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Consistent left–right (LR) asymmetry is a fundamental aspect of the body-

plan across phyla, and errors of laterality form an important class of human

birth defects. Its molecular underpinning was first discovered as a sequential

pathway of left- and right-sided gene expression that controlled positioning

of the heart and visceral organs. Recent data have revised this picture in two

important ways. First, the physical origin of chirality has been identified;

cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and

patterning of the LR axis. Second, the pathway is not linear: early disrup-

tions that alter the normal sidedness of upstream asymmetric genes do

not necessarily induce defects in the laterality of the downstream genes or

in organ situs. Thus, the LR pathway is a unique example of two fascinating

aspects of biology: the interplay of physics and genetics in establishing large-

scale anatomy, and regulative (shape-homeostatic) pathways that correct

molecular and anatomical errors over time. Here, we review aspects of asym-

metry from its intracellular, cytoplasmic origins to the recently uncovered

ability of the LR control circuitry to achieve correct gene expression and

morphology despite reversals of key ‘determinant’ genes. We provide

novel functional data, in Xenopus laevis, on conserved elements of the

cytoskeleton that drive asymmetry, and comparatively analyse it together

with previously published results in the field. Our new observations and

meta-analysis demonstrate that despite aberrant expression of upstream

regulatory genes, embryos can progressively normalize transcriptional

cascades and anatomical outcomes. LR patterning can thus serve as a para-

digm of how subcellular physics and gene expression cooperate to achieve

developmental robustness of a body axis.

This article is part of the themed issue ‘Provocative questions in left–

right asymmetry’.
1. Introduction
Most vertebrates (and many invertebrates) have bilaterally symmetric external

bodyplans. Yet these same animals exhibit consistent asymmetries in the position

or anatomy of internal organs such as the heart, viscera and brain [1]. Defects in

LR asymmetry are an important class of human birth defects, including

heterotaxia (the lack of concordance between internal organs, allowing each

organ to individually ‘decide’ on its placement on the left or right side of the

body), single organ inversions such as dextrocardia (the reversal in position and

morphology of the heart) and isomerisms (symmetry of the LR axis, leading to

either duplication or complete loss of unpaired organs such as the spleen).

Patients with complete reversal of asymmetry (situs inversus) have fewer health

consequences than these other conditions because heterotaxia and isomerisms

often involve inappropriate connections between the heart, lungs and other visc-

eral organs [2]. Interestingly, consistent laterality affects not only asymmetric

organs, but also the manifestation of numerous diseases, such as the location

and incidence of tumours and immune responses [3,4], and conditions affecting
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paired (seemingly symmetrical) organs, including hip

dysplasia, limb defects and eye development [5–7].

LR asymmetry is a unique puzzle in development [8],

relevant to the ontogeny of complex bodyplans and even to

colonies of simpler organisms [9]. The embryonic anterior–

posterior (AP) axis probably exists in order to place sense

organs at the end of the animal that encounters novel environ-

ments first (oriented with the main axis of motion). The

dorsoventral (DV) axis can be set by gravity or sperm entry

point. However, once those two orthogonal axes are set, the

alignment of the LR axis is fixed; in order to distinguish L

from R, symmetry has to be broken. Crucially, it is not

merely a question of making L different from R, but doing it

so that the LR axis is consistently oriented with respect to

the AP and DV axes. The former process results in fluctuating

asymmetry (an indicator of stress via the difficulty of keeping

the two halves of the body precisely coordinated during

growth); the latter is true-biased asymmetry of anatomical

structures. This is a difficult problem, as our universe does

not macroscopically distinguish left from right [10,11]. This

problem was noted long ago, by workers studying chiral

biochemistry and its implications for development [12–14],

clinical observations of mirror-imaging in anatomical features

of human twins [15], unidirectional coiling of snail shells

[16] and functional handedness in neural lateralization [17].

Early mechanistic work in this field identified a set of

chemical agents that was able to perturb (randomize) asym-

metry in animal models [18–22]. The first molecular

explanations for the asymmetry of body organs came from

studies in the chick [23], with the identification of asymmetri-

cally expressed genes, such as the left-sided Sonic hedgehog
(Shh) and Nodal, the inductive and repressive relationships

among these genes, and functional studies showing that aber-

rant expression of any of these was sufficient to randomize the

situs of the heart, gut and other viscera [24,25]. These data not

only helped explain organ laterality in normal development

but also provided a mechanistic explanation for laterality dis-

turbances long known to occur in conjoined twins [26]. The

central component of the LR pathway was the left-sided cas-

sette formed by Shh inducing expression of Nodal, which

regulates Lefty, which subsequently induces Pitx2 [27–29].

The conserved molecular pathway in Xenopus, chick, mouse

and zebrafish as described in early work on LR asymmetry

[30,31] has since been extended considerably, as described in

figure 1 and reviewed in [32,33], by loss- and gain-of-function

approaches in a range of species that reveal the functional con-

nections among LR patterning proteins. New players include

Activin, Follistatin, Derrière, Coco, Mad3, BMP, Noggin4, Syn-

decan2 and Fgf8 [28,34–45]. Recently, other downstream

factors have been demonstrated in unilateral function during

LR determination, such as calcium signalling and retinoic

acid [46–54]. Together, this body of work reveals a progressive

cascade of left- and right-specific activities that involve power-

ful signalling pathways. These signalling molecules then

provide distinct signals to organ primordia on either side of

the midline, resulting in asymmetric organogenesis.
2. Physics upstream and downstream
of transcriptional networks

Regardless of the completeness of a transcriptional pathway

or network model, one has to explain why the first
asymmetric gene becomes expressed on one side but not

the other. It is a fundamental limitation of transcriptional

regulatory networks that they do not in themselves constrain

geometry—no gene-regulatory network (GRN) can generate

consistently chiral output (distinguish left from right). Thus,

upstream of any such regulatory cascade must lie some

piece of physics which is able to break symmetry and reliably

orient subsequent events with respect to the other two

axes [55,56].

