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Malnutrition is the result of an inadequate balance between energy intake and energy expenditure that ultimately leads to either obesity

or undernutrition. Several factors are associated with the onset and preservation of malnutrition. One of these factors is the gut microbiota, which
has been recognized as an important pathophysiologic factor in the development and sustainment of malnutrition. However, to our knowledge,
the extent to which the microbiota influences malnutrition has yet to be elucidated. In this review, we summarize the mechanisms via which the

gut microbiota may influence energy homeostasis in relation to malnutrition. In addition, we discuss potential therapeutic modalities to

ameliorate obesity or undernutrition. Adv Nutr 2016;7:1080-9.
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Introduction

Malnutrition is a broad term that encompasses many differ-
ent manifestations of inadequate nutrition, including both
undernutrition and obesity. It is characterized by an imbal-
ance in energy intake and energy expenditure (1). In 2014,
>600 million people worldwide were obese, and >1 billion
people suffered from undernutrition (2, 3).

Obese individuals experience increased feelings of hunger
despite the large amounts of stored energy in adipose tissue
(4). It is an ongoing paradox why obese individuals show
this strong urge to eat. The most accepted hypothesis is that
they have an increased resting energy expenditure (REE)®
that corresponds to an increased energy need. On the con-
trary, undernourished individuals such as patients with ano-
rexia nervosa (AN) seem to have an opposite imbalance.
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These individuals experience a loss of appetite despite the
fact that REE remains the same (5, 6). This suggests that
both obese and anorectic individuals lose the tight connec-
tion between food intake and REE that is normally found in
healthy individuals.

Despite the increasing insight into the pathophysiology of
obesity and undernutrition, the currently available treat-
ment modalities are largely ineffective (7-9), suggesting
that certain biological systems are not adequately restored.
A new player in this field of research might be the composi-
tion of our indwelling bacterial species: the gut microbiota.

The gut microbiota (the collective genomic content of
microorganisms) in humans contains ~40 trillion microor-
ganisms. Until recently, most studies stated that the bacteria
residing in the human intestinal tract outnumbered human
cells by a ratio of 10:1. However, Sender et al. (10) recalcu-
lated this ratio and concluded that the ratio of microbial cells
is much closer to equal numbers of human cells (1:1). The 2
dominating phyla in humans, accounting for 90% of the gut
microbiota, are Firmicutes and Bacteroidetes. There are cur-
rently >274 genera within the Firmicutes phylum, including
Bacillus, Lactobacillus, Mycoplasma, and Clostridium. Bacter-
oidetes includes ~20 genera, of which the most abundant ge-
nus in the human gastrointestinal tract is Bacteroides (11).

The gut microbiota plays an important role in the absorp-
tion, storage, and expenditure of energy obtained from dietary
intake (12-15). Furthermore, recent animal studies have
shown that the gut microbiota is also involved in the regulation
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of food intake by affecting hormones that influence metabolic
function and areas in the brain associated with eating behavior
(16). This so-called microbiota gut-brain axis represents a bidi-
rectional signaling axis that regulates body weight by balancing
appetite, storage, and energy expenditure (Figure 1) (14).

In this regard, obesity and undernutrition share an im-
portant biological factor: alterations in the composition
and diversity of the gut microbiota compared to healthy in-
dividuals (1, 17-20). This disruption in the microbial com-
position, a phenomenon known as dysbiosis, is associated
with altered bodyweight and fat storage. Whether the dys-
biosis is a cause or consequence of obesity and undernutri-
tion has to our knowledge yet to be determined.

Improved understanding of how the gut microbiota is
involved in energy homeostasis and appetite regulation
can eventually lead to novel therapeutics, such as probiotics
and fecal microbiota transplantation (FMT), that poten-
tially modulate the gut microbiota in a more effective
way than the current treatment modalities.

Therefore, in this review, we focus on the influence of the
gut microbiota on energy homeostasis and appetite regula-
tion. We discuss alterations of the gut microbiota known
so far in obesity and undernutrition first and then provide
insight into the potential value of novel therapeutic strate-
gies such as probiotics and FMT.

