these embryos, pitx2 was found in small patches of cells within

areas of the LPM where pitx2 would normally be expressed.

This expression was not restricted to a particular area along

the anterior–posterior axis. Weak expression of pitx2 was

never observed in the dorsal diencephalon of LZoep embryos

(data not shown). The weak expression observed in LZoep
embryos was not restricted to the left LPM, but was also

observed on the right (n ¼ 11/33) or bilaterally in the left

and right LPM (n ¼ 1/33; figure 1e). These observations

suggest that there are two defects in asymmetric gene expres-

sion in LZoep embryos. First, pitx2 expression is not induced

to wild-type levels in the LPM. Second, in those embryos that

do exhibit LPM pitx2 expression, proper establishment of the

asymmetric L–R pattern of pitx2 does not occur.
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between wild-type and LZoep embryos ( p , 0.00001 in both cases; x2-test applied).
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(b) oep in the midline of LZoep embryos can restore
pitx2 expression

The loss of pitx2 LPM expression in LZoep embryos is owing to

insufficient oep activity. To determine the spatial requirement

for oep in pitx2 expression in the LPM, we generated genetic chi-

meras by transplantation. Asymmetric pitx2 expression in the

LPM is first observed at 10 somites in wild-type embryos

(figure 2f ) and is present through 26 h post fertilization

(hpf). During somitogenesis, oep is expressed in the left and

right LPM, in the developing dorsal diencephalon and in

derivatives of axial mesoderm including the midline noto-

chord, overlapping with lefty1 expression ([31]; figure 2d,g).

As Oep is required for Nodal signalling, and pitx2 is a

known target of Nodal signalling, it is conceivable that oep is

predominantly required in the LPM to allow Nodal ligand to

induce pitx2 to be expressed at wild-type levels. To test this

possibility, we first transplanted wild-type cells into 1000-cell

stage LZoep embryos. Transplantation at this early stage

places wild-type cells in a scattered fashion throughout many

tissues in the embryo. LZoep embryos with wild-type cells in

the LPM were obtained, but rescue of pitx2 levels was not

observed (n ¼ 10). Large numbers of cells can be placed more

accurately into the LPM by performing margin transplants at

the 50% epiboly stage. Despite having large numbers of wild-
type cells in the LPM, but not in other tissues, 10/14 showed

no pitx2 expression in the LPM and 4/14 showed weak

expression of pitx2 similar to LZoep controls. This suggests

that providing Oep in the LPM does not allow for Nodal

signalling to occur in an embryo otherwise lacking Oep.

As oep is also expressed in the midline during the stages

when pitx2 is first expressed in the LPM (figure 2d,g), oep
may be required in the midline to affect pitx2 expression. We

tested this hypothesis by placing wild-type cells into the mid-

line of LZoep embryos using shield transplantation (figure 3a)

[96,97]. The zebrafish shield is equivalent to the organizer in

Xenopus and gives rise to axial mesoderm and floor plate. In

these experiments, the shield of the host embryos was removed

and replaced by the shield from the donor. This type of trans-

plantation places donor cells throughout the floor plate and

axial mesoderm derivatives, including the hatching gland,

head mesoderm and notochord (figure 3b). We did not observe

transplanted cells in the dorsal forerunner cells or in KV with

this procedure (data not shown). Transplantation of a wild-

type shield into a wild-type host does not strongly affect the

levels or the asymmetric expression of pitx2 in the LPM

(figure 3c,e,f ), indicating that this form of transplantation

does not robustly impact normal L–R patterning per se.

While strong levels of pitx2 were never observed in LZoep con-

trols, wild-type shields transplanted into LZoep embryos were
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capable of restoring pitx2 expression to strong levels, similar

to wild-type, in the LPM in a proportion of embryos

(figure 3d,e,f ). To further ensure that this result is not simply

a consequence of the transplantation technique, shields from

LZoep embryos were transplanted into LZoep hosts. These

transplanted embryos expressed weak levels of pitx2 similar

to LZoep controls, but strong levels of expression were not

observed (figure 3e). These results suggest that restoring oep
expression in the midline can promote pitx2 expression in the