Interestingly, this is not strictly a multicellular phenom-

enon. In a number of systems, from bacteria to ciliates to

human somatic cells in vitro, single cells exhibit consistent

chirality in their movements and behaviours [12,57–70],

both as individual cells and as collectives [64,71]. For

example, outgrowth of neurites is predominantly clockwise

[59,62,67,72]. The asymmetric growth and migration of

various cell types on micropatterned surfaces has demon-

strated the role of actomyosin networks in the generation

and maintenance of consistent chirality of migration, cell

shape and tissue morphogenesis [58,61]. Thus, metazoan

organisms face the problem of amplifying subcellular chiral-

ity into tissue-wide asymmetry across a midline, but do not

need to reinvent the symmetry-breaking and orientation

steps, as these appear to be ancient and ubiquitous.

One candidate for a chiral element of physics upstream of

asymmetric gene expression is ciliary flow at neurulation

[49,73,74]; this model however faces numerous problems,

which have been detailed elsewhere [75–79]. Recent func-

tional data revealed conserved mechanisms in a range of

organisms from plants to mammals, which establish asym-

metry without a ciliated structure, or long before it forms;

indeed, many phyla including some vertebrates determine

their LR axis very early after fertilization [80–90]. Even

mouse embryos are known to exhibit molecular and func-

tional asymmetries (e.g. components such as cofilin, which

is also asymmetric in cleavage-stage frog embryos) as early

as the cleavage stages [85,91,92].

While ciliary flow may impinge on downstream transcrip-

tional events in those species where it exists (not pig [82] or

chick [93,94] for example), it cannot be the origin of asym-

metry in most phyla. From data in a range of model

species, it is clear that numerous aspects of development,

including maternal protein localization [84,95–97], Wnt sig-

nalling [98] and small signalling molecules [88], are already

consistently asymmetric long before cilia appear: most

animal embryos can tell their left from their right at very

early stages. Thus, the search for the origin of asymmetry

has been extended far upstream of neurulation [22,99].

One interesting class of models links asymmetry to chro-

matid segregation [100–103]—a proposal that needs to be

tested in the available model systems, as it offers the possi-

bility of linking asymmetry to the fundamental dynamics of

DNA. This model has been linked to data on birth defects

and epithelial morphogenesis in humans and mice [104]. As

in Xenopus, the mouse model has also revealed that a-tubulin

organization is critical for asymmetry, via studies of the

protein Mahogunin [84,86,87,105,106].

A remarkably prescient prediction was made by a paper

published before all of the molecular work on the LR path-

way [107], in which Brown & Wolpert hypothesized a

chiral element that initiates biased transport inside the early

embryonic blastomeres. More recent work in several models

has confirmed early hypotheses while elaborating on these
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Figure 1. Classical view of progressive linear cascades in the asymmetry-determining pathway. Numerous molecular components have now been implicated in the
establishment of L or R identity of the two embryonic halves. The functional data testing knockdown and overexpression of each gene, followed by examination of
the expression of downstream steps, have given rise to a view of the pathway as a linear progressive cascade of repressions and inductions, with variations between
species (for example, the activation of Nodal by Notch/Delta represents the system in mouse and chick, but Notch/Delta actually inhibits Nodal in zebrafish and sea
urchin). A core cassette is the promotion of ‘left’ by left-sided Sonic hedgehog (Shh) expression inducing Nodal and then Lefty and Pitx2, which ultimately sets the
situs of the heart, while Activin repression of Shh on the right of the node promotes ‘right’ with the inactivation of Nodal and therefore derepression of Snail. Such a
linear perspective predicts that defects in the expression of upstream genes will result in corresponding defects in their downstream targets, propagating errors
towards organ heterotaxias. Recent data have indicated that this view of asymmetry is limited in two ways. Gene-regulatory networks on their own cannot
distinguish spatial properties (cannot tell L from R or constrain geometry in any way), nor can they directly control the physical forces needed to shape organ
morphogenesis. Moreover, a linear pathway does not correctly predict the many examples of progressive defect repair in the LR signalling that leads to organ
situs. Thus, any such transcriptional network must be bookended by chiral physical elements upstream (to link the very first asymmetric transcriptional event
to one side but not the other) and downstream (to shape the asymmetric organs); it must also include mechanisms for sensing aberrant gene expression
and correcting downstream steps.
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ideas [108,109], showing that the cytoskeleton is centrally

involved in generating the original asymmetric cues that

break and orient symmetry. A number of model species

such as Caenorhabditis elegans [51,110–113] and snails

[114–117] were known to use cytoskeletal dynamics to deter-

mine chiral cell behaviour and subsequent LR patterning.

However, recent data in these models, together with mam-

malian cells and Drosophila [118,119], have revealed many

of the key details.

The intriguing structure of centrioles [120], including their

anti-clockwise rotation [121], and the role of microtubules in

generating asymmetry in neutrophils [60,122], plants [123],

and frog [84] and C. elegans embryos [124,125], lends evi-

dence to the theory that the centrosome could be a
symmetry-breaking, chiral structure [78,126]. Evidence for

intrinsic chirality, and not interactions with the substrate,

were provided by the counter-clockwise rotation exhibited

in zebrafish melanophores [63]. A particularly illustrative

case of spontaneous intracellular chiral cytoskeletal organiz-

ation again illustrates the role of actomyosin networks in

the ability of a-actinin to spontaneously arrange directio-

nally, or reverse the directionality if the protein is grossly

overexpressed [57].

Studies in Drosophila have demonstrated the effect

of intrinsic cellular chirality on embryonic laterality

[118,127–135]. Unconventional myosins, such as Myosin1d,

have a clear role in affecting the asymmetry of the gut and

genitalia in Drosophila [131,132] and this asymmetry is due
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to a direct effect on the actin filaments in epithelia [135]. Actin

motility on Myo1c occurs in counter-clockwise direction

[136]; myosin V is a left-handed spiral motor toward the

plus end of actin [137], while myosin II is a right-handed

spiral motor [138]. Moreover, the effect of these uncon-

ventional myosins on organismal asymmetry is linked to

their effect on intrinsic cellular chirality [127], and individual

cells can contribute to mechanical differences in generat-

ing chirality at the tissue level [127,128], a finding also

demonstrated in C. elegans [81,109].

