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Abstract

Although systems science has emerged as a set of innovative approaches to study complex 

phenomena, many topically focused researchers including clinicians and scientists working in 

public health are somewhat befuddled by this methodology that at times appears to be radically 

different from analytic methods, such as statistical modeling, to which the researchers are 

accustomed. There also appears to be conflicts between complex systems approaches and 

traditional statistical methodologies, both in terms of their underlying strategies and the languages 

they use. We argue that the conflicts are resolvable, and the sooner the better for the field. In this 

article, we show how statistical and systems science approaches can be reconciled, and how 

together they can advance solutions to complex problems. We do this by comparing the methods 

within a theoretical framework based on the work of population biologist Richard Levins. We 

present different types of models as representing different tradeoffs among the four desiderata of 

generality, realism, fit, and precision.
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Rooted in the “mathematically based” disciplines such as engineering, computational 

sciences, and operations research, systems science has emerged as a family of 

methodologies appropriate for studying complex systems in society and nature (Sterman, 

2006). Although systems science has proved to be an innovative way to study complex 

phenomena, many empirical researchers in the disciplines where it is being applied are 

perplexed by this methodology that at times appears to be lacking the scientific rigor of 

statistical approaches to which the researchers are accustomed. Here, and throughout this 

article, we use the terms statistics and statistical models to refer specifically to a subset of 

statistics, Null Hypothesis Significance Testing (NHST), except where indicated. Carefully 

collected statistical data are used for testing a small number of hypotheses that are identified 

by the researcher a priori. Indeed, as a reductionist approach, statistical modeling gears 

toward falsifying a well-defined null hypothesis such as “There is no difference between the 

mean responses to Drug A and the placebo.”

In contrast, systems science methodologies are used to address a range of goals including the 

following: (1) Knowledge Synthesis (summarizing information across a range of domains to 

represent the “big picture” view of the system or problem); (2) Heuristic (to aid in 

understanding the dynamics underlying the system or problem); (3) Hypothesis Generation 

(to generate new hypotheses and/or narrow the list of plausible hypotheses); (4) Forecasting 

(to generate a range of plausible future scenarios, based on explicit assumptions); (5) 

Identify and Prioritizing Research Gaps (use sensitivity analysis to determine knowledge 

gaps that, if addressed, would narrow the confidence band associated with model outcomes); 

and (6) Virtual Experimentation (conduct experiments in silico, saving time and money). 

Systems science methodologies are often employed for policy analysis and design—to 

examine tradeoffs of implementing different policy options; to generate and test dynamic 

hypotheses—could the Behavior X be generated by Causal Structure Y (i.e., a set of causal 

relationships); for anticipating future behavior modes—what is the expected future trajectory 

of variables of interest under specified conditions; and when exploration is the goal—what 

system behaviors (some of which may be unanticipated) emerge from dynamic simulation. 

Systems science models often rely on the conceptual framework and heterogeneous 

qualitative and quantitative data sources, and the consistency of the data may not be 

comparable to the sort of data that are demanded by statistical approaches. Furthermore, 

systems science models often emphasize generative explanation and emergent behaviors of 

systems whereas statistical models focus on the notion of causality (e.g., in clinical trials) 

and consistencies of models with carefully collected data sets from designed experiments 

and empirical studies.

In this article, we demonstrate how statistical and systems science approaches can be 

reconciled, and how together they can advance solutions to complex problems especially 

those related to public health. We build our work on the basic insight that different modeling 
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approaches may pursue different goals, and none can achieve all the relevant goals 

simultaneously. Therefore, a systems modeling choice that seems like a poor practice to a 

statistical modeler may be motivated by the pursuit of goal different from what the statistical 

modeler is used to, and vice versa. For example, some models may target point prediction, 

and others may seek insight generation, descriptive accuracy, hypothesis testing, relevance to 

policy questions, or other goals (Randers 1980). Appreciating these differences in modeling 

goals and approaches is crucial for communication across disciplinary boundaries and for 

increasing consistency among policy conclusions that emanate from model-based analysis 

(Andersen, 1980). To this end, we employ a generality-realism-fit-precision paradigm 

motivated by the work of population biologist Richard Levins (1966) and later expanded by 

other biologists (Matthewson & Weisberg, 2009; Odenbaugh, 2006; Weisberg, 2006), which 

we referred to as the Levins Framework. Briefly, our framework considers four attributes, or 

desiderata of models: generality, realism, fit, and precision. We present different modeling 

applications as each representing a different balance, or what we shall call set of tradeoffs, 

between the four desiderata.