LPM in LZoep embryos. Given that pitx2 is a bona fide Nodal

transcriptional target, and Nodal requires EGF-CFC proteins

to function, we assume any pitx2 expression in the LPM

requires that residual Oep protein supplied via injection is

still present.
To determine if a particular region of the midline must

express oep to activate pitx2 in the LPM, we monitored

where transplanted cells were located. We did not find any

correlation between the position of wild-type cells in the mid-

line at the 18 somite stage and rescue of pitx2 expression in

the LPM of LZoep embryos. For example, some LZoep
embryos with strong expression of pitx2 had wild-type cells

only in the most anterior floorplate cells, while others had

wild-type cells throughout all axial mesoderm derivatives

(data not shown). Intriguingly, while placing wild-type cells

into the midline of LZoep hosts could restore pitx2 expres-

sion to strong levels in some cases, it did not correct the

randomization of pitx2 expression seen in LZoep embryos

(see §4).
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(c) Blocking ntla activity in LZoep embryos can restore
pitx2 expression

Our transplantation experiments suggest that the midline-

localized oep has an active role in promoting pitx2 expression

in the LPM. This is in apparent contrast with models that sup-

port a more passive role for the midline (see §1). To further test
the function of the midline in L–R patterning, we removed

midline structures from LZoep embryos using morpholino anti-

sense oligonucleotides (MO) against no tail (ntla; the zebrafish

Brachyury/T orthologue) [99]. ntla mutants and morphants

lack the notochord, have expanded floorplate, have a substan-

tially reduced KV and display bilateral expression of pitx2 and

other left side-specific genes [29,34,35,77,78,100–103]. Injection
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of the ntla MO in wild-type or LZoep embryos results in 100% of

the injected embryos displaying the morphological ntla pheno-

type. In wild-type embryos injected with ntla MO, pitx2 is

expressed bilaterally as is seen in ntla mutants (figure 4c).

Surprisingly, injection of ntla MO into LZoep embryos can

restore expression of pitx2 in the LPM to strong levels in

many cases; while LZoep mutants never exhibited strong

LPM pitx2, 30% of LZoep mutants injected with ntla MO

showed strong levels (figure 4d–g). Unlike injection of ntla
MO, injection of a control MO does not dramatically alter

pitx2 gene expression levels in wild-type or LZoep embryos
(figure 4f,g). The most parsimonious explanation for these

results is that the notochord and/or KV in LZoep embryos

represses pitx2 transcription in the LPM, and that this repres-

sion can be released by blocking ntla function and removing

midline structures.

(d) Midline ablations in LZoep embryos can restore
pitx2 expression

Loss of ntla affects the notochord and the structure of KV

[100,103]. To test if the phenotype of ntla MO-injected
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Figure 5. Shield ablations in wild-type and LZoep embryos. (a) Illustration of shield ablation experiment. A needle is used to remove the shield, and cells on either
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right (R) are indicated. Damage to the midline in (b,c) is observed as gaps in the normally continuous shh expression in the midline. Note that these images are
focused on the shh expression in the embryos, thus the pitx2 expression in the Rohan-Beard neurons is not as visible. (d ) Bar graph representing pitx2 expression in
shield-ablated embryos. Expression categories and colour codes are described in figure 1. (e) Statistical significance of experiments conducted as described in figure 3.
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LZoep embryos is owing to loss of the notochord specifically,

we removed portions of the midline by shield ablation.

Portions of the shield, and cells on either side of the shield,

were removed by suction with a needle (figure 5a; [96]).

The damaged shield region only partially regenerates, result-

ing in embryos that often have gaps in the notochord

and floorplate as can be detected by in situ hybridization of

the midline marker sonic hedgehog (shh). To select against

embryos with non-axial mesoderm tissue losses, only

embryos that appeared to develop normally, but had gaps

in midline shh expression, were included in the analysis

(see §2).

When shields were ablated in wild-type embryos, the

majority of embryos expressed pitx2 bilaterally in the LPM,

indicating that damage to the midline affects pitx2 expression

as expected (figure 5b,d). Shield ablation in LZoep embryos

increased the number of embryos that weakly expressed pitx2
and restored pitx2 expression in the LPM to strong levels in

some embryos, results that were statistically significantly
different from non-ablated LZoep embryos (figure 5c–e). Com-

pared with ntla MO injection, the extent of midline removal is

considerably less in shield-ablated LZoep embryos and, accord-

ingly, the proportion of LZoep embryos expressing strong

levels of pitx2 was lower. Taken together, the effects of ntla
MO and shield ablation in LZoep embryos demonstrate that

disruption of the notochord can restore LPM pitx2 expression

to strong levels in LZoep embryos.