Our own work in Xenopus has demonstrated a number of

key features that point to the importance of the cytoskeleton

at multiple points in laterality. Firstly, fundamental cyto-

skeletal proteins such as tubulins and myosins are

functionally important for normal embryonic laterality at

the very earliest points of embryonic development, immedi-

ately post-fertilization [84,86]. The cytoskeleton appears to

be required for the normal early localization of asymmetric

components such as ion channels [84,95,97], a mechanism

widely conserved to many somatic cell types [139,140]. Sec-

ondly, the conservation of phenotypes obtained from

mutations in cytoskeletal and cytoskeleton-associated pro-

teins exhibited in frog, compared to those of plants [84,86],

snails [87] and Drosophila [86], demonstrate the need for phys-

ical signals upstream of gene-regulatory networks (GRNs):

for example, the organ-specific effects of myosins on Droso-
phila laterality were replicated in frog [86], transcending the

differences in molecular LR pathways between vertebrates

and invertebrates and raising the question of how the cyto-

skeleton generates chirality. Finally, the apparent disconnect

between the asymmetric expression of Nodal and subsequent

organ situs observed in mouse [105] and replicated in frog

[86] highlight a conserved role for the cytoskeleton not only

in laterality, but in the ability to correct earlier defects in later-

ality between the point of expression of markers of laterality

and the positioning of visceral organs.

Downstream of the chiral physics within cells lie physio-

logical mechanisms that amplify subcellular chiralities into

true LR asymmetries across cell fields. One such system is

the diffusion-based LALI (local activation, long-range inhi-

bition) system described in mouse [141,142]. Another is the

chiral bioelectric gradient that redistributes intracellular mor-

phogens such as maternal serotonin [54,80,96,143–148]. This

process is best understood in frog embryos, but has also been

observed and functionally implicated in amphioxus [149], sea

urchin [146,150,151], C. elegans [152–154], zebrafish

[96,155,156] and recently humans [157,158]. Indeed, a recent

analysis of the differences between blastomeres at the very

earliest stages of embryo development identified distinct

metabolites in L versus R cells in the eight-cell embryo

using mass spectrometry [88]. The majority of these metab-

olites themselves have roles in functional regulation of ion

transport [159–167], suggesting possible feedback loops in

electrophysiology that could be important amplifying mech-

anisms for initially subtle LR asymmetry. Both of these

systems impinge upon a key asymmetric gene, NODAL

[37,168], and lie upstream of a cascade of asymmetric gene

interactions. However, much as a physical process is needed

to anchor consistent asymmetry upstream, genetic pathways

likewise need to control physical forces in order to actually

implement asymmetric morphogenesis.

GRNs feed into specific proteins that harness physical

forces such as tension and adhesion to control asymmetric
bending and growth of internal organs [169]. Mechanical

forces are critical for the rotation and looping of internal

organs ([170,171], see reviews for the heart in chick

[172–175]). In the development of Xenopus gut morphology,

a rightward torsion results in concave and convex topologies

for cells on the left and right sides of the lateral plate meso-

derm, respectively, and cells on the right elongate twice as

much as cells on the left, although proliferation rates

remain the same [176]. Similarly, in Drosophila, asymmetries

arising from planar cell polarity in gut looping through the

activity of myosin1d were able to generate differences in ten-

sion, with greater tension on the left side of the cell driving

leftward rotation [127]. In heart looping, a similar role

for actin and myosin in driving dextral looping has been

exhibited in zebrafish [171] and chick [177]. Recently, compu-

tational modelling has supported evidence suggesting that

differential growth supplies the forces that cause the heart

tube to bend ventrally, while cytoskeletal movements can

drive rightward torsion [178]. The maintenance of symmetry

could also be due to differences in the composition of the

extracellular matrix (ECM) as observed in perturbations of

ECM composition in frog and chick embryos [18,179].
3. Developmental regeneration: robustness
of the left – right pathway

Bracketed upstream and downstream by interaction with phys-

ical forces, the middle of the LR patterning process consists of a

pathway made up of sequentially interacting left- and right-

sided gene products (figure 1). The implication of this kind of

induction/repression model is that if something goes wrong

upstream—if a particular gene is expressed on the wrong side

for example—then the downstream elements will likewise be

incorrect. For example, in the early work on LR determining

genes in chick, it was shown that if the left-sided Shh gene

was misexpressed on the right side, right-sided expression of

the normally left-sided gene Nodal followed, and organs were

subsequently randomized.

Importantly however, development in many species is

highly regulative: early errors (e.g. splitting embryos in half

[180]) can become subsequently corrected. While many per-

turbations overcome this basic shape homeostasis property

(resulting in birth defects), it is nevertheless true that embryos

are highly robust because of the ability to remodel after some

kinds of deviations from the normal sequence of events. One

example is the derivation of largely normal frog faces from

early embryos with severely malformed facial structures,

which self-correct over time [181]. The mechanisms of robust-

ness and shape homeostasis are poorly understood at the

mechanistic level, although they are now increasing objects

of interest in molecular developmental biology [182–184]

and regenerative medicine [185–187].

Self-correction capabilities in the LR pathway are a novel,

molecularly tractable example of regenerative repair. It is a

uniquely accessible context in which the regulatory mechan-

isms that recognize and reverse abnormal patterning states

can be studied. Here, we identify new aspects of the cyto-

skeletal machinery that lie upstream of the LR asymmetry

patterning pathway and investigate their robustness. We

quantitatively analyse published data as well as our new

functional studies to reveal remarkable flexibility in the



Table 1. Effects of cytoskeletal and motor protein overexpression on Nodal laterality and organ situs and the degree of repair of incorrect laterality, calculated
as the percentage of embryos with incorrect Nodal expression that have correct organ situs, using separate clutches for analysis. R: right; Bi: bilateral; N: none
(correct sidedness is Left). A positive degree of repair reveals that embryos with incorrect gene expression went on to have normal organ situs, indicating that
some defects in expression of early laterality markers are being corrected by the time of organ placement.