Gut Microbiota and Energy Homeostasis
In humans, nutrient digestion and absorption mainly occur
in the stomach and proximal small intestine. In healthy
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individuals, ~66-95% of proteins, 85% of carbohydrates,
and ~95% of fats are absorbed before entering the large in-
testine (21). The highest density of gastrointestinal microor-
ganisms is found in the cecum and proximal colon (12). The
gut microbiota is predominantly involved in the fermenta-
tion of indigestible carbohydrates into SCFAs, which have
been found to exert multiple effects on energy homeostasis
and are crucial for intestinal health (22). The most abundant
SCFAs are acetate, butyrate, and propionate; these SCFAs
comprise >95% of the SCFA content (22).

There is growing evidence from human and animal stud-
ies that support a link between the gut microbiota, SCFAs,
and obesity (17, 23-25). Several animal and human studies
have found increased SCFA fecal concentration (in particu-
lar propionate) in obese individuals compared to lean indi-
viduals, suggesting that increased fecal concentrations of
SCFAs are associated with obesity (23, 26). In apparent con-
trast, some animal studies have shown that treatment with
SCFAs reduces weight gain and adiposity (27, 28). However,
note that the fecal content of SCFAs does not directly corre-
late with the rate at which acetate, propionate, or butyrate
are metabolized (18).

Furthermore, studies in mouse models have shown that
gut-derived SCFAs are actively metabolized and that propio-
nate, butyrate, and acetate play an important role as substrates
for glucose metabolism (29). In addition, propionate and bu-
tyrate have the capacity to activate intestinal gluconeogenesis
(30). In obese mice, the administration of oral sodium buty-
rate has been shown to reduce body weight by increasing fat
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The gut-brain axis. Satiety and adiposity signals are secreted in the gastrointestinal tract and adipose tissue. These

hormones directly or indirectly signal to NPY/AGRP- and POMC/CART-containing neurons located in the hypothalamic arcuate nucleus.
This arcuate nucleus plays a key role in the regulation of appetite and energy expenditure. The activation of NPY/AGRP neurons has an
orexegenic effect, whereas the activation of POMC/CART neurons has an anorexigenic effect. AGRP, agouti-related protein; CART,
cocaine- and amphetamine-regulated transcript; CCK, cholecystokinin; GLP-1, glucagon-like peptide 1; NPY, neuropeptide Y; OXM,
oxyntomodulin; POMC, pro-opiomelanocortin; PYY, peptide tyrosine tyrosine.
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oxidation and energy expenditure (27). Another study indi-
cated that administering oral acetate, propionate, and buty-
rate to mice fed a high-fat diet improved insulin sensitivity
and reduced body weight without changing food intake or
physical activity rate (31).

In conclusion, although reports on the composition of
the gut microbiota in obese individuals are not uniform, re-
duced microbial diversity seems to be a recurrent finding.
These alterations are thought to be associated with altered
SCFA composition, energy homeostasis, and inflammation.
However, a causal relation between gut microbiota compo-
sition and energy homeostasis is complex, and contributory
variables such as genes, age, and diet substantially affect the
function of gut microbiota (32).

The Gut-Brain Axis

The central nervous system constantly responds to the var-
ious neural and chemical signals that monitor an individ-
ual’s energy state. Most of these signals are thought to be
produced in the gastrointestinal tract and are collectively re-
ferred to as the gut-brain axis (14, 33). The gut-brain axis
can be influenced by multiple factors, including diet, genes,
and anatomy (e.g., effect of bariatric surgery), and recently
the gut microbiota has been implicated (12). The pathways
between the indwelling gut microbiota and regulation of ap-
petite are far from elucidated, however. To comprehend the
mechanisms through which the gut microbiota might influ-
ence appetite, we first summarize some basic knowledge
about the gut-brain axis.

