Skip to main content
. 2016 Oct 3;90(12):2885–2916. doi: 10.1007/s00204-016-1850-4

Table 3.

Genotoxicity of silica in vitro (including data of non-food-grade and colloidal SAS)

Test system Test substance Particle size and/or SSA Source Method/treatment/parameters studied Results References
In gene mutation—bacteria
 S. typhimurium TA98, TA100, TA1535, TA1537, TA1538 Pyrogenic SAS (CAB-O-SIL® EH-5) 385 m2/g Cabot Standard plate, agar plate, only with S-9 Negative ECETOC (2006)
 S. typhimurium TA98, TA100, TA1535, TA1537, TA1538 Pyrogenic SAS (CAB-O-SIL® M-5) 200 m2/g Cabot nr, ± S-9 (not defined) Negative
 S. typhimurium TA98, TA100, TA1535, TA1537, TA1538 Silica gel (Silcron G-910) nr nr Standard plate, agar plate Negative
 Escherichia coli WP2 Silica gel (Silcron G-910) nr nr Standard plate, agar plate Negative
 S. typhimurium TA1530, G-46 Silica gel (Syloid 244) 2.5–3.7 µm nr Spot test Negative
 S. typhimurium TA98, TA100, TA1535, TA1537, WP2uvrA Colloidal silica* 20, 100 nm E&B Nanotech Co Ltd OECD TG 471, GLP Negative Kwon et al. (2014)
Gene mutation—mammalian cells
 CHO cells Pyrogenic SAS (CAB-O-SIL® EH-5) 385 m2/g Cabot OECD TG 476, GLP Negative ECETOC (2006)
 L5178Y mouse lymphoma cells Precipitated SAS (NM-200) 190 m2/g JRC OECD TG 476, GLP Negative CEFIC (2012a)
 L5178Y mouse lymphoma cells Pyrogenic and precipitated SAS (NM-200, -201, -202, -203) 10–22 nm JRC OECD TG 476 Negative NANOGENOTOX (2013)
 V79 hamster lung fibroblasts, HPRT 2 pyrogenic SAS, 1 precipitated SAS, 2 precipitated colloids* 20 and 25/70 nm (pyrogenic), 20 nm (precip.), 15, 40/80 nm (colloid)/50–200 m2/g Commercial 12.5, 25, 50, 100 mg/L, 24 h Negative Guichard et al. (2015a)
 Mouse embryonic fibroblast (MEF-LacZ cells) Stöber silica without stabiliser* 10, 30, 80, 400 nm (actual sizes 11, 34, 34 and 248 nm); SSA nr Glantreo 4, 40, 400 mg/L, 16 h 10, 80, 400 nm: negative
30 nm: dose related ↑(2-threefold) at 40, 100, 400 mg/L; ↓viability (80 % at 85 mg/L): no particles in nucleus, implying secondary effect
Park et al. (2011)
 Mouse lung epithelial (FE1) cells derived from Muta™ Mouse Colloidal SAS* and 2 µm SAS 12, 5–15, 10–20 nm, 2 µm Sigma-Aldrich, NIST 12.5 mg/L for 8 consecutive times Negative, concentrations higher than 12.5 mg/L were cytotoxic and not included in the analysis Decan et al. (2016)
In vitro micronuclei induction
 BEAS2B, 16HBE, A549, Caco-2 Pyrogenic and precipitated SAS (NM-200, -201, -202, -203) 10–22 nm JRC OECD TG 487, 24 h, then cytB added A549: positive for NM-201 and NM-202;
Caco-2: inconclusive (1 exp positive, 1 exp negative); BEAS2B, 16HBE: mostly negative
NANOGENOTOX (2013)
 BEAS2B Precipitated silica (NM-200) and pyrogenic silica (NM-203) 22 nm, 190 m2/g JRC OECD TG 487, 0.1–100 mg/L, 48 h, cytB added 6 h after the beginning of treatment Negative Zijno et al. (2016)
 Caco-2 Colloidal silica (Levasil® 50, Levasil® 200)* 15, 55 nm HC Starck OECD TG 487, 24 h treatment, then cytB added 15 nm: 1.5-fold↑ at 16 µg/mL and threefold↑ at 32 and 64 µg/mL in the presence of ↓RI (remained above 55 %); addition of FCS reduced effect by 50 %
55 nm: no effect; addition of
