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Abstract

We describe here a general model of the kinetic mechanism of protein folding. In the Foldon 

Funnel Model, proteins fold in units of secondary structures, which form sequentially along the 

folding pathway, stabilized by tertiary interactions. The model predicts that the free energy 

landscape has a volcano shape, rather than a simple funnel, that folding is two-state (single-

exponential) when secondary structures are intrinsically unstable, and that each structure along the 

folding path is a transition state for the previous structure. It shows how sequential pathways are 

consistent with multiple stochastic routes on funnel landscapes, and it gives good agreement with 

the 9 order of magnitude dependence of folding rates on protein size for a set of 93 proteins, at the 

same time it is consistent with the near independence of folding equilibrium constant on size. This 

model gives estimates of folding rates of proteomes, leading to a median folding time in 

Escherichia coli of about 5 s.

Introduction

Is there a general mechanism of protein folding kinetics? On the one hand, different types of 

protein molecules adopt different native structures – having distinctive secondary and 

tertiary structures and packing details. On the other hand, remarkably, essentially all small 

soluble globular proteins tend to reach their different atomically detailed native structures 

rapidly (often milliseconds) and with the simplest possible kinetics (single-exponential), 

independent of initial conditions. And, while folding rates span 9 orders of magnitude,1 

folding equilibria are quite insensitive to protein structure. Is there a folding mechanism, that 

is, a single narrative description that rationalizes the rates and sequences of folding events in 

common across different amino acid sequences and initial conditions?
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Beginning about forty years ago, major insights on the thermodynamics and kinetics of 

protein folding have emerged from experiments, computer simulations, correlational studies 

and theoretical modeling.2–10 First, an early and important view has been that proteins fold 

kinetically through the rapid formation and assembly of secondary structures.6,8,11–19 

Second, Plaxco et al. had the pioneering insight that a protein's folding rate depends on 

properties that are evident from its native structure.20 They found that helical proteins tend 

to fold faster than β-sheet proteins, and, in general, that local structures tend to form faster 

than nonlocal ones. In a more detailed discussion in Supporting Information, we describe the 

current consensus1,21–24 that folding rates are better correlated with a protein's size — its 

chain length (L), its number of secondary structures (N), or its absolute contact order (ACO) 

— than they are with other metrics, like the relative contact order (RCO), that only consider 

the topology of a protein's native structure (Fig. S1, Table S1). Such folding rate datasets 

have also been fitted by statistical models.21–23,25–29 Third, important insights have emerged 

from Ising models of folding. Zwanzig, Szabo & Bagchi (ZSB) used Ising models to show 

how the funnel shapes of energy landscapes lead to fast folding.30,31 Muñoz, Eaton, Baker, 

Finkelstein, and others32–38 have further developed and applied the ZSB approach, adding 

more detailed residue-level information in the form of contacts, hydrogen bonds, buried 

surface area, and loop entropies. Barrick and co-workers have used Ising models to explain 

their exceptionally comprehensive folding energy landscapes of linear repeat proteins, such 

as ankyrin, which fold along parallel paths.39–42 In their model, each folding unit is an 

individual repeat, whereas in our model, each unit is a secondary structure. Regan and co-

workers have also used an Ising-like framework to study the thermodynamic properties of 

repeat proteins.43 Fourth, previous work has shown that equilibrium protein folding 

cooperativities can be explained as a combination of weak propensities of peptide chains to 

form secondary structures and stronger propensities of tertiary interactions to stabilize the 

secondary structures.44

However, as far as we are aware, there is not yet a quantitative model for a general folding 

mechanism that predicts folding rates and routes from only a protein's amino acid sequence. 

Here, we develop a model that does not require prior knowledge of native topologies, 

structural propensities, native geometric details or initial conditions. An associated purpose 

of the model is to reconcile the ‘pathway view’ that folding follows well-defined sequential 

events with the ‘funnel view’ that folding follows combinatoric microscopic routes.45 A 

general mechanism should account for why simple-protein folding is single-exponential, the 

nature of the folding transition state, the sequence of formation of secondary and tertiary 

structures, the relative speeds of formation of the different substructures and the nature of 

cooperativity in kinetics.