protein incorrect Nodal expression reversed organs references degree of repair

alpha-tubulin T56I 37%

(R: 10%, Bi: 9%, N: 18%)

n ¼ 183

21%

n ¼ 286

[86] 43%

Lis-N99 26%

(R: 9%, Bi: 8%, N: 9%)

n ¼ 137

18%

n ¼ 174

[86] 30%

Lis-C137 21%

(R: 7%, Bi: 9%, N: 5%)

n ¼ 127

10%

n ¼ 326

[86] 52%

14-3-3E 65%

(R: 12%, Bi: 30%, N: 23%)

n ¼ 74

30%

n ¼ 116

[188] 54%

myosin proteins

Flailer 57%

(R: 10%, Bi: 17%, N: 30%)

n ¼ 309

18%

n ¼ 652

[86] 68%

Myo31DF 24%

(R: 1%, Bi: 19%, N: 4%)

n ¼ 83

12%

n ¼ 237

[86] 50%

Myo61F 35%

(R: 5%, Bi: 16%, N: 14%)

n ¼ 37

14%

n ¼ 297

[86] 60%

Myosin1d 43%

(R: 9%, Bi: 8%, N: 26%)

n ¼ 76

15%

n ¼ 145

[86] 65%

Myosin1e2 28%

(R: 7%, Bi: 4%, N: 17%)

n ¼ 101

4%

n ¼ 77

[86] 86%

Myosin1cA 44%

(R: 26%, Bi: 13%, N: 5%)

n ¼ 39

2%

n ¼ 207

[86] 96%
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GRN that belies a simple linear pathway to reveal remarkable

pattern robustness.
4. Results: endogenous repairing of induced
left – right defects

The canonical description of the left–right patterning path-

way in vertebrates, regardless of the proposed point of

symmetry breaking, follows the linear track of leftward

activation of Nodal, downstream activation of Lefty and

Pitx2, and thence to the correct placement of visceral

organs. However, we have observed in our recent studies of

the determination of laterality in Xenopus, many anomalies

and exceptions to this neat pipeline.
For example, in studying proteins with roles in early

embryonic asymmetries [188], and in particular cytoskeletal

proteins with a conserved role in determining embryonic

laterality [86,87], the number of embryos with reversed

organs is actually smaller than the number with incorrect

Nodal expression, particularly for intracellular motor protein

family myosins (table 1). This suggests that the pathway

from Nodal to organ situs is not as linear as had been

assumed: having incorrect Nodal expression does not actually

mean that an embryo’s organs will be reversed, despite

Nodal’s established role as a determinant or ‘master regulator’

of LR situs. The most obvious example is Myosin1cA, which

results in almost half of the embryos having incorrect Nodal
expression, but the resulting population’s organ situs is

almost normal (only 2% heterotaxia)—a very significant

repair capability downstream of Myosin function.



Table 2. Nodal laterality, organ situs and the degree of repair of incorrect laterality in control (untreated) embryos.

incorrect Nodal expression reversed organs references degree of repair

12%

(R: 1%, Bi: 8%, N: 3%)

n ¼ 324

3 – 8%

spontaneous cardiac reversals

[189] 33 – 75%

34%

(R: 0%, Bi: 0%, N: 34%)

n ¼ 59

,1%

n ¼ 100

[166] 97%

7%

(R: 1%, Bi: 2%, N: 4%)

n ¼ 1632

1%

n ¼ 9686

[86] 86%

0.5% [87] n.a.
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This prompted us to review previous experiments in

Xenopus on the effects on both Nodal laterality and organ

situs. The level of incorrect Nodal expression in untreated

embryos, while low, was higher than the level of abnormal

organ situs ([86], table 2). Others have found that the elevated

level of misplaced Nodal matches to a spontaneous rate of car-

diac reversal alone of 3–8% [189], which in our hands is an

extremely high rate of spontaneous organ reversal for all

organs [86,87], let alone the heart. This may be a biological

difference between frog populations or experimental pro-

cedures in laboratories. Regardless, there are still many

more embryos observed with Nodal discrepancies than

organ situs misplacement in both cases.

It is from these discrepancies that we began to formulate

our hypothesis ‘fixing’ of left–right mispatterning during

embryogenesis. Throughout the formation of the left–right

axis, we propose that there are numerous checks and bal-

ances on the mechanism of generating and maintaining

asymmetry. As there are numerous health problems associ-

ated with a single organ being misplaced with respect to the

orientation of all others, it is incredibly important that all

organs be oriented in their correct position with respect to

one another. But if all organs are reversed, in the case of

situs inversus totalis, there are few health problems

associated, if any (and it is suggested that there is an

under-diagnosis of this condition due to the lack of reported

corresponding health concerns [190]). What we observe in

nature is not a 50 : 50 split in organs all on one side or

the other, however; across vertebrates, all individuals

within a species, and all species, have the same orientation.

If organs were not able to position independently of one

another, but were all dependent together on the position

of Nodal, Lefty and Pitx2 expression, then potentially we

would observe a 50 : 50 split throughout nature as it

would not matter which side the set of organs chose to

occupy. The fact that this is not the case, and that there is

a preferred orientation, suggests that individual organs

have the potential to orient independently of one another.

Therefore, to prevent organs from doing this, we propose

that there is a strong evolutionary pressure to stick with a

preferred orientation for organs, and to reinforce that orien-

tation throughout development, as it is crucial to the

survival of the organism. If this were the case, we might

find that it is difficult to achieve a very high level of
heterotaxia, or to flip asymmetry entirely—this is in fact

the case in many scenarios. It would also explain the appar-

ent lack of conservation in mechanisms for left–right

patterning across closely related vertebrates, as different

mechanisms could become prominent in different species

depending on the nature of their embryonic development.

What could be conserved, however, is the importance of

the chirality of the cytoskeleton, now a widely described

phenomenon from cells in culture to embryos, and it is

the mechanism of how the cytoskeleton can generate,

maintain and rescue chirality and chiral defects that

would then be of most interest to the left–right field.

Reviewing the literature for evidence of these phenomena,

we found some interesting supportive observations. To begin

with, there were a number of observations showing various

degrees of correction or ‘fixing’ of laterality defects from

early to late markers when affecting protein expression or

using a variety of drug treatments (table 3).