Tradeoffs in Modeling: Generality, Realism, Fit, and Precision

Meanings of Generality, Realism, Fit, and Precision

Precision, in the Levins framework, is not a property of a statistical estimate (e.g., in terms 

of the width of its confidence interval) but rather is the “fineness of model specification.” 

That is, precision is the level of specific details about model parameters, functional forms of 

relationships between variables, details about its components, and so on. By this definition, a 

model that can generate numerical outputs is precise, whereas broad qualitative models 

score low on precision. More operational qualitative models may be medium on this 

dimension. Realism in the original Levins framework refers to both the predictive accuracy 

of a model and to the level of accuracy to which the model reflects reality. Here we 

distinguish between qualitative realism, for which we retain the descriptor “realism,” and 

quantitative realism, which we refer to as “fit.” The former suggests consistency of the 

model with the mental models of experts and the latter consistency of the model with real 

data. Specifically, qualitative realism refers to the degree to which a model is perceived to be 

realistic by experts in the field, because it reflects the relevant real-world mechanisms and 

variables (i.e., to be realistic is to have face validity). On the other hand, quantitative realism 

(a.k.a. fit), refers to how well a model fits the data both in terms of goodness-of-fit of the 

model to historical data and predictive accuracy. Models such as complex black-box models 

in machine learning often have high level of fit but low level of qualitative realism. 

Generality refers to the extent to which a model can be applied across circumstances and 

phenomena. In the Levins framework, relative to less general models, a more general model 

would be one in which parameters are not specified as precisely, causal forces are described 

at higher levels of abstraction, and model variables are represented more qualitatively and 

less quantitatively. Examples of highly general models include the multilevel behavioral 

model (Glass & McAtee, 2006) and the social ecological (Emmons, 2002; see also Langille 

& Rogers, 2010) and ecosocial (Krieger, 2001) models, which forgo quantitative 

representation altogether.
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One challenge of using the Levins framework for looking at the space of modeling 

approaches is that there is vast diversity even within each class of models. For example, 

NHST notwithstanding, the field of statistical modeling has emerged to include complex 

multimodal, multilevel, and temporal models, which are difficult to discuss in the same vein 

as t test and simple linear model. In the following section, we provide several illustrations of 

the Levins framework with three archetypical modeling approaches: statistical models, 

agent-based models (ABMs), and system dynamics models. Within each archetype, we use 

two examples to highlight the diversities that exist within the archetype. Table 1 provides a 

summary of their characteristics within the Levins framework.

Examples of Models to Illustrate the Levins Framework

Statistical models—Statistical models are designed to be instantiated—that is, model 

parameters are assigned numeric values—such that statistical prediction can be achieved. 

The level of precision (e.g., specific functional form, parameter definition and instantiation, 

control for confounding factors) for practically useful statistical models is typically high. 

The dose of realism in statistical models, however, is a function of the type of research 

question that the model is designed to answer. Typically, statistical modeling follows a 

question-data-analysis sequence (Cox, 2006). In the question-formulation stage, the extent to 

which the designed model would be a representation of the real world—its realism—is 

determined. Indeed, the Levins framework asserts that at most three desiderata—for 

example, precision, fit, and realism—but not all four, can be simultaneously maximized by 

any model. Thus, it is still possible to construct complex and highly precise statistical 

models that are both realistic and have good fit to empirical data. However, in practice, 

increasing both the (qualitative) realism and fit in statistical modeling (and all types of 

modeling for that matter) has its upper boundaries, which are, at a minimum, related to the 

cognitive limitations for comprehending the model. The realism-fit-precision tradeoff can 

also be viewed from the perspective of a complexity-parsimony balance in model fitting, as 

discussed in Rodgers (2010a, 2010b) and elsewhere (Roberts & Pashler, 2000, 2002). From 

that vantage point, useful models are judged against their goodness-of-fit to data, which is 

analogous to the fit criterion, as well as their parsimony, which is analogous to realism and 

precision (more complex implies higher level of model fineness or precision but less 

qualitative realism).