Model

To express a protein's folding equilibrium and kinetics, we adapt the Ising-like approach of 

Zwanzig,30,31 except that instead of independent amino acids, the individual units of folding 

in our model are the secondary structures. We represent a protein's N secondary structural 

units as a 1-D string of symbols fffuffuufuffff . . . where f indicates that a particular 

secondary structure is in its folded native-like conformation, and u indicates that it is in an 

unfolded non-native conformation. Let c represent the number of f's, the correct secondary 
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structures in the string. Therefore, c = N represents the folded native state. c = N – 1 

describes the state in which the protein is native in all but one of its secondary structures, so 

there is one u somewhere in the string. And c = 0 corresponds to the fully unfolded 

molecule.

The model folding process is shown in Fig. 1 for a 4-helix-bundle (hb). Secondary structures 

form independently. Secondary structures can pair together, stabilized by tertiary 

interactions between them. Adopting literature terminology, we call these secondary 

structure elements foldons.15,18,19 The main folding routes entail increasingly native 

structure that is assembled through the sequential addition of one secondary structure at a 

time. The routes are combinatoric and stochastic: different molecules fold via different 

sequences of secondary structural events. We call this the Foldon Funnel Model.

Thermodynamics of the model

In this model, the Boltzmann weight w(c) for any non-native protein configuration having c 
= 1, 2, 3, . . . N – 1 correct secondary structures includes the equilibrium constant K2 for 

each of the c secondary structures formed at a particular stage of folding progress, the 

equilibrium constant K3 for each of the nc tertiary pairings of secondary structures, and the 

numbers of different ways the folded and unfolded units can be arranged in a 1-D string at a 

particular state c of the folding progress. Hence, we define

(1)

Correspondingly, the Boltzmann weight for the native configuration c = N is:

(2)

The microscopic basis for K2 is the same as in helix-coil theory: hydrogen bonds stabilize 

secondary structures, and local chain entropy opposes them. Similarly, K3 arises from 

contact interactions among pairs of secondary structures and includes hydrophobic, steric 

and hydrogen bonding interactions. Kf accounts for the extra stabilization of a protein that 

steps from the next-to-native to the native structure because of the final packing and 

assembly (see below). That is, we envision loose packings of the secondary structures in the 

early steps up to c = N – 1, and then native-like tight packing only in the final folding step, 

from N – 1 to N. The weight w(0) = 1 accounts for the fully unfolded protein; w(1) = NK2 

accounts for the formation of any one of the N individual secondary structures; 

 accounts for the formation of the next-to-native state; and 

 accounts for the fully folded protein. The quantity nc is the total 

number of tertiary interactions made by a secondary structure. From our protein data set, we 

find that nc saturates; see Fig. 2. That is, for simple reasons of steric geometric exclusion, a 

secondary structure cannot typically be surrounded by more than about 4–5 other 

neighboring secondary structures: nc is defined as a discrete function of c
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where nc is defined by the combinatorics of nearest-neighbor interactions. When there are 

zero or one secondary structures (c = 0 or 1), there can be no tertiary interactions. When 

there are c = 2 secondary structures, there is nc = 1 tertiary interaction between them. When 

there are c = 3 secondary structures, there are nc = 3 pairwise tertiary interactions between 

them. For c > 3, each additional secondary structure gains four tertiary neighbor interactions 

upon folding because this is approximately the maximum that is sterically possible; see Fig. 

2.

From the weights w(c), the equilibrium population for any point c along the reaction 

coordinate is given by p(c) = w(c)/Q, where Q = QU + QF is the partition function, that is, 

the sum of weights QU over all the non-native states and over QF of the folded state:

(3)

The free energy landscape is given by ΔG(c) = −RT ln[pc(eq)]. Fig. 4 shows a funnel 

representation of ΔG(c). The radial distance from the center of the funnel is the reaction 

coordinate c, the number of folded secondary structures. The outer flat region of the 

landscape corresponds to unfolded conformations (c = 0). As the protein moves uphill, 

secondary structures are formed. Surmounting the barrier at c = N – 1 leads to the folded 

state, which is the global free energy minimum.