We found evidence from other research groups

([191–193], see electronic supplementary material, table 1)

of cases where there is no difference in the status of early

and late markers, such as with the injection of BVg1 mRNA

into the R3 cell of a 16-cell embryo [192]; in other cases,

injection of BMP2 mRNA into the R2 cell of the 16-cell

embryo caused a small perturbation in Nodal laterality but

no effect on organ situs [192]. In some cases, such as the injec-

tion of Xwnt-8 mRNA into the L4 cell of the 16-cell embryo,

errors either accumulate past Nodal expression or bypass

Nodal altogether [192]. This is possibly also the case for injec-

tion of BMP2 mRNA into the L2 cell of the 16-cell embryo:

Hyatt & Yost [192] describe a ‘truncated left’ phenotype for

the expression of Nodal, but Nodal expression still appears

to be correct scoring on laterality alone, and yet the rate of

organ reversal is much higher.

Likewise, there are instances of drug treatments which

result in incorrect Nodal laterality and organ situs but appar-

ently have no effect on the positioning of Lefty in the

canonical left–right pathway and so affect certain parts of

the pathway while leaving others unaffected, such as the

examples in table 4.

To test this hypothesis further, we wished to find out

whether the differences in levels we observed were due to

the comparison of Nodal, Lefty and Pitx2 laterality to organ

situs from different clutches of embryos. We have data from



Table 3. Effects of genetic or pharmacological treatments on laterality and the degree of repair of incorrect laterality, calculated as the percentage of embryos
with incorrect Nodal expression that have correct organ situs, using separate clutches for each analysis. H7: gap junction communication disruptor. Lansoprazole:
blocker of Hþ/Kþ-ATPase pump; ropisetron: serotonin receptor blocker; anandamide: gap junction communication blocker; heptanol: gap junction communication
blocker; glycyrrhetinic acid: gap junction communication blocker. R: right; Bi: bilateral; N: none (correct sidedness is Left). A positive degree of repair indicates
that embryos with incorrect gene expression went on to have normal organ situs, indicating that some defects in expression of early laterality markers are being
corrected by the time of organ placement. A negative degree of repair indicates that early errors are amplified by subsequent steps.

treatment
incorrect Nodal
expression

incorrect Lefty
expression

incorrect Pitx2
expression

reversed
organs references

degree
of repair

protein misexpression

Cx26 2 of 4-

cell: ventral

48%

(R: 1%, Bi: 1%,

N: 46%)

n ¼ 109

32%

n ¼ 150

[166] 33%

Cx43 2 of 4-

cell: ventral

32%

(R: 0%, Bi: 5%,

N: 27%)

n ¼ 78

22%

n ¼ 149

[166] 31%

H7 2 of 4-

cell: dorsal

57%

(R: 5%, Bi: 14%,

N: 38%)

n ¼ 42

29%

n ¼ 173

[166] 49%

drug treatment

lansoprazole 36%

(R: 18%, Bi: 7%,

N: 11%)

n ¼ 28

40%

(R: 4%, Bi: 32%,

N: 4%)

n ¼ 25

47%

(R: 23%, Bi: 18%,

N: 6%)

n ¼ 34

51%

n ¼ 88

[80] 242%

tropisetron 36%

(R: 6%, Bi: 15%,

N: 15%)

n ¼ 153

16%

(R: 2%, Bi: 5%,

N: 9%)

n ¼ 174

23%

n ¼ 420

[144] 36%

anandamide 53%

(R: 1%, Bi: 3%,

N: 49%)

n ¼ 73

35%

n ¼ 223

[166] 34%

heptanol 81%

(R: 0%, Bi: 0%,

N: 81%)

n ¼ 37

48%

n ¼ 283

[166] 41%

glycyrrhetinic

acid

90%

(R: 2%, Bi: 2%,

N: 86%)

n ¼ 59

40%

n ¼ 290

[166] 55%
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a selection of cytoskeletal proteins generated by this method

in table 5 from our previous analysis [86]. We therefore used

individual clutches and at different timepoints took embryos

for in situ hybridization against Nodal, Lefty and Pitx2 and

scored the remaining tadpoles for organ situs. As observed

in table 5, the data correspond very well with our previous

findings [86].
5. Overexpression of Nodal and effects
on laterality

The data above show that when very early LR patterning

steps are perturbed, forcing incorrect Nodal expression,

there can be subsequent correction of this information down-

stream, resulting in a lower number of tadpoles with reversed



Table 4. Effects of drug treatments on Nodal and Lefty laterality and organ situs and the degree of repair of incorrect laterality, calculated as the percentage of
embryos with incorrect Nodal expression that have correct organ situs, using separate clutches for each analysis. GR113808: serotonin receptor blocker; iproniazid:
monoamine oxidase inhibitor. R: right; Bi: bilateral; N: none. Degree of repair for GR113808 indicates that defects in Nodal and organ situs are the same but
that Lefty is bypassed. Degree of repair for Iproniazid indicates that defects in early laterality markers are being corrected by the point of organ placement.

drug
treatment incorrect Nodal expression incorrect Lefty expression

reversed
organs references

degree of
repair

GR113808 43%

(R: 10%, Bi: 26%, N: 7%)

n ¼ 150

14%

(R: 3%, Bi: 2%, N: 9%)

n ¼ 164

44%

n ¼ 269

[144] 22%

iproniazid 43%

(R: 10%, Bi: 21%, N: 13%)

n ¼ 135

15%

(R: 2%, Bi: 4%, N: 10%)

n ¼ 191

30%

n ¼ 387

[144] 30%
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organs. However, we wanted to test whether direct misex-

pression of Nodal led to a clear mispatterning of laterality

markers, and a reversal of organ situs, or whether misexpres-

sion of Nodal could also be corrected or tolerated by the

developing embryo. What happens if Nodal is directly ran-

domized, by forced misexpression of Nodal protein on the

right side, or by overexpression of Nodal in general? A

number of studies have already looked at the effect of

Nodal overexpression in Xenopus, using both the injection of

plasmid DNA [194,195] and mRNA [196] (summarized in

electronic supplementary material, table S2). However, a

study of the effects on all markers of laterality within the

same group of treated embryos has not been carried out.