Food intake induces the release of numerous satiety hor-
mones, causing a feeling of fullness that reduces appetite. Al-
though taste perception is an important player in the
regulation of food intake (34), in this review we focus on the
more peripheral gastrointestinal signals and their relation to
the gut microbiota. After taste, the second signal triggered by
food intake is generated by mechanoreceptors in the stomach
(35). Gastric distention induces vagal afferent firing, causing a
negative-feedback signal in the brain (rhombencephalon) that
evokes the feeling of fullness. Although gastric distension
causes a quick feeling of fullness, specialized endocrine cells lo-
cated within the gastrointestinal tract are thought to play a
greater role in the regulation of appetite. These so-called entero-
endocrine cells express chemosensors on their apical surfaces
that respond to the preabsorptive nutrients that release several
hormones involved in many physiological processes, including
ghrelin, cholecystokinin, glucagon-like peptide 1 (GLP-1),
peptide tyrosine tyrosine (PYY), and leptin (Figure 1) (36).
These hormones activate vagal and spinal afferents directly
and indirectly, initiating the gut-brain axis. In the nucleus sol-
itary tract of the brainstem, both vagal- and spinal gut—derived
signals are integrated, inducing a signal in the hypothalamic ar-
cuate nucleus (ARC) (37, 38). The hypothalamus plays a cen-
tral role in the regulation of energy homeostasis by affecting
both appetite and energy expenditure. Two different types of
neurons in the hypothalamus are responsible for the interpre-
tation of these peripheral signals. The appetite-suppressing
(anorexigenic) neurons pro-opiomelanocortin (POMC) and
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cocaine- and amphetamine-regulated transcript in the lateral
side of the ARC express a-melanocyte—stimulating hormone
(39). Melanocortins such as a-melanocyte—stimulating hor-
mone promote negative energy balance (40). These peptides
are synthesized in response to increased adipose tissue. The
medial part of the ARC contains orexigenic neurons that ex-
press neuropeptide Y (NPY) and the agouti-related protein
(AGRP) (14). NPYand AGRP are the main appetite-stimulating
central neurotransmitters. They stimulate appetite and re-
duce energy expenditure through the release of orexin and
melanocortin-releasing hormone and the inhibition of
POMC (40).

In summary, the gut-brain axis is activated upon food in-
take through the release of gut hormones that activate the
nucleus solitary tract and then the hypothalamus, which is
the central regulator for appetite and energy expenditure.
Based on their importance for weight regulation, we discuss
the major gastrointestinal and pancreatic hormones and
their proposed association with the gut microbiota.

Satiety hormones

Ghrelin. Ghrelin is the only hunger-inducing or orexigenic
hormone known so far and is predominantly produced by
the enteroendocrine cells located in the stomach (X/A-like
cells) (33). Ghrelin secretion is reduced during distension of
the stomach and increased during the fasting state (41, 42).
This hormone is involved in many physiologic processes, in-
cluding prolactin and adrenocorticotropic hormone release,
secretion of growth hormone secretagogue receptors, glucose
metabolism, and hunger response (43). It enhances gastric
motility and emptying and regulates appetite (44). Ghrelin
acts both on the vagus nerve as well as the direct stimulation
of NPY/AGRP neurons through their growth hormone secre-
tagogue receptors (38). Wren et al. (44) demonstrated this by
administering ghrelin intracerebroventricularly or peripher-
ally in rats, resulting in an increase of appetite. Ghrelin also
inhibits insulin release, suggesting its involvement in glucose
and lipid metabolism (45).

The association between gut microbiota composition and
ghrelin concentrations has been evaluated in a rat study. In
this study, Queipo-Ortuio et al. (46) looked at the effect of
exercise and food restriction on ghrelin concentrations in re-
lation to gut microbiota composition. They found a signifi-
cant negative correlation with ghrelin concentrations in
individuals with increased numbers of Bifidobacterium and
the B. coccoides/ Eubacterium rectale and Lactobacillus groups.
Of note, the latter bacterial species is used as a probiotic strain
in humans, but the effects on ghrelin have never been studied
to our knowledge.

Cholecystokinin. Cholecystokinin, a 27-amino-acid poly-
peptide, is produced in the proximal small intestine by I
and K cells in response to fat- and protein-containing meals.
After food intake, cholecystokinin concentrations peak in
~25 min and remain increased for ~3 h (47). In animals,
cholecystokinin is found to be involved in appetite regulation
by reducing both meal size and meal duration (48). In



addition to reducing appetite, cholecystokinin plays impor-
tant roles in gastrointestinal motility, energy expenditure,
and the secretion of pancreatic enzymes and gastric acid
(49-51). Cholecystokinin was found to be the first gastroin-
testinal hormone to influence food intake in both obese and
lean individuals (47). Interestingly, obese individuals are
found to be less sensitive to cholecystokinin release, which
might promote overeating and weight gain (52).