Kinetics of the Model: The Folding and Unfolding Rates

The folding and unfolding dynamics of the model can be described by a continuous-time 

Markov process. On the one hand, we can compute the full dynamics of the model (for 

details, see Supporting Information). On the other hand, in an important limit, we can 

compute the dynamics in a very simple analytical way. In particular, because we find that the 

best fits to the folding rate data are when the highest barrier is at c = N – 1, the folding and 

unfolding rates are well-approximated by

(4)

(5)
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where k1 is a rate constant for the folding of a single secondary structure. In the Supporting 

Information, we show that these analytical expressions capture with negligible error, for 

appropriate ranges of parameter values, the results of the full master equation as computed 

by numerical integration and as found by eigen decomposition of the rate matrix. In the 

Supporting Information, we also show that there is a gap in the eigen value spectrum, which 

means that the model predicts a single dominant slowest exponential relaxation time, 

characteristic of two-state kinetics, which is the general behavior seen for the folding of 

small globular proteins.

Experimental Data Set and the Model Parameters

For comparison with experiments, we considered a data set of 93 globular proteins for which 

the folding rates are known; see (Tables S3,S4). This data set includes both two-state and 

multistate folders. For the multistate proteins, we considered only the slowest folding phase. 

We use this data set to fit the two parameters of the model, K2 and K3. To do this, we first 

fixed the value of the speed-limit parameter k1 to 105.6s−1, the mean value of the folding 

rates of the two elementary secondary structures, N = 1: the mini-protein Trp Cage and the 

central helix of ribosomal protein L9. Also, because prior modeling gives protein folding 

equilibrium constants K(L) as a function of the chain length L, we used that data to fix the 

value of Kf in our quantity QF/QU
46,47 Kf ranges from 1.75 for N = 1 to 19.4 for N = 30 

(Table S2). This ensures consistency with the known database of protein stabilities, and 

therefore ensures roughly correct unfolding rates as well. We bootstrapped the folding rate 

data and fitted each resampled data set in order to generate a confidence interval. The 95% 

confidence interval bands are plotted in gray. R2 = 0.63 for this fit.

Results and discussion

Folding Landscape Is Shaped Like a Volcano

Fig. 3 compares the model predictions from eq 4 to experimental data on folding rates of the 

93 globular proteins using best-fit values: K2 = 0.037 and K3 = 1.96. From this modeling, we 

draw a few conclusions.

Outer Landscape Is Sloped Uphill Because Secondary Structures Are Not 
Stable—Because the parameters we obtain are K2 << 1 and K3 > 1, we infer that secondary 

structures are unstable alone and that they are stabilized by tertiary interactions. This 

prediction is consistent with experiments indicating that most protein secondary structures 

are unstable on their own.48,49 The prediction is also consistent with measured protein 

equilibrium cooperativities.44 So, the predicted folding landscape for two-state folders is 

shaped like a volcano when plotted vs. the 1D mesoscale reaction coordinate c that we use 

here; see Fig. 4. That is, folding is a series of uphill steps in free energy as the earliest 

secondary structures form and assemble into increasingly native-like tertiary structure; only 

the last step from c = N – 1 to N is downhill in free energy. Forming the first helix (i.e. the 

step from c = 0 to c = 1) is the most costly step. Forming the second helix (from c = 1 to c = 

2) is less costly because the second helix is stabilized by assembling onto the first helix as 

folding proceeds. So, the slope of the free energy landscape vs. c is steep for small c but
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Folding Is Two-State (Single-Exponential) Because the Global Bottleneck Is 
the Last Step in Folding—The highest free energy on the volcano landscape is at c = N 
– 1, the structure just before the native state. Hence, all earlier steps are effectively in pre-
equilibrium. This divides conformational space into the two kinetic states: native (c = N) 

versus all others. Single-exponential behavior would not have intrinsically been expected for 

such a heterogeneous and complex process as protein folding. Indeed, there may be other 

parameter regimes, K2 and K3, that do not lead to 2-state kinetics.