Therefore, we injected mRNA encoding Xnr1, the Xenopus
Nodal, into one of two cells and studied the effect on the

laterality of Lefty and Pitx2 expression and scored the remain-

ing tadpoles for organ situs (table 6). Interestingly, both

left- and right-sided injections of Xnr1 mRNA resulted

in abnormalities in molecular and anatomical asymmetry

(electronic supplementary material, table S3).

Moreover, while the incorrectly sided presence of Lefty
and Pitx2 is similar, the incidence of reversed organs

was far lower, revealing that repair of even direct Nodal

misexpression can occur, but not until after Pitx2 expression

stages.
6. Discussion
Gene-regulatory cascades form an important part of the

middle phases of LR patterning [77], but important elements

of physics and physiology lie upstream, in determining the

sidedness of the first asymmetric transcription, and down-

stream, in implementing laterality cues toward asymmetric

morphogenesis. Early events feed into different parts of the

LR cascade, such as overexpression of Wnt8 and of the

C314D mutant of mahogunin which is unable to ubiquitylate

a-tubulin. Indeed, some aspects of tissue morphogenesis may

be intrinsic, using cell-level chirality to implement asym-

metric looping directly, as may occur in Drosophila [71] and

zebrafish [171].

While many organisms establish large-scale asymmetries,

it is interesting that chirality is fundamental to indivi-

dual cells—an ancient evolutionary feature that metazoans

exploit for macroscopic anatomical purposes. Aside from
highlighting the propagation of properties across orders of

magnitude of scale, laterality sheds light on the relationship

between genome and fundamentally epigenetic factors.

In single-cell ciliates, Beisson & Sonneborn demonstrated

that reversal of a ciliary row in the cell cortex is propagated

to offspring. Their function is also reversed, and cells even-

tually starve because food particles are swept into the

wrong direction; their normal genome is powerless to

rescue them [197–200].

The original picture of the LR cascade made use of a mid-

line barrier which separated distinct left- and right-sided

programmes of repression and induction [201]. This was

subsequently revised by the finding that the L and R sides

needed to communicate long range via gap junction-

mediated physiological signals for proper expression of

early asymmetric genes [166,202], but the importance of

establishing a robust midline was clear [203–207]; indeed,

the LR axis cannot be oriented without a midline that sets

the axis of symmetry. While some animals are thought to

establish the midline later than others, and the LR axis is

often viewed as being defined after and with respect to the

AP and DV axes, cleavage patterns and the prevalence of

strictly bilateral gynandropmorphs resulting from very

early cleavage events reveal that from insects to man

[208–210], separating the L and R sides is one of the first

things most embryos do [211]. Once the midline separates L

and R compartments and they establish their unique identi-

ties, the standard model holds that cascades of genes

become expressed sequentially, in a functional pathway that

should propagate errors as genes inappropriately expressed

on one side exert their effects and turn on/off downstream

genes counter to their normal restricted unilateral patterns.

Most importantly, we have found, in both our new data

and data from published experiments in Xenopus, discrepan-

cies between the incidence of incorrect expression of early

laterality markers and that of abnormal positioning of

organs; these examples reveal the ability of embryos to

correct defects in LR patterning over time (figure 2). For

example, early misexpression of unconventional myosin

proteins (table 1) and the mahogunin protein which targets

a-tubulin for degradation (table 5) strongly disrupt the

normal laterality of Nodal expression but have no effect on

the positioning of organs in those embryos.

Our findings further cement the role of cytoskeleton as a

conserved element of intracellular LR patterning: myosins,



Table 5. Comparison of ‘fixing’ effects of mahogunin protein overexpression on Nodal, Lefty and Pitx2 laterality and organ situs and the degree of repair of
incorrect laterality, calculated as the percentage of embryos with incorrect Nodal expression that have correct organ situs, using separate or same clutches for
each analysis. R: right; Bi: bilateral; N: none. Mgrn G2A is a membrane localization mutant, and Mgrn C314D a mutant form of the protein which inhibits its
function as an ubiquitin ligase of a-tubulin. Ect2-trunc, unlike mahogunin, affects left – right patterning when overexpressed at later timepoints post-fertilization
as well as immediately post-fertilization. Degree of repair for Mgrn wt and Mgrn G2A indicates that defects in early laterality markers are being corrected by
the point of organ placement.

protein incorrect Nodal expression incorrect Lefty expression incorrect Pitx2 expression
reversed
organs

degree
of repair

separate clutches

control 7%

(R: 1%, Bi: 2%, N: 4%)

n ¼ 1632

3%

(R: 0%, Bi: 1%, N: 2%)

n ¼ 597

4%

(R: 0%, Bi: 2%, N: 2%)

n ¼ 428

1%

n ¼ 9686

86%

Mgrn wt 44%

(R: 10%, Bi: 23%, N:

11%)

n ¼ 390

8%

(R: 0%, Bi: 0%, N: 8%)

n ¼ 91

4%

(R: 0%, Bi: 0%, N: 4%)

n ¼ 79

6%

n ¼ 355

91%

Mgrn

G2A

26%

(R: 4%, Bi: 10%, N: 12%)

n ¼ 200

20%

(R: 3%, Bi: 1%, N: 16%)

n ¼ 161

23%

(R: 6%, Bi: 10%, N: 7%)

n ¼ 160

15%

n ¼ 199

42%

Mgrn

C314D

14%

(R: 1%, Bi: 8%, N: 5%)

n ¼ 160

8%

(R: 4%, Bi: 4%, N: 0%)

n ¼ 108

14%

(R: 0%, Bi: 7%, N: 7%)

n ¼ 106

17%

n ¼ 209

221%

Ect2-trunc 24%

(R: 6%, Bi: 8%, N: 10%)

n ¼ 283

27%

(R: 10%, Bi: 2%, N: 15%)

n ¼ 165

34%

(R: 12%, Bi: 12%, N:

10%)

n ¼ 118

25%

n ¼ 101

24%

same clutches

control 9%

(R: 1%, Bi: 2%, N: 5%)

n ¼ 200

14%

(R: 1%, Bi: 0%, N: 13%)

n ¼ 58

0%

(R: 0%, Bi: 0%, N: 0%)

n ¼ 54

1%

n ¼ 1139

88%

Mgrn wt 37%

(R: 6%, Bi: 23%, N: 8%)

n ¼ 161

7%

(R: 0%, Bi: 5%, N: 2%)

n ¼ 45

9%

(R: 3%, Bi: 3%, N: 3%)

n ¼ 44

3%

n ¼ 204

92%

Mgrn

C314D

25%

(R: 6%, Bi: 9%, N: 10%)

n ¼ 133

22%

(R: 0%, Bi: 12%, N: 10%)

n ¼ 45

39%

(R: 5%, Bi: 5%, N: 29%)

n ¼ 48

20%

n ¼ 200

20%

Ect2-trunc 44%

(R: 8%, Bi: 17%, N: 19%)

n ¼ 35

50%

(R: 25%, Bi: 15%, N:

10%)

n ¼ 25

48%

(R: 17%, Bi: 9%, N: 22%)

n ¼ 23

28%

n ¼ 132

36%
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tubulins and proteins regulating tubulin stability and acto-

myosin nucleation among species such as Arabidopsis,

Mollusca, Drosophila, Xenopus and mouse are all functioning

in asymmetry determination. However, the data reveal a

much different picture than simply further details on

cytoskeletal orienting machinery upstream of a linear asym-

metric gene pathway. Induced errors in early asymmetry

steps are sometimes fixed, or normalized, by the time of

expression of subsequent downstream markers. This occurs

most readily when very early steps are interfered with, but

not for example when Nodal is directly misexpressed.
However, in the case of Nodal misexpression, while the later-

ality of Lefty and Pitx2 expression is incorrect, there is a

reduction in the corresponding number of tadpoles with

reversed organs (table 6). One possibility is that the embryo

needs time to note and correct problems, or perhaps the

early mechanisms are especially primed for correction.

In the case of low-frequency vibrations that induce LR

patterning defects in early embryos, it appears that the

early (cleavage) stages are crucial for enabling downstream

repair mechanisms post-Nodal. Vandenberg et al. found

that the level of Nodal expression randomization was constant



Table 6. Effects of Nodal overexpression on Lefty and Pitx2 laterality and organ situs and the degree of repair of incorrect laterality, calculated as the
percentage of embryos with incorrect Nodal expression that have correct organ situs within the same clutches. R: right; Bi: bilateral; N: none. Positive degree of
repair indicates that defects in early laterality markers are being corrected by the point of organ placement. Significance was calculated using the chi square test
to evaluate the difference between laterality markers and organ situs outcomes.

incorrect Lefty expression incorrect Pitx2 expression reversed organs degree of repair significance

61%

(R: 27%, Bi: 32%, N: 2%)

n ¼ 68

61%

(R: 20%, Bi: 40%, N: 1%)

n ¼ 69

39%

n ¼ 399

36% 6.5 � 1026
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ion channel
blockers
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connexins
bypasses
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Mgrn C314D
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lefty

GR113808,
iproniazid
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Figure 2. Summary of the LR pathway with possible points of fixing. The traditional ‘linear’ pathway of LR patterning, from cytoskeletal chirality, physiological
amplification through serotonin asymmetry and ciliary flow, expression of the laterality markers Nodal, Lefty and Pitx2, followed ultimately by physical bending to
generate asymmetrical organ patterning is shown. Examples of data in the literature from experiments manipulating Wnt 8 show that after the introduction of very
early perturbations, early markers such as Nodal can appear normal, but later markers such as Lefty, Pitx2 and organ situs can have incorrect laterality. This is also
the case for the mahogunin mutant Mgrn C314D, whereas Mgrn wt overexpression has the opposite effect and results in incorrect Nodal expression, but correct Lefty,
Pitx2 and organ laterality. Likewise, Lefty laterality can be normal in cases where Nodal, Pitx2 and organ situs are incorrectly positioned with the serotonin receptor
blocker Gr113808 and the monoamine oxidase inhibitor iproniazid. The identification of mechanisms that somehow detect abnormal sidedness of gene expression
and institute corrections is one of the most exciting new vistas of the LR asymmetry field.
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and high despite the stage at which treatment began (as long

as treatment occurred prior to blastula stage), but in all cases

the percentage of resulting tadpoles with mispatterned

organs was lower ([212], summarized in figure 3a). This
underscores the potential divergence between organ end-

points and marker expression in experiments with different

timing conditions, and suggests that future studies cannot

simply use gene expression readouts but must score organs
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Figure 3. Variation in the ability to fix LR patterning. (a) Repair of early LR
patterning defects induced by vibrational disrupton from early timepoints.
Treatment of Xenopus embryos from the stages indicated to neurula (NF
Stage 19) with low-frequency vibrations by Vandenberg et al. [212]
caused LR patterning defects. Defects were observed both in the laterality
of Nodal expression and in the positioning of organs, when pre-blastula
mechanisms were targeted (but not later). However, despite persistent
vibrational disruption from the very earliest stages of embryo, defects in
Nodal laterality were fixed by the point of organ positioning. Note the pro-
gressive increase of organ repair ability (as observed in reduction of organ
defects despite high Nodal randomization) with treatments that start at
each sequential cleavage. Images of Xenopus embryos Copyright & 1994
Pieter D. Nieuwkoop and J. Faber [213]. (b) The ability of embryos to
rescue LR patterning defects depends on the target of experimental pertur-
bation. Experiments analysed throughout this study were grouped according
to their functional targets and the average degree of repair (difference
between incorrect organ situs and incorrect Nodal expression sidedness)
was plotted for each group (see electronic supplementary material,
table S3). Error bars shown are the standard error of the mean among
different treatments as reported in the studies cited above.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150409

11
as well to get a true picture of the effects of specific pertur-

bations on the LR pathway. These data suggest that the

earliest events (from 1-cell to st. 6) are important to enabling

whatever mechanisms allow organs to form correctly despite

abnormal Nodal laterality, as the ability to repair organ

positioning increases progressively with treatments that

start at later cleavage stages.