(e) Blocking lefty1 activity in LZoep embryos can restore
pitx2 expression

lefty1, the feedback inhibitor of Nodal, is expressed in the

notochord of zebrafish embryos [82,84], and knockdown of

lefty1 results in bilateral expression of Nodal targets in the

LPM [80,104]. We note that zebrafish lefty1 (lft1) is expressed

during early somitogenesis in the posterior midline, just

anterior to KV, prior to the initiation of asymmetric gene

expression in the LPM (this study and see [84]). At the
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lft1 MO-injected wild-type (c) or LZoep (d,e) embryos at the 18 somite stage. Anterior is up; left (L) and right (R) are indicated. ( f ) Bar graph representing pitx2
expression in MO-injected embryos. Genotype of injected embryos is listed first, followed by the injected MO. The ntla MO results from figure 4 are shown here to
aid in comparison with the lft1 MO results. Expression categories and colour codes are described in figure 1. (g) Statistical significance of experiments conducted as
described in figure 3.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150402

9

3 somite stage, 11/11 wild-type embryos expressed lft1 in the

posterior notochord region. Asymmetric pitx2 expression

begins at the 10 somite stage in the posterior LPM, just lateral

to the lft1 expression domain in the midline (figure 2e,f ). We

also detect lft1 expression in the midline of LZoep embryos at

early and late somitogenesis stages, but sometimes at lower

levels (figure 2h,j).
To test if lft1 plays a role in the midline-dependent repression

we observe, we injected MO against lft1 into wild-type and
LZoep embryos. Injection of low levels of the lft1 MO into

wild-type embryos does not affect morphogenesis through

somitogenesis (figure 6a,b; also see [80,104]), but results in predo-

minantly bilateral expression of pitx2 (figure 6c,f). This pattern of

expression is statistically no different from that observed upon

midline removal using the ntla MO (figure 6f,g). Indeed, injection

of lft1 MO into LZoep embryos can restore pitx2 expression to

strong levels in the LPM, strikingly similar to what is observed

when the midline is ablated in LZoep embryos (figure 6d–g).
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These results indicate that lft1 is required for the repression of

LPM pitx2 expression in LZoep mutants.

( f ) oep in the midline of LZoep embryos does not
rescue randomization of pitx2 expression

The results above show that the major phenotype of LZoep
embryos, the strong reduction of pitx2 expression in the LPM,

can be rescued by providing oep in the midline, ablating the mid-

line or by blocking lft1 function. To determine if the second

phenotype in LZoep mutants, the randomized induction of

pitx2, is also rescued in these treatments, we monitored the

L–R distribution of pitx2 expression in all experiments. We

find that manipulations that rescued pitx2 expression to strong

levels did not restore expression solely in the left LPM but also

resulted in right LPM expression (figures 3e, 4f and 5d).

Additionally, manipulations that resulted in bilateral pitx2
expression in wild-type embryos did not consistently result in

bilateral expression in LZoep. For instance, knockdown of ntla
results in bilateral pitx2 expression in WT embryos but random-

ized expression in those LZoep embryos that express any

LPM pitx2 (figure 4f ). This suggests that there is an additional

role for Oep in establishing or promoting asymmetric gene

expression that is not rescued in our experiments.
4. Discussion
Since the first experiments that implicated the notochord in

L–R patterning, the importance of an intact midline in this

process has emerged from mutant analysis, gene knockdown

experiments and midline extirpations. The results presented

here suggest both an activating role and a repressive role

for the midline in promoting transcription of pitx2 in the

LPM in zebrafish. In LZoep embryos, the loss of strong pitx2
expression levels in the LPM can be rescued by introducing

wild-type cells into the midline. This suggests that oep in

the midline can actively promote pitx2 expression in the

LPM. Furthermore, we show that removal of midline struc-

tures from LZoep embryos, either by shield ablations or

injection of ntla MO, can also restore pitx2 expression to

strong levels in the LPM. This suggests that the midline

represses pitx2 in the LPM. These results can be reconciled

by a model in which oep in the midline functions to overcome

a midline-derived repressor of LPM Nodal activity.