What Is the Transition State?—The present model resolves a puzzle. Does the 

transition state appear early or late along the folding pathway? The present model gives an 

explanation for the ambiguity. As noted above, the global TS in the model is the last step in 

folding; it is the point of highest free energy on the landscape. Said differently, the last step 

is responsible for the dominant slowest exponential of the kinetics. On the other hand, 

further insight is available from looking at the full dynamics of folding, shown in Fig. 5 for a 

4-helix bundle (4hb). It shows that the full kinetics entails nested transition states for the 

individual folding steps. While the 3hb is the TS for final step of folding, the 2hb is also the 

TS for the prior step (from single helix to the 3hb). In short, each partial structure along the 

folding pathway is a transition state for propagating earlier structures to later ones. Also, in 

our model, the transition state for folding is a loose association of the native secondary 

structures that occurs prior to native-like tighter packing, consistent with the view from the 

nucleation-condensation hypothesis that the TS is large diffuse nucleus.50

Does Folding Follow a Single Sequential Pathway or Parallel Heterogeneous 
Routes?—The present model is consistent with both the funnel landscape view that folding 

is a disorder-to-order transition through many different microscopic routes9,45,51,52 and the 

view of folding based on sequential pathways and “foldons”, wherein secondary structural 

elements fold via particular path-like sequences of events.15,18 Funnels and foldon paths are 

not mutually exclusive; they are just different perspectives at different levels of resolution, 

functions of different degrees of freedom, and focused on different parts of the landscape. 

Funnels express free energies in terms of microscopic degrees of freedom. Pathways express 

free energies in terms of macroscopic reaction coordinates. Here, our modeling is mesoscale. 

We express our free energy landscape in terms of a single reaction coordinate c. Some 

aspects of the foldon path perspective are evident in the present model: the reaction 

coordinate is one-dimensional, and there is a clear sequential order of folding events through 

the formation of c = 1, 2, 3, . . . N folding units. On the other hand, the funnel perspective is 

also evident: Fig. 1 shows the combinatorics of the many different routes of assembling the 

secondary structures (There are additional route combinatorics that arise from the many 

microscopic routes for forming each secondary structure, but those are below the resolution 

of the present model). The folding of any particular protein entails more subtle aspects: not 

all secondary structures form at the same rate, for example, but we believe the present model 

captures the essential physics with a minimum of parameters.

Recently, Hu et al. have performed comprehensive pulsed HX experiments to identify the 

folding pathways of RNase H.19 Consistent with our model, Hu et al. found that RNase H 

folds in units no smaller than secondary structural elements (foldons), that those elements 
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form and assemble into ever larger and more native-like structures, and that some individual 

foldons form concurrently (D/5 and BC/loop), while other foldons assemble with each other 

in series. Yet, one difference is apparent: the free energy landscape of Hu et al. is a down-

staircase with sequentially stabilized intermediates, while ours is an up-staircase. The 

essential difference here is that our model only pertains to two-state folding, so it does not 

address questions of stable intermediates, such as the one observed by Hu et al. Hu et al. 

found a large final barrier for the folding of 123/E and its assembly with A/4, D/5, and BC/

loop. We note that the experiments of Guinn et al.53 and the modeling of Adhikari et al.54 

also give up-staircase landscapes in two-state proteins.

Why Does the Folding Speed of a Protein Correlate with the ‘Localness’ of its 
Native Structure?—Previous studies, starting with Plaxco, Simons and Baker20 have 

found that protein folding rates are correlated with a native protein's Contact Order (CO), a 

measure of the protein's numbers of local versus nonlocal contacts.22,23 For example, helical 

proteins, which contain contacts that are mostly local in the sequence, tend to fold faster 

than β proteins. Others have compared the logarithm of the folding rate to linear29,55 or 

square-root functions of the chain length.1,21–24,29,56 In Supporting Information, we show a 

few such correlations on our test set of 93 proteins. The present work gives a mechanistic 

explanation for such observations. In the Foldon Funnel Model, secondary structures form 

fast (but they unravel even faster, since secondary structures are unstable on their own), but, 

because they form sequentially, more secondary structures take more time. Hence the 

folding time τ, 1/kf(L), increases with chain length L (because L and N are linearly related; 

see Fig. 6). We believe that the CO is simply a surrogate for the effect of protein size (L or 

N) because folding rates only correlate with the absolute contact order (which is 

proportional to L) and not with the relative contact order (which is independent of L); see 

Supporting Information for further discussion.