Errors in asymmetrically expressed genes that were

induced by perturbing myosin, tubulin and gap junctional

communication are subsequently repaired, while those in

Wnt expression and ion-channel regulation are not. It is cur-

rently unknown why this is the case. An obvious possibility
is the existence of parallel pathways—a sort of parity check,

that allows the embryo to test whether the sidedness of

specific gene products is correct or not. The details remain

to be characterized. It should be noted however that another

potential layer of complexity in these stochastic data could be

due to the possibility that different embryos from the same

batch might be relying on somewhat different mechanisms

for LR asymmetry (discussed in detail in [214]).

Interestingly, grouping the experimental results on nor-

malization of downstream steps by the type of early

perturbation (figure 3b; electronic supplementary material,

table S4) suggests that the degree of laterality repair capa-

bility varies depending on the type of perturbation (the LR

pathway target that was perturbed to generate the Nodal ran-

domization). Perturbations of motor proteins, and the early

cytoskeleton, within the first cell division, are tolerable to a

certain degree as it largely becomes normalized by the time

of organogenesis; but manipulations of ion flows are appar-

ently not possible to recover from. The experiments (e.g.

lansoprazole, HMR-1098) in which a negative degree of

repair is observed may suggest that the relevant mechanisms

(ion-channel signalling) may be involved in the repair process

itself; this could result in continued cumulative randomizing

effects long after their primary function has been perturbed.

It should also be noted that in most cases within the seroto-

nergic group, Lefty appeared to be bypassed (table 4). These

data suggest that further study into the different degree of

pathway repair downstream of targeting different types of

components of LR patterning may shed greater light on the

mechanism, and robustness, of laterality and the normaliza-

tion of downstream targets despite randomized prior steps.

The apparent ability of this pathway to regulate after some

errors is consistent with the evolution of partial redundancy

across developmental pathways.

The data also reveal nonlinearity of the pathway as some

elements can be bypassed: interfering with early serotonin

and monoamine oxidase signalling results in organ-level

LR defects despite the correct expression of Lefty (table 4).

A dynamical system view of these repair pathways, as a net-

work rather than a linear pathway with ‘necessary and

sufficient’ master regulators, is necessary, as has already

been noted in the field of cancer and the search for driver

genes [215–220]. The future is likely to involve not only

molecular-genetic picture of these repair pathways, but a

cybernetic, systems-control view of the information processed

by these closed-loop, shape-homeostatic capabilities of

embryogenesis [221–225]. It thus becomes clear that checking

immediate downstream consequences of gene misexpression

is not sufficient for functional analyses; a subtler strategy tar-

geting further upstream of a gene of interest, which gives the

embryo more time to recognize errors, is required to form a

full picture of regulatory networks and ‘necessary and

sufficient’ claims for an explanation of what gene product

determines expression of some other gene product.

In a sense, pattern homeostasis, such as seen in reparative

regeneration widely across the tree of life [186], could be seen

as a primary biological capability. Development is really just

an example of regeneration—restoring the whole body from

one cell (fertilized egg). No wonder that regenerative

repair, which can make up for disruption of pattern with flex-

ible corrective processes, also occurs in embryogenesis. While

not surprising given regulative development as a whole, it

sheds new light on the definition of ‘master regulator’ or
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‘determinant’ genes for specific developmental outcomes.

While loss- and gain-of-function tests (such as those that

had been performed for Nodal in the early years of the

study of the LR pathway) may indicate that a certain gene’s

expression is a driver of what happens next, it has to be

kept in mind that this may not be the whole story. Two

things can be readily missed by experiments that are

narrowly focused on direct functional change of the gene

expression and an immediate readout of direct downstream

response genes. First, the downstream consequences could

be wiped out by corrective mechanisms, which can limit

the validity of ‘necessary and sufficient’ claims for specific

gene products with respect to final patterning outcome.

Second, the results may be quite different if that gene’s

expression is deranged by targeting much earlier steps

(giving the organism time to note the problem and activate

robust repair pathways).

These data and analyses suggest a new direction in this

field, focused on a systems-level understanding of how

distinct molecular steps are multiplexed by the embryo for

monitoring, setting, and continuously re-setting the LR iden-

tity of its tissues. In the sense that embryogenesis is an

example of the more general phenomenon of regeneration

(rebuilding the whole body from 1 cell), the LR asymmetry

mechanisms may be a window on a much more general

and widely relevant phenomenon than just the patterning

of the LR axis. The study of these dynamics could reveal fun-

damental aspects of how genetics interfaces with physics to

implement robust, self-correcting systems. The impact of

this would extend beyond development and birth defects,

to the understanding of evolution, regenerative medicine

and artificial life.
7. Material and methods
(a) Cloning
Subcloning was carried out into pCS2þ using standard methods

as described previously [86].

(b) Animal husbandry
Xenopus embryos were collected and maintained according to

standard protocols [226] in 0.1� Modified Marc’s Ringers

(MMR), pH 7.8, and staged according to [213].
(c) Microinjection
Capped, synthetic mRNAs were dissolved in water and injected

into embryos in 3% Ficoll using standard methods [226]. mRNA

injections were made into the animal pole of eggs within 30 min

post-fertilization (mpf) at 148C, or into 1 of 2 cells of Stage 2 [213]

embryos (as indicated) using borosilicate glass needles calibrated

to deliver a 10 nl injection volume.
(d) Laterality assays
Xenopus embryos were analysed for position (situs) of three

organs; the heart, stomach and gallbladder [166] at Stage 45

[213]. Heterotaxic embryos were defined as having a reversal

in one or more organs. Only embryos with normal dorsoanterior

development and clear left- or right-sided organs were scored.

A x2 test was used to compare absolute counts of heterotaxic

embryos.
(e) In situ hybridization
Whole mount in situ hybridization was optimized using stan-

dard protocols [227,228] with probes against Xnr1 (the Xenopus
Nodal) [195], Lefty [229] and Pitx2 [196] generated in vitro from

linearized template using DIG labelling mix (Roche). A x2 test

was used to compare absolute counts of embryos with correct

(expression on the left lateral plate mesoderm) versus incorrect

(absent, bilateral or right-sided) marker expression [230–246].
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