(a) A model for Lefty and Oep function prior to
asymmetric gene expression during the
establishment of L – R asymmetry: the midline
as an ‘activator’ and ‘repressor’

Based on our results, and previously proposed models for the

establishment of L–R asymmetry, we propose the follow-

ing model for L–R patterning in zebrafish (figure 7a–c). Both

the left and right LPM have the potential to express left

side-specific genes such as pitx2, which typically occurs at the

10 somite stage. lft1 expression (dark blue; figure 7a) is induced

in the posterior notochord prior to 10 somites, most likely by an

earlier Nodal signalling event. Indeed, at the 3 somite stage,

robust lft1 can be observed in this domain. Lefty1 from this mid-

line domain increases the amount of Nodal ligand required

to induce LPM-nodal (i.e. raises the threshold required for
robust Nodal activation) and thus represses pitx2 transcription

(black inhibition arrows; figure 7a). This occurs symmetrically

and prevents LPM Nodal activation prematurely, before the

symmetry-breaking event at KV has occurred. An oep-depen-

dent process in the midline weakens repression by Lefty1

(grey inhibition arrows; figure 7b). As Lefty can bind to Oep,

and overexpression of Oep can suppress the effects of over-

expressing Lefty [8], we suggest that physical interaction

between Lefty1 and Oep at the midline sequesters some

Lefty1, thereby reducing the effective amount of Lefty1 able

to repress LPM Nodal signals. This antagonism of Lefty1 by

Oep would thus allow Nodal signals to activate transcription

in the LPM (light purple; figure 7b).

While the early interaction between oep and lft1 that our

experiments have uncovered is important for allowing Nodal

signals to initiate in the LPM, it may be less critical for setting

up the asymmetry of these signals. After all, the early domain

of lft1 is L–R symmetrical and we would expect this to dampen

Nodal signalling in both the left and right LPM equally.

Instead, asymmetries in LPM Nodal activity are genera-

ted downstream of asymmetric flow in KV and the resulting

left-sided downregulation of the Nodal repressor charon.

Flow-dependent downregulation of charon and oep-dependent

dampening of Lefty in the midline would thus cooperate to

generate a signalling threshold in which Nodal signals are

able to robustly activate in the left LPM around the 10 somite

stage but not in the right LPM. Subsequently, Nodal signals

spread anteriorly in the left LPM and induce further lft1
expression in the notochord (figure 7c), which then acts

to maintain asymmetry by preventing Nodal signals from

activating and spreading in the right LPM.

This model can explain the phenotypes we observe in

LZoep embryos as well as in the various treatments (ablations,

transplants and MO injections) performed in this study. In

LZoep embryos (figure 7d–g), lft1 is still present in the pos-

terior notochord (figure 7d ). This expression of lft1 is likely

owing to residual Oep protein from the 1-cell oep mRNA

injection at the time when lft1 is induced, several hours

before pitx2 is initiated in the LPM. However, in these same

embryos, later oep function is greatly reduced. This late

reduction in Oep in LZoep mutants, therefore, results in

more active Lefty repressor in the posterior notochord;

thus, Nodal signals are repressed at a level that prevents

them from initiating target gene expression in the LPM

(figure 7e). Removing the repressor by loss of the midline

(ntla MO (figure 7g) or shield ablation) or by reducing lft1
itself (figure 7f ) is sufficient to allow for signalling to occur

in the LPM of LZoep mutants because these treatments

replace the requirement of Oep to repress Lefty. Importantly,

these treatments also suggest that there is sufficient function-

ing Oep in the LPM of LZoep embryos to allow for robust

Nodal activity; thus, the lost or weakened pitx2 expression

in LZoep is not exclusively a consequence of loss of Oep

in the LPM. This agrees with our finding that adding Oep-

positive cells to the LPM of LZoep mutants cannot rescue

high levels of LPM pitx2 expression. Furthermore, although

the potential for rescue is clear, we suggest that the rescue

of LPM pitx2 in LZoep mutants, either after wild-type shield

transplants or injection of ntla MO, is only partial because

the LPM still has limited functional Oep remaining from

the early mRNA oep injection.

This model is consistent with the timing and location of

lft1, pitx2 and oep expression. Zebrafish lft1 is expressed in
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the posterior notochord preceding pitx2 and spaw expression

in the LPM. pitx2 expression is observed later (beginning

around the 10 somite stage) in the posterior-most LPM, just

lateral to the posterior notochord and KV (figure 2). lft1
expression in the midline later extends from the posterior

notochord to the anterior, induced by Nodal from the LPM

[87,88]. Our findings provide a previously unappreciated

role for early lft1 in establishing LPM Nodal signals.