Table 1 shows two forms of statistical models that achieve different tradeoffs in the four 

desiderata. All statistical models are high in precision, because they need to be specified 

with enough precision to allow the generation of numerical outputs. Simple linear regression 

is a relatively coarse model, and the lack of fineness often renders it not to be considered a 

realistic representation of the world (existence of multiple confounding factors, noise not 

normally distributed, etc.). Historically, perhaps the most well-known example of simple 

linear regression is Sir Francis Galton’s study of the relationship between the height of 

parents and their offspring (Galton, 1886). However, except in straightforward cases, it is 

rare to find high level of fit of simple regression model to empirical data. Although such 

models can be used to describe phenomena in many fields, it is restricted to phenomena that 

exhibit a linear relationship between two variables, and thus has limited generality. On the 

other hand, complex statistical models such as an ensemble of tree-based models (e.g., 
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Random Forest; see Breiman, 2001) could be high on the accuracy dimension (good fit to 

the data) but low in generality (limited in terms of the populations it can be applied to) as 

well as low in realism (difficult to interpret).

Agent-based models—As a computational methodology, ABM uses computer programs 

to simulate the behaviors of heterogeneous “actors” across multiple scales and through time 

(Epstein, 2006). ABMs strive to represent reality by including (to a greater or lesser degree) 

social networks, complex geographies, environmental variations, and evolution. Thus, the 

computational model underlying a “realistic” ABM might contain thousands of rules and 

model parameters. Whereas the goals of statistical approaches are to test hypotheses, ABMs 

are often employed to generate hypotheses and to see if the resulting simulation is consistent 

with hypotheses. Because of the different goals of ABM, the ways parameters are 

instantiated differ from those of statistical approaches. Good modeling practices suggest 

instantiating the model parameters with empirical data whenever possible. When such data 

are not available, models may be parameterized based on values derived from subject matter 

experts. As a last resort, the parameters for which there are no data or even expert opinion 

may be left unspecified. The relative importance of quantifying unspecified (free) 

parameters can be assessed using sensitivity analysis of simulation data, which demonstrates 

the magnitude of the impact the missing information is likely to have on the model outcomes 

of interest. Moreover, ABM and other systems science methodologies are capable of 

handling realistic reciprocal relationships (i.e., bidirectional relationships or feedback 

loops); nonlinear, networked relationships; and heterogeneity in actors and factors, which 

are difficult to handle using statistical methods. Indeed, mimicking reality is regarded as the 

hallmark of the ABM approach.

Table 1 shows two forms of ABM—one built for small-scale specific problems and another 

for large-scale general problems. An example of specific ABM is the simulation of the 

flocking behavior of bird flying (Reynolds, 1987). Using an amazingly small number of 

rules (limited precision), the ABM approach could mimic flying patterns of birds in real life 

(high realism) but not necessarily fitting real data (low fit). Such models could be useful for 

generating explanations of phenomena that are challenging to directly model 

mathematically. An example of a large complex ABM system is a simulation study of the 

vaccine allocation for the H1N1 pandemic (Lee et al., 2010). In these more complex 

systems, there may be a greater need for the model to match some aspects of real data well 

(e.g., means and variances of important outcomes) and thus requiring a higher level of fit. 

Also some model parameters may be left unspecified (moderate precision) and explored 

through sensitivity analysis. Generally speaking, ABMs are designed to achieve a relatively 

high level of realism in the sense that users can interact with the model to make judgment 

about the degree to which the model reflects the real world.

System dynamics models—System dynamics models represent systems as 

interconnections between stocks, flows, and feedback loops (bidirectional relationships). 

These interconnections are represented mathematically using algebra and calculus (i.e., 

differential equations; Sterman, 2000). Here in Table 1 we use the term mathematical 
modeling to refer to formulations that make use of mathematical constructs to highlight 
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formal, abstract, and general concepts. For example, a second-order differential equation can 

be used to describe harmonic oscillators under various damping conditions. One of the best 

known textbook examples of a mathematical model is that of a mechanically oscillating 

spring system but such general formulation can be adapted to model systems that exhibit 

alternating behaviors, from economic cycles to supply chain instability (Sterman, 1986, 

2000). One such adaptation is in psychology of which the notion of feedback as a regulator 

of human and animal behavior is being modeled as an oscillating system (Levine & 

Fitzgerald, 1992; Ramsay, 2006). As some abstract representation of mechanisms, 

mathematical models are characterized by a high level of generality and medium realism and 

low fit. The fineness of the model (precision) depends on the kind of mathematical model.

Table 1 also shows a more specific example under the heading System Dynamics modeling. 

In a nutshell, typical system dynamic models use differential equations to capture dynamic 

phenomena. Stock (state) variables aggregate inertial concepts in a system, such as 

population groups. The goal is to identify and capture a broad set of feedback processes that 

regulate the rates of change in these stock variables. For example, Abdel-Hamid (2002) uses 

a system dynamics model to integrate nutrition, metabolism, hormonal regulation, body 

composition, and physical activity of a single individual as they relate to weight gain and 

loss. The model is then used for conducting different hypothetical dieting and exercise 

experiments that can inform obesity interventions in general and inspire new laboratory 

experiments that tease out effects otherwise unnoticed by empirical researchers. The model 

can also be calibrated to individual data for designing personalized obesity interventions. 