What Is the Nature of Folding Cooperativity?—The present model recognizes three 

types of folding cooperativity: from the formation of secondary structures (in K2), from the 

additional stabilization when secondary structures assemble into tertiary structures (in K3), 

and from packing into the native state (in Kf). Fig. 7 shows the model prediction that small 

proteins tend to be more stabilized by packing, while larger ones are more stabilized by 

tertiary interactions.

The present model only treats how folding rates depend on protein size and not otherwise on 

the protein's amino acid sequence. However, it is well-known that the effects of the sequence 

can be large. This can be seen from the broad scatter around the fit line in Fig. 3. Some 

structurally similar proteins (identical N) have folding rates that differ by orders of 

magnitude. An example is the spectrin superfamily; these proteins have very different 

folding rates despite nearly identical chain lengths, secondary structure counts, and 

topologies.57 Another example is the homeodomain superfamily.58 Our data set includes 

both the spectrin and homeodomain helix bundles, but our focus on protein size and global 

fitting prevents us from predicting the sequence-dependent variation of rates within each 

family.
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Estimating the Folding Kinetics of Proteomes

Finally, we are able to place a cell's protein folding kinetics in the context of other rate 

processes in the cell. As noted above, protein folding times can be estimated simply from the 

length L of the protein chain. Because protein-length distributions are known for many 

cellular proteomes, we can estimate the folding time distribution of whole cellular 

proteomes. Of course, such an estimate must be crude at the present time. For one thing, 

many proteins have multiple domains,59 yet only very little is yet known about multidomain 

folding rates.60 Nevertheless, we combined our Foldon Funnel Model prediction for folding 

rates, kf(L), with the known protein-length distribution p(L) for the Escherichia coli 
proteome, and made our best estimate of the effects of domains to compute the approximate 

distribution of folding times for the E. coli proteome shown in Fig. 8. 1 It shows that the 

median protein in E. coli folds on the 5 s timescale, and also that there is a large variance. 

Fig. 8 also indicates a few other timescales that are relevant to the cell: the left line (dark 

blue) indicates the roughly 16 s that is required to synthesize an average E. coli protein (325 

amino acids × 0.05 seconds to add each amino acid in translation62); the middle line 

(orange) indicates the roughly 30 s it takes for E. coli's GroEL chaperones to refold a protein 

(a protein spends about 10 s in the chaperone cavity, and takes about 3 recycling events to 

fold63,64); and the right line (teal) indicates E. coli's minimum doubling time of 20 minutes. 

Until the folding of larger and multidomain proteins is better understood, this distribution 

should be regarded as nothing more than just a simple estimate of folding times relative to 

other cellular landmark timescales.

However, the figure also illuminates a huge gap in our current knowledge–how do large 

domains fold? Over 600 of the proteins are predicted to fold on timescales slower than the 

doubling time, due to large, slow-folding domains (> 400 amino acids). One explanation is 

that these large domains may actually be made up of subdomains that fold independently, 

even though current domain annotations treat them as single domains. It also seems likely 

that many factors may mitigate problems from slow folding times, including chaperones, 

folding on the ribosome, and kinetic cooperativity between protein domains.