GLP-1. The ingestion of carbohydrates, proteins, and lipids
induce the release of GLP-1 from L cells located in the distal
small intestine and reduces appetite (53). Animal and human
studies have shown that the central and peripheral adminis-
tration of GLP-1 induces slower gastric emptying, reduces ap-
petite, and prolongs the period of postprandial satiety (54,
55). Ablation of the vagal-brainstem-hypothalamic pathway
in rodents reduces this anorectic function, which emphasizes
the importance of this pathway in regulating appetite (56).
GLP-1 has also been shown to play a crucial role in glucose
homeostasis in mice studies, inducing glucose-dependent in-
sulin release and increasing {3 cell growth in the pancreas (57).

PYY. PYY is a 36-amino-acid peptide that belongs to the
pancreatic polypeptide family and is synthesized by the
L cell in the distal gut (33). Studies in rodents have shown
that PYY has an inhibitory effect on gastric motility and
NPY, resulting in reduced appetite. A few studies have sug-
gested that PYY plays a role in the pathogenesis of obesity.
For example, Batterham et al. (58) showed that the periph-
eral administration of PYY at dose-mimicking postprandial
concentrations markedly decreased appetite and food intake
and increased satiety. Furthermore, Dakin et al. (59) showed
that intravenous PYY affected metabolism by increasing
postprandial thermogenesis and REE.

The composition of the intestinal microbiota (and dys-
biosis) may affect the orchestration of these hormones in-
volved in food intake and thus might be an underlying
pathophysiologic factor present in malnutrition. Breton
et al. (60) examined how intestinally infusing Escherichia
coli proteins in mice and rats affected food intake and
meal pattern, together with plasma GLP-1 and PYY. Indeed,
they found increased plasma PYY concentrations and de-
creased food intake. These results suggest that alterations
in the composition of the gut microbiota, resulting in a
high or low abundance of gram-negative bacteria such as
E. coli, may influence food intake via the incretin system.

SCFAs are also found to influence satiety hormones through
the activation of G-protein—coupled cell-surface receptors G-
protein—coupled receptor 41 (GPR41) and G-protein—coupled
receptor 43 (GPR43) (61). Several in vitro studies have shown
with the use of intestinal cell lines that SCFAs stimulate the se-
cretion of PYYand GLP-1 from L cells through the activation of
GPR41 and GPR43 (62-64).

Studies in rodents have shown increased plasma concen-
trations of PYY and GLP-1 after diets containing fermentable
carbohydrates (e.g., oligofructose and resistant starch) (65—
67), suggesting a link between the gut microbiota, production

of SCFAs, and appetite regulation. These data led to an in-
crease in studies examining the effects of fermentable carbo-
hydrates on the release of GLP-1 and PYY in relation to body
weight. For example, one study (58) found lower hunger
scores in healthy humans (measured by visual analog scales)
after dietary supplementation with oligofructose; these lower
hunger scores were associated with increased plasma concen-
trations of GLP-1 and PYY. Moreover, in overweight subjects
[BMI (in kg/m?) >25), intake of oligofructose for 12 wk led to
a significant weight loss (1.03 kg; P < 0.01) (69).

Adiposity signals

Plasma concentrations of hormones such as insulin and leptin
are directly related to the amount and degree of adipose tissue
inflammation. Adipose tissue is the most important reservoir
of energy in the body. In mammals, there are 2 types of adipose
tissue: white (located subcutaneously and intra-abdominally)
and brown adipose tissue (located between the scapulae
and along the spinal tract). These tissues are directly regu-
lated by the autonomic nervous system (70). The innerva-
tion of the sympathetic nervous system is mainly related
to catabolic activities, such as lipolysis (70). The parasympa-
thetic activation is mainly involved in anabolic activities,
such as glucose and FA uptake through insulin (70). Because
of caloric restriction or overeating, plasma insulin and leptin
concentrations change in parallel, reflecting altered signals
to the brain in the so-called adiposity negative-feedback
model (37, 38, 40). These adiposity signals activate POMC
neurons and inhibit NPY/AGRP neurons and, consequently,
promote weight loss (71). For example, during caloric re-
striction, adipose signaling to the brain is reduced, resulting
in decreased sensitivity to satiety hormones such as chole-
cystokinin. This compensatory mechanism induces an in-
creased feeling of appetite that causes craving for food until
body weight (and insulin or leptin concentrations) return to
the state before the start of caloric restriction.