Tarantini et al. (2015b)
 Human lymphocytes Pyrogenic and precipitated SAS (NM-200, -201, -202, -203) 10–22 nm, 160–230 m2/g JRC OECD TG 487, up to 1,250 mg/L, 24 h Negative Tavares et al. (2014)
 Human lymphocytes Colloidal silica (Levasil® 50, Levasil® 200)* 15, 55 nm/200, 50 m2/g HC Starck OECD TG 487, 31.6–1000 mg/L Negative Downs et al. (2012)
 Balb/3T3 mouse fibroblasts Precipitated silica (NM-200) and pyrogenic silica (NM-203); and
colloidal silica*
5–90 nm/50–200 m2/g JRC OECD TG 487, 100 mg/L, 24 h, then cytB added Negative Uboldi et al. (2012)
 V79 hamster lung fibroblasts 2 pyrogenic, 1 precipitated, and 2 precipitated colloids* 20 and 25/70 nm (pyrogenic), 20 nm (precip.), 15, 40/80 nm (colloid)/50–200 m2/g Commercial 12.5, 25, 50, 100 mg/L, 24 h Negative Guichard et al. (2015)
 V79 hamster lung fibroblasts Silica gel (Spherisorb® 5 µm)* nr nr 24 h, 20–160 µg/cm2 Weak but significant induction of micronuclei at cytotoxic doses Liu et al. (1996)
 Mouse embryonic fibroblast (MEF-LacZ cells) Stöber silica without stabiliser* 10, 30, 80, 400 nm (actual sizes 11, 34, 34 and 248 nm); SSA nr Glantreo 4, 40, 400 mg/L, 16 h 10, 30, 400 nm: negative
80 nm: positive; no particles in nucleus, implying secondary effect
Park et al. (2011)
 A549 human epithelial lung carcinoma cells Stöber silica* 12–174 nm Laboratory OECD TG 487; 40 h No significant induction of micronuclei; other weak chromosomal effects were observed, but again without reaching statistical significance; no cytotoxicity Gonzalez et al. (2010, 2014)
In vitro chromosome aberration studies
 Chromosome aberrations, CHO cells Pyrogenic SAS (CAB-O-SIL® EH-5) 385 m2/g Cabot Equivalent to OECD TG 473, GLP
-S9: 16 h, 38–300 µg/ml;
+S9: 2 h, 250–1000 µg/mL
Negative Cabot 1990 as cited in ECETOC (2006)
 Chromosome aberrations,
V79 cells
Precipitated silica (NM-200) 190 m2/g JRC OECD TG 473, GLP Negative CEFIC (2012b)
 Chromosome aberrations,
V79 cells
Colloidal silica* 20, 100 nm E&B Nanotech Co Ltd OECD TG 473, GLP Negative Kwon et al. (2014)
 Chromosome aberrations, human embryonic lung cells (Wi-38) Micronized silica gel (Syloid® 244) 2.5–3.7 µm nr 24 h (presumably), only in the absence of S9, 1–1000 µg/mL Negative US-FDA 1974 as cited in ECETOC (2006)
In vitro UDS assays
 Primary rat hepatocytes Pyrogenic SAS (CAB-O-SIL® EH-5) 385 m2/g Cabot 0.3–1000 µg/ml, with and without S9, exposure time 18–20 h Negative Cabot 1989 as cited in ECETOC (2006)
In vitro comet assays
 HT-29 human colon carcinoma cell line Pyrogenic SAS (AEROSIL® 200, AEROSIL® Ox50) 12, 40 nm, 200, 50 m2/g Evonik Industries Cytotoxicity (±FCS, 1 and 10 %, 0.03–156.3 µg/cm2); comet assay with and without Fpg Negative, no oxidative DNA damage Gehrke et al. (2013)
 Human Caco-2 intestinal cells (undifferentiated) Pyrogenic silica* 14 nm, SSA 200 m2/g Sigma 20, 80 µg/cm2; 4 and 24 h, cytotoxicity (LDH and WST-1); 20 µg/cm2 for Fpg–comet assay (4 h treatment); glutathione Positive (20 µg/cm2) in the presence of cytotoxicity (cytotoxic at 20 µg/cm2 after 24 (LDH) or 4 h (WST-1); DNA damage only with Fpg; ↓glutathione Gerloff (2010) and Gerloff et al. (2009)