This model enjoys a high level of precision, since it is fully specified and can be simulated 

to generate individual weight change trajectories. It is also rather high on realism, as it 

strives to capture many biological processes in the body that underlie weight dynamics. The 

model’s fit is more moderate, because its free parameters are estimated based on a small 

sample of human subjects. The model’s generality may also be assessed as moderate, since 

its core mechanisms and structures carry over different individuals and populations, but 

model parameters require tweaking for application to different populations.

For comparison purpose, Table 1 also includes the qualitative multilevel ecologic model 

(i.e., a conceptual map by Glass & McAtee, 2006; to be discussed later), which is high on 

both generality and realism but low on fit and precision.

In summary, our revision to Levins framework offers a lens to view the potential strengths 

and challenges of different modeling assumptions. It reveals inherent limitations in how far 

one can create a representation of the real world through model building in that (1) no model 

can simultaneously achieve all four generality-realism-fit-precision desiderata without 

sacrificing one or more of the four and (2) models that occupy a single desiderata may not 

be highly useful; for example, a model of extreme generality can become too general in that 

it says nothing of interest regarding its targets and thereby loses explanatory power 

(Matthewson & Weisberg, 2009), or a model could be fine-tuned to precisely fit a dataset at 

the expense of being predictive for any other population group. It is worth reiterating that 

tremendous diversities exist within each class of models discussed in Table 1. This diversity 

suggests that, for example, one may find systems models that are closer to some statistical 

models than many more common systems models. Such models that better reflect the core 
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strengths and challenges in other paradigms could act as useful bridges to introduce one 

paradigm to the practitioners of the other.

Using different strategies of modeling in the four-way tradeoff would lead to a range of what 

Weisberg (2006) called representational ideals of the world. In this sense, statistical models 

and computational models can be viewed as different representational ideals of the real 

world by playing the tradeoff game differently. Thus, the different modeling paradigms, 

while seeming to be contradictory, may indeed be complementary.

Potential Synergy Between Modeling Approaches

We present an example in childhood obesity research to illustrate the synergy that could be 

generated by taking advantage of the respective strengths in statistical modeling and ABM. 

As a social epidemic, childhood obesity is one of the most challenging public health issues 

that many countries currently face. A growing literature is pointing to treating childhood 

obesity as a systems problem that requires the study of multiple chains of causal influences 

including dynamic processes affecting the energy balance in a child within specific 

populations and environments including schools and communities (Hammond, 2009; Huang, 

Drewnowski, Kumanyika, & Glass, 2009; Huang & Glass, 2008). The Envision Network 

(www.nccor.org/envision) is a federally funded professional network comprising 11 research 

teams addressing various obesity questions with mathematical/computational modeling, 

including ABM, micro-simulation, system dynamics modeling, and statistical modeling 

projects. An aim of Envision is to support integrated modeling efforts between statistical and 

systems science teams in order to gain insight into the most effective ways of preventing 

childhood obesity.

An initial barrier of integrating systems approaches and statistical modeling for studying 

childhood obesity is the lack of a common language among the network researchers, as well 

as a lack of a common way of conceptualizing research questions and strategies for 

addressing them. The Levins framework served as an important starting point for bridging 

across these divides. Discussion of the relative strengths of statistical modeling and ABM 

led to a panel discussion at the 2013 International Conference on Social Computing, 
Behavioral-Cultural Modeling and Prediction (Mabry, Hammond, Huang, & Ip, 2011).

Several forms of interaction between the two broad classes of modeling strategies were 

identified: (1) statistical modeling results as input to ABMs, (2) use of statistical methods for 

evaluating output from ABMs, (3) ABM outputs (including hypotheses generated) as input 

to statistical modeling and methods, (4) ABM for evaluating statistical results, and (5) joint 

applications of ABM and statistical modeling as comparative studies to examine the same 

problem from different perspectives. Table 2 summarizes a sample of possible interactions 

for (1) to (4). Although space does not permit us to elaborate on all the activities listed in 

Table 2, we highlight two interactions as examples. The first example refers to ways of using 

ABM to explore micro-foundations that underlie empirical patterns (Cell (3)a in Table 2). It 

is possible to use ABMs to generate social phenomena such as the emergence of political 

actors (Axelrod, 1995) and the dynamics of retirement (Axtell & Epstein, 1999). In such 

cases, ABMs are used as computational exploratory tools to generate theory. Based on new 
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conjectures developed from ABM, statistical models can then be applied to existing data or 

the new theories can be used to guide data collection for subsequent formal statistical 

testing. Statistical models can also contribute to ABM for example in simulation of agents 

through its deep roots in the study of diverse distribution types (Cell (1)d). Distributional 

assumptions can make or break the performance of an ABM in terms of qualitative reality. 