Insulin. The anorexigenic hormone insulin is released by the
pancreatic 3 cells after oral food intake. It stimulates the
transport of glucose into the peripheral cells and provides a
direct signal to the liver to convert glucose into glycogen for
glucose storage (72). Glycogen synthesis is suppressed when
the liver is saturated with glycogen (~5% of liver mass)
and excess glucose is used for the synthesis of FAs, which
are transported in the form of TGs by lipoproteins to the pe-
ripheral tissues, including adipose tissue. In obesity, insulin
resistance is present in multiple tissues. Insulin resistance is
associated with low-grade inflammatory changes. The under-
lying pathophysiology of this low-grade inflammation and the
role of the gut microbiota are discussed in the next paragraph.

Leptin. The adiposity hormone leptin is mainly produced in
white adipocytes (small amounts also come from the stomach
and other tissues). Concentrations of leptin in plasma there-
fore link directly to the number of adipocytes and fat content
(73). The anorexigenic effect of leptin occurs mainly through
the inhibition of NPY secretion and stimulation of POMC
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secretion (74, 75). In a mouse study, SCFAs were found to
stimulate the production of leptin in adipocytes through the
activation of GPR41 (76). Intravenous administration of so-
dium propionate nearly doubled the plasma concentration of
leptin (76). In addition, these stimulatory activities of SCFAs
were inhibited when suppressing GPR41 expression by RNA
interference, confirming the direct link between SCFAs and
GPR41 (76).

Resistin. Resistin is a small cysteine-rich protein that is also
secreted by adipose tissue. It plays a role in insulin sensitiv-
ity, lipid metabolism, and inflammatory processes (77). Re-
sistin has been proposed to be the link between obesity and
insulin resistance. It influences glucose metabolism in the
liver and skeletal muscles by reducing insulin sensitivity
(78); however, the relation between intestinal microbes
and resistin is not known.

In summary, regulating appetite is a complex interplay
between peripheral signals and the central nervous system.
Imbalances between these signals result in an inappropriate
regulation of appetite and energy expenditure in obese and
undernourished individuals. SCFAs may affect the orches-
tration of these hormones involved in food intake and
thus might be an underlying pathophysiologic factor present
in both obesity and undernutrition. However, whether these
SCFAs are really physiologically relevant and a cause for
malnutrition has yet to be determined.

Gut Microbiota in Obesity
Changes in lifestyle and the excessive availability of food are 2
important contributors to the increasing obesity epidemic. En-
hanced consumption of high-fat and high-sugar diets have
been shown to change microbial ecology, leading to the notion
that gut microbiota may function as an “environmental” factor
that results in increased energy harvest and obesity (79).
Metagenomic studies in humans have generated incon-
sistent findings with respect to the gut microbiota in obese
compared to lean individuals. Which specific bacteria are
present or absent and contribute to the development of obe-
sity still has yet to be elucidated. Some studies have shown
an increased proportion of Firmicutes and reduced concen-
trations of Bacteroidetes in obese compared to lean humans
and mice (11), others have found no notable changes in mi-
crobial composition between the two groups, and some have
even reported inverse findings (23). Ley et al. (11) showed a
decrease in the Firmicutes:Bacteroidetes ratio in obese hu-
mans after weight loss after a diet. However, whether these
alterations of the gut microbiota are a secondary phenome-
non in obesity or truly causal remains to be determined.
Bickhed et al. (79) also found an association between the
gut microbiota and obesity by colonizing germ-free mice with
gut microbiota harvested from the distal intestines of conven-
tionally raised mice. Compared to the intake before the colo-
nization, the total body fat content and epididymal fat weight
of the germ-free mice increased 57% and 61%, respectively,
within 10-14 d despite a decrease in food intake. Ridaura
et al. (80) reproduced these findings by colonizing germ-
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free mice with feces of obese humans and showed identical
effects on adipose tissue. Furthermore, the prevalence of obe-
sity was lower in subjects with higher microbial diversity (81).