Conclusions

We have developed a simple but general mechanistic model of protein folding kinetics. The 

Foldon Funnel Model posits that secondary structures are the units of folding assembly, that 

they are relatively unstable, that isolated units flicker in and out of structure, and that 

individual secondary structures are stabilized and escorted along the folding route by 

neighboring secondary structures that lead to tertiary structure. It predicts that the free 

energy landscape of two-state folders is volcano-shaped: uphill for the first structures 

formed, and only downhill in the last step to the native state. Transition states are found to 

be nested: later structures are bottlenecks for earlier structures. The model is consistent with 

1We use the domain annotations from the SUPERFAMILY database,61 which contains domain annotations for 3003 out of the 4228 
proteins in the E. coli proteome. In the absence of better information, we assume that each domain folds as an independent unit. 
(Because domains stabilize each other, the principal error introduced here will be to underestimate the folding rates of multi-domain 
proteins.) We approximate the folding time of each of the 3003 annotated proteins as the folding time of its largest (and slowest) 
domain. Here, we use the rate of the slowest domain as an approximation because we just want a rough orders-of-magnitude 
comparison of folding times.
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both general observations on small proteins, namely that they are two-state (single 

exponential), that tertiary contacts give stability and cooperativity to equilibrium native 

structures, that localness of the native structure correlates with folding speed, and with the 

observed nonlinear dependence of the logarithm of folding rate on number of secondary 

structures on a test set of 93 proteins.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Premises of the model: (1) Each secondary structure folds independently of others. (2) 

Tertiary structure forms as pairs of secondary structures. The folding process is a sequential 

accretion of secondary structure elements. (3) Routes are combinatoric: different secondary 

structures assemble along different trajectories.
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Figure 2. 
Distribution of nearest-neighbors of a given secondary structural element in a protein, as a 

function of the total number of secondary structures in that protein. A pair of secondary 

structures are neighbors if they have at least 1 residue-residue contact. Residue contacts 

were determined from a centroid for each residue with a cutoff of 8 Å. The plot is based on 

the 93 proteins in our data set.
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Figure 3. 
Folding rates predicted by model. Folding rate vs number of secondary structures, N. The 

colored points are experimental values, and they are colored by structural class. The black 

line is the prediction from the model, and the gray bands represent the 95% confidence 

interval. The black line represents a perfect fit to the data. Fit parameters (95% CI): K2 = 

0.037 (0.025, 0.058), K3 = 1.96 (1.67, 2.23). We fixed k1 = 105.6s−1, and Kf was fitted to an 

equilibrium stability model, independent of the folding rate fit. Fit quality (95% CI): R2 = 

0.63 (0.49, 0.72), rms error = 1.30 (0.96, 1.65).
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Figure 4. 
Free energy landscape of Foldon Funnel Model. The radial distance corresponds to c, the 

number of folded secondary structures. The height of the landscape corresponds to free 

energy (ΔG(c) = −RT ln[pc(eq)]). The initial flat region on the outer edge represents c = 0, 

and the start of the climb represents the c = 0 to c = 1 transition. The center of the landscape 

represents the folded state, c = N. The landscape was computed from the best-fit parameters 

described in the Results section for an N = 4 protein. The slope of the volcano is relatively 

linear. On the one hand, K3 reduces the steepness at each step relative to only K2 terms 

alone, but the combinatoric term essentially compensates that increase.
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Figure 5. 
Dynamics of a four-helix bundle. As the folding reaction proceeds, the probability of 

occupying each intermediate state rises and falls as the protein traverses its free energy 

landscape from the unfolded c = 0 state to the folded c = 4 state. The folding trajectory was 

computed by numerically integrating the kinetic master equation (see SI) for an N = 4 

protein, using parameters: K2 = 0.037, K3 = 1.96, k1 = 105.6s−1, and Kf = 5.23.
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Figure 6. 
Number of secondary structures vs chain length for the 93 proteins in our data set. Our fit 

line is N = γL, where γ = 0.0718 secondary structures per amino acid. R2 = 0.85. The slope 

of the line corresponds to an average of ≈ 14 amino acids per secondary structure. However, 

this fit includes loops, so it represent an overestimate of average secondary structure length.
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Figure 7. 
Fractional contribution of K3 and Kf to stabilization of folded state vs. number of secondary 

structures. For small proteins, the packing term Kf stabilizes the folded state more than the 

tertiary interction term K3. For larger proteins, the reverse is true: K3 contributes more than 

Kf.
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Figure 8. 
E. coli folding time distribution. Colored lines indicate time scales for key cellular 

processes: (dark blue) ribosomal protein synthesis, (orange) GroEL refolding, (teal) 

doubling time.
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