Moreover, the model explains the results of our midline

ablation experiments in wild-type and LZoep embryos. Mid-

line ablations result in bilateral expression of pitx2 in wild-

type embryos and can restore pitx2 to strong levels in LZoep
mutants. In our model, the source of the repressor (the

early domain of lft1), the notochord, is removed in these

experiments, allowing Nodal signals to activate pitx2 in the

LPM strongly and bilaterally. It is worth noting that the bias-

ing mechanism occurring at KV should be unaffected by

these treatments as our transplants did not contribute to the

dorsal forerunner or KV populations. Nevertheless, we

likely see bilateral pitx2 expression because loss of the early

lft1 repressor allows Nodal activity at both the left and right

LPM to induce Nodal targets, regardless of subtle differences

in Nodal levels caused by the biasing mechanism at KV.

However, it is worth noting that KV function may not strictly

be required for Nodal signalling in the LPM. In ntla mutants
or embryos injected with ntla MO, ciliated cells are present,

but KV does not form. Moreover, spaw expression around

KV is lost in ntla mutants, suggesting that the activating

signal for Nodal in the LPM in this mutant must come from

another source that remains elusive at this point. It is possible

that this LPM-spaw activation in the absence of KV-spaw
occurs because lft1 and charon, which both encode Spaw

repressors, are also not expressed in ntla mutants, and there-

fore, the threshold for LPM-spaw activation is likely markedly

reduced. Nevertheless, as KV-spaw is absent in ntla mutants,

this observation calls into question the current major model

that LRC Nodal signals induce the LPM Nodal cascade. In

the mouse, node-derived Nodal is thought travel to the

LPM and initiate Nodal expression there; indeed, Nodal
mutants fail to activate LPM Nodal expression [24]. However,

it is yet to be determined whether node-derived Nodal

protein alone is sufficient to induce LPM Nodal in the

endogenous context or whether node-Nodal is able to

active the LPM Nodal cascade in the absence of inhibitors

like Cerl-2. It is worth noting that, unlike what we report in

zebrafish, it is thought that LPM Nodal signals are respon-

sible for inducing floor-plate expression of Lefty1 [85], and

therefore, removing Lefty1 from Nodal mutants would likely

have no impact on whether the Nodal cascade is activated

in the LPM.
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(b) The role of midline Oep in generating the
asymmetry of LPM Nodal signals

In addition to the role oep plays in promoting gene transcrip-

tion in the LPM, our results also suggest another role for oep
in establishing proper L–R pattern. The weak expression seen

in some LZoep embryos is not restricted to the left side,

suggesting that the loss of oep leads to a randomization of

the L–R pattern. We do not know where oep is required in

this process, as oep in the midline did not rescue randomiz-

ation in LZoep mutants. As a result, this is more difficult to

reconcile, but may be a consequence of the unique back-

ground that LZoep embryos provide. The ability for Nodal

to signal is likely waning during somitogenesis as Oep pro-

vided by RNA injection diminishes. LZoep embryos with

weak pitx2 expression, and the fraction of embryos that

respond with strong pitx2 expression in our experiments,

may encompass those with more residual Oep. Thus, it is pos-

sible that one-sided expression, versus bilateral, occurs in our

experiments where the midline is removed in LZoep embryos,

owing to the amount of Oep available in the LPM for the

response. Furthermore, L–R patterning can be easily disrupted

by situations that alter the timing and expression of repressors

and activators. In LZoep embryos without additional treat-

ments, the randomization of pitx2 expression could likewise

be owing to the indeterminate levels of Oep present, which

may alter the timing of response to signals from the LRC.

As a final note, in addition to the midline, oep is also

expressed in the LPM and diencephalon. The shield trans-

plantations and midline ablations reported here did not

restore pitx2 expression in the diencephalon of LZoep mutants

(data not shown), suggesting that oep might be required in the
diencephalon for expression to occur. We have previously

shown that repression of left side-specific genes also occurs

in the diencephalon [34], thus it is intriguing to speculate

that oep also plays a role in overcoming this repression.

In summary, the results in this paper support a model

wherein midline Oep functions to repress lft1, expressed

in the notochord, thereby lowering the threshold and thus

promoting activation of the Nodal cascade in the LPM.
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