Other evidence indicating a correlation between the gut
microbiota and obesity has been found in obese individuals
who underwent Roux-en-Y gastric bypass (RYGB) surgery
(82). The gut microbiota changed considerably after the
procedure, resulting in increased gut microbiota richness.
This suggests that the weight reduction and improved met-
abolic profile achieved through RYGB is possibly partly
caused by a change in the gut microbiota. To test this notion,
Liou et al. (83) performed FMT with feces harvested from
RYGB-treated mice into germ-free mice and observed sub-
stantial weight loss and a decrease in fat mass compared to
the mice that received microbiota from mice that underwent
a sham procedure. However, considering the major ana-
tomic changes resulting from the RYGB operation, we can-
not conclude that all the beneficial effects of RYGB were
caused by alterations of the gut microbiota.

In addition to the role of the gut microbiota in energy reg-
ulation, mouse studies have linked the gut microbiota to the
pathogenesis of insulin resistance and inflammation in obe-
sity. It is well known that obesity is associated with chronic
low-grade inflammation and insulin resistance (84—86).
White adipose tissue is metabolically the most important ad-
ipose tissue. It plays a central role in this inflammatory state,
expressing proinflammatory cytokines such as TNF-a and
IL-1, IL-6, IL-10, and IL-12 (87). In obesity, there is increased
cytokine production in white adipose tissue and then an infil-
tration of macrophages (88, 89). This infiltration subsequently
enhances proinflammatory cytokines and in turn induces in-
sulin resistance (90). A contributing factor to the onset of this
chronic low-grade inflammation is thought to be alterations in
the composition of the gut microbiota induced by a high-fat
diet. These alterations result in increased gut permeability—
otherwise known as gut barrier dysfunction (91). Gut barrier
dysfunction causes low-grade inflammation by either directly
translocating gram-negative intestinal bacteria or increasing
LPSs (92). LPSs originate from the outer membrane of
gram-negative bacteria and induce metabolic endotoxemia,
which in turn generates a low-grade inflammation (79, 91,
93). This phenomenon is still relatively unexplored and cur-
rently a topic of extensive research.

In conclusion, although reports on the composition of
the gut microbiota in obese individuals are not uniform, re-
duced microbial diversity seems to be a recurrent finding.
These alterations are thought to be associated with altered
SCFA composition, energy homeostasis, and inflammation.
However, a causal relation between gut microbiota compo-
sition and energy homeostasis is complex, and contributory
variables such as genes, age, and diet substantially affect gut
microbiota function (55).

Gut Microbiota in Undernutrition

The role of the gut microbiota in obesity reported in early
studies provided a strong rationale for evaluating the role
of gut bacterial species in undernutrition. Undernutrition



is defined as a deficiency of calories or a shortage of =1 essen-
tial nutrient. It may develop because of difficulties in obtain-
ing, eating, or absorbing food or a considerably increased
need for calories.

To date, there is a lack of studies that have investigated the
gut microbiota in malnourished adults. Most studies that
have evaluated its role in undernutrition have focused on chil-
dren because undernutrition in children is a major health
problem, accounting for >3 million deaths/y (94). It is asso-
ciated with numerous adverse outcomes, including reduced
immune function, persistent stunting (reduced growth rate),
and neurocognitive deficits (95). To investigate the role of
the gut microbiota in severe acute malnutrition (kwashiorkor)
in children, Smith et al. (96) studied 317 Malawian twin
pairs from birth to 3 y of age. During this period, 50% of
the twins remained well nourished, whereas 43% became
discordant and 7% manifested concordance for acute mal-
nutrition. Thereafter, fecal microbiota samples from 3 dis-
cordant pairs were transplanted into germ-free mice. In 2
of the 3 twin pairs, the combination of the kwashiorkor mi-
crobiome and Malawian diet resulted in marked weight loss
in the recipient mice, along with disruptions in carbohydrate
and amino acid metabolism (96).