 A549, HT29, and HaCat Colloidal silica (Ludox SM-30)* 14 nm, agglomerated to 500 nm in medium Sigma 24 h, 0.01–10 µg/mL Significant increases in DNA damage at ≥0.1 mg/L in all tested cell types; cytotoxicity ≥1 mg/L Mu et al. (2012)
 3T3-L1 fibroblasts Colloidal silica (LUDOX® CL and CL-X and non-stabilised SAS particles)* 20, 30, 80, 400 nm Commercial and laboratory 4 and 40 μg/mL in DMEM; 3, 6, and 24 h incubation Negative Barnes et al. (2008)
 SH-SY5Y neuronal cell line Colloidal silica (LUDOX® AS-20, CL and AM, polygon)* 12 nm (nominal) Commercial 48 h, up to 1000 ppm Inconclusive Kim et al. (2010)
 Primary rat alveolar macrophages Precipitated silica (NM-200) 230 m2/g JRC 4 and 24 h incubation; 0, 0.01, 0.05, 0.25, 2.5, and 10 (10 only for 4 h incubations) µg/cm2; positive control D12 (25 µg/cm2; 4 h) Negative, no oxidative DNA lesions; cytotoxic at highest dose level tested CEFIC (2012c),
 A549 Colloidal silica (Levasil®)* 9, 15, 30, 55 nm AkzoNobel Alkaline unwinding, 100–300 µg/mL 30, 55 nm: >50 µg/mL DNA damage; 9, 15 nm: at higher concentrations, at 100 µg/mL oxidative damage Maser et al. (2015)
 Rat, lung Colloidal silica (Levasil®)* 15, 55 nm AkzoNobel Precision cut slices, 10–300 µg/mL 15, 55 nm: >100 µg/mL DNA damage; no overt cytotoxicity Maser et al. (2015)
 V79 hamster lung fibroblasts Colloidal silica (Levasil®)* 15, 55 nm AkzoNobel Alkaline comet assay, alkaline unwinding assay,
100–300 µg/mL, ± Fpg
15 nm: ↑strand breaks at 100 µg/mL (>twofold); no oxidative damage; no cytotoxicity
55 nm: ↑strand breaks at 300 µg/mL (>twofold); no oxidative damage; no cytotoxicity
Maser et al. (2015)
 V79 hamster lung fibroblasts Silica gel (Spherisorb®)* 5 µm Commercial 3 h treatment Positive at ≥68.9 µg/cm2 Zhong et al. (1997)
 V79 hamster lung fibroblasts 2 pyrogenic, 1 precipitated, and 2 precipitated colloids* 20 and 25/70 nm (pyrogenic), 20 nm (precip.), 15, 40/80 nm (colloid)/50–200 m2/g Commercial 12.5, 25, 50, 100 mg/L, 24 h, comet assay with and without Fpg Positive only with Pyr20 and Col15 in the presence of cytotoxicity and with Fpg, but no change in ROS; indicating indirect mechanisms Guichard et al. (2015)
Phosphorylated gamma-H2Ax foci
 Caco-2 cell line Colloidal silica (Levasil® 50, Levasil® 200)* 15, 55 nm HC Starck Phosphorylated gamma-H2Ax foci, 24 h, 4–64 µg/mL/1.25–20 µg/cm2 15 nm: threefold↑ at 32 µg/mL and fivefold↑ at 64 µg/mL; likely a result of apoptosis as the caspase was also↑
55 nm: no effect
Tarantini et al. (2015b)
 Human HT-29 intestinal epithelial cell line Mesoporous silica, core dye doped with two different labels* 25, 100 nm Laboratory Phosphorylated gamma-H2Ax foci, 24 h, 10, 50, 150 µg/mL 25 nm: 10, 50 (↑), 150 ↑
100 nm: 10, 50 ↑, 150 no effect
Sergent et al. (2012)

cytB Cytochalasin B, HPRT hypoxanthine guanine phosphoribosyltransferase, NIST National Institute of Standards and Technology (USA), ROS reactive oxygen species

* Substance which does not fulfil the current EU criteria for E 551 (no star does, however, not implicate that the substance would be in compliance with EU E 551 specifications)