Blanton et al. (97) also performed fecal transplants with
the use of feces of malnourished Malawian children to colo-
nize the intestines of germ-free mice. These mice were fed a
nutrient-poor diet that reflected a standard Malawian diet.
After a few weeks, the mice harboring a gut microbiota
from malnourished donors gained substantially less weight
and showed impaired growth compared to the control group
that received microbiota from healthy children. The re-
searchers found that 2 bacterial species, Ruminococcus gnavus
and Clostridium symbiosum, were responsible for this effect.
Introducing these species into germ-free mice together with
the microbiota from the malnourished mice showed a consid-
erable weight gain (95).

Another disorder resulting in severe malnutrition is AN.
AN is characterized by a distorted body image and extreme
dieting that leads to severe weight loss (BMI below the 10th
BMI percentile) with a pathologic anxiety of becoming
obese (98). Although AN is seemingly an entirely different
disorder than childhood undernutrition, compelling evi-
dence shows that key features of AN, including altered appe-
tite regulation and energy homeostasis, are also associated
with an altered composition of the gut microbiota (99).

A first study that evaluated the composition of gut micro-
biota in AN patients found an increased concentration of
Methonobrevibacter smithii, a methane-producing archaeon,
in 9 patients with AN compared to obese and normal-weight
participants (99). Patients harboring this archaeon showed a
negative correlation (r = —20) between BMI and M. smithii
concentrations.

Morita et al. (100) compared the fecal microbiota compo-
sition of patients with AN (n = 25) to those of age-matched
healthy controls. AN patients had markedly lower amounts
of total bacteria and obligate anaerobes (C. coccoides group,
B. fragilis, C. leptum, and Streptococcus). A recently published

study (101) explored the potential role of the gut microbiota
in AN by evaluating fecal microbiota composition and SCFA
profiles in patients with AN before (n = 55) and after weight
gain (n = 44) compared to normal-weight participants (n =
55). Patients with AN showed profound microbial perturba-
tions compared to normal-weight participants, with reduced
concentrations of the butyrate-producing Roseburia spp. and
higher concentrations of mucin-degrading bacteria (Verruco-
microbia, mainly Akkermansia muciniphila), as well as mem-
bers of Clostridium clusters I, X1, and XVIII. Strikingly, after
weight gain microbial diversity increased, but perturbations
in the gut microbiota composition and fecal SCFA profiles
did not improve.

Therapeutics: Prebiotics, Probiotics, and FMT

Previous insights into the role of the gut microbiota in
weight regulation have revealed the potential niche in ther-
apeutic options for obese and undernourished individuals.
The gut microbiota composition can be modified with the
use of several tools, e.g., live bacteria (probiotics), specific
nutrients that act as a fertilizer for bacteria (prebiotics), an-
tibiotics, or FMT (102). In this section, we focus on the ef-
fects of probiotics, prebiotics, and FMT in malnutrition.

Probiotics

Probiotics are live microorganisms that can influence the gut
microbiota and contain promising therapeutic utilities for
patients with disorders caused or worsened by imbalances
in the gut microbiota (103).

In animals, probiotics are excessively used in the farming
industry to induce weight gain. Feed animals are predomi-
nantly given gram-positive species such as Enterococcus,
Bacillus, Bifidobacterium, Pediococcus, Lactobacillus, and
Streptococcus spp. (104).

In humans, probiotics have been shown to induce weight
gain in children with severe malnutrition (105, 106). For ex-
ample, the probiotic B. breve has been associated with sub-
stantial weight gain, especially in malnourished children
(107-109). However, it is important to mention that related
probiotic strains often vary considerably at functional and
structural concentrations, such as the genus Lactobacillus
(110). A meta-analysis on the effects of certain Lactobacillus
spp. showed that L. fermentum, L. ingluviei, and L. acidophilus
are associated with weight gain, whereas the administration of
L. gasseri and L. plantarum promotes weight loss in obese an-
imals and humans (107). Furthermore, the enrichment of gut
microbiota with L. reuteri in glucose-tolerant humans in-
duced a minor increase of insulin secretion, possibly because
of an augmented release of incretins. L. gasseri and L. plantarum
have also been shown to reduce weight, although only lim-
ited well-designed studies to our knowledge have exhibited
their effects (107).

Regarding inflammation, growing evidence indicates that
components of the gut microbiota might be involved in the
regulation of the gut barrier function and in turn reduce in-
flammation. For example, A. muciniphila, which is found in
the mucus layer of healthy humans, has been associated with
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restored gut barrier function, reduced endotoxemia concen-
trations, and improved metabolic function (111). This im-
proved gut barrier function is striking because A.
muciniphila is known to be a mucin-degrading bacterium
(112). In obese mice, oral gavage with A. mucinphila reduced
fat mass gain and adipose tissue inflammation and enhanced
the gut barrier function. In humans, a high abundance of A.
mucinphila is also associated with a healthier metabolic sta-
tus and blood cholesterol concentrations (111).

Prebiotics

Prebiotics consist of complex carbohydrates that are nondi-
gestible for humans and can be used as substrates for the mi-
crobiota. For instance, oligofructose intake has been shown
to promote the growth of Bifidobacterium and Lactobacilus
and reduce body fat in obese individuals (69). These results
were associated with a suppressed postprandial ghrelin release
and increased PYYA concentrations and a considerable reduc-
tion of appetite. Indeed, supplementing oligofructose in a
high-fat diet increased the number of intestinal Bifidobacterium
spp. and reduced obesity and symptoms of metabolic syn-
drome (67, 113). Therefore, bifidobacteria were thought to
facilitate the oligofructose-induced effects in obesity and
metabolic syndrome. However, Woting et al. (114) showed
beneficial effects of oligofructose in mice on body weight,
body fat accumulation, and glucose tolerance independently
of the microbial status.

FMT
FMT has emerged as an effective treatment for recurrent C.
difficile infection. Recent studies have suggested that FMT
might also play a role in treating other gastrointestinal and
nongastrointestinal diseases, including obesity, insulin resis-
tance, and metabolic syndrome (115). The transfer of the fe-
cal microbiota from human twins discordant for obesity into
germ-free mice led to greater adiposity and body mass in mice
transplanted with the obese microbiota (80). Interestingly,
when the obese-transplanted mice were cohoused with the
lean-transplanted mice, the obese-transplanted mice were
protected from developing the increased adiposity and body
mass (116). A metagenomic analysis of feces derived from
the obese mice revealed a decreased number of genes involved
in SCFA production but an enrichment of those that were in-
volved in branched-chain amino-acid metabolism compared
to their lean counterparts. In a small, double-blind, random-
ized controlled study, Vriese et al. (117) found that FMT from
lean to obese (with metabolic syndrome) individuals resulted
in improved insulin sensitivity, increased gut microbial diver-
sity, and increased butyrate-producing bacteria (R. intestinalis)
in obese recipients. Whether this effect is caused by changes
in the composition of the gut microbiota or in certain gram-
negative bacterial species (thus less endotoxemia) is un-
known to our knowledge and currently under investigation.
Although there is a growing interest in the effects of FMT
on obesity and metabolic syndrome, so far no studies on
FMT and undernutrition in humans to our knowledge
have been performed. There is, however, anecdotal evidence
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that supports the hypothesis that FMT can increase body
weight. Indeed, a lean subject was reported to rapidly and
unintentionally gain weight after receiving obese donor feces
for a C. difficile infection (118). This case stimulates further
investigation on the link between the gut microbiota, metab-
olism, and malnutrition.

In summary, these studies provide a potential proof of
principle for future FMT studies on the treatment of obesity
and undernutrition. Novel studies might help to identify bac-
terial strains involved in host energy metabolism that can pos-
sibly be isolated and developed as probiotics. However,
patience is essential because regulatory (good manufacturing
practice and stability of strains) and production hurdles (e.g.,
culturing these anaerobic bacterial strains in large quantities)
preclude rapid translation into clinical practice.

Conclusions

The gut microbiota seems to be an important player in the
regulation of energy homeostasis in humans. However, it re-
mains difficult to prove causality in the interaction between
gut microbiota and weight-regulatory mechanisms. Current
studies mainly focus on the role of the gut microbiota in
obese individuals. We feel that other metabolic disorders
such as undernutrition in adults should also be taken into
account. Therefore, future studies should not only focus
on obesity but also try to mine the gut microbiota in under-
nutrition for novel probiotics and further examine the direct
interaction between nutrient intake, energy homeostasis,
and the gut microbiota.
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