For example, in simulating firm formation in the U.S. economy, firm sizes and firm growth 

rates were set up to follow specific observed distributions (Axtell, 1999).

As an example for joint application of ABM and statistical modeling (5), we highlight a 

statistical modeling endeavor within the Envision Network and a potential comparative study 

using ABM. The statistical modeling approach, the Dynamic Multi-chain Graphical Model 

(DMGM; Ip, Zhang, Lu, Mabry, & Dube, 2013; Ip, Zhang, & Williamson, 2012; Ip, Zhang, 

Schwarz, et al., in press), is an attempt to operationalize a highly general model—the 

multilevel ecologic model conceptualized in Glass and McAtee (2006). The multilevel 

ecologic model can be envisioned as a system that contains two primary axes: time (as the 

horizontal axis) and multiple levels of subsystems from genes, to organs, behavior, social 

networks, and communities (as the vertical axis). Within the context of childhood obesity, 

the ecologic-conceptual model would capture both temporal influences on body weight 

during the life course of the child, as well as changes in his/her behavior as influenced by the 

multiple levels of proximal and distal risk factors. Almost as a direct mapping exercise of 

Glass and McAtee’s conceptual model to an empirically falsifiable mathematical model, the 

DMGM separates direct (causal) risk behavior for obesity (e.g., sedentary lifestyle) and 

stable but distal contextual risk regulators (e.g., environmental factors such as the density of 

fast food restaurants in the neighborhood) as two distinct constructs. An analytic tool—the 

dynamic Bayesian network (Ghahramani, 1997)—is then used to model direct temporal and 

causal mechanisms within what is termed a causal space, whereas generalized linear-mixed 

models are used to capture stable but distal risk factors within another space of interest, 

which is termed a regulatory space. Figure 1 graphically depicts the two spaces and some 

relevant variables. One can think of parameters for the regulatory space as “knobs” for 

tuning assumptions about the environment, which up- or downregulate the probability of 

specific obesity-related behaviors.

Data from an intervention study, the Louisiana Health Study (LA Health Study; Williamson 

et al., 2008) were used to provide numeric estimates of model parameters. The LA Health 

Study was a randomized clinical trial that enrolled N = 2,201 school students across 17 rural 

school clusters in the state of Louisiana. The school- and community-based intervention 

program consisted of modification of environmental cues, enhancement of social support, 

promotion of self-efficacy for health behavior change, and an Internet-based educational 

program reinforced with classroom instruction and counseling via email. Data from the 

original study, which included measures of psychosocial status, dietary composition, and 

sedentary and physical activities over time, were enhanced by environmental data collected 

at a later time point through secondary sources such as Google Maps and census tract–level 

data. The statistical modeling efforts yielded a set of model-parameter estimates and their 

associated uncertainties, as indicated by the confidence intervals of the estimates (Ip et al., 

2012). Techniques for fitting this model and other similar models can be found elsewhere 

(Altman, 2007; Ip, Snow-Jones, Heckert, Zhang, & Gondolf, 2010; Ip, Zhang, Rejeski, 
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Harris, & Kritchevsky, in press; Ip, Zhang, Schwarz, et al., in press; Shirley, Small, Lynch, 

Maisto, & Oslin, 2010; Zhang, Snow Jones, Rijmen, & Ip, 2010).

The instantiated, application-specific DMGM could not achieve much along the generality 

desiderata. Although high on the precision and fit scales, the DMGM has a moderate level of 

realism. While the temporal and causal mechanisms of the socioecological concept can be 

captured with reasonable assumptions (e.g., the Markov assumption), one important deficit 

of the model in realism is the lack of social network input and potential feedback 

mechanisms. By assuming individuals behave independently instead of as a unit within a 

social network, as most statistical models do, the DMGM lacks input in interactions between 

student–student, student–teacher, and parent–student. It also lacks the capacity to model the 

reciprocal effects (feedback) between psychosocial factors and behaviors related to energy 

intake and expenditure.

Systems science methods such as ABM and social network analysis (Wasserman & Faust, 

1994) have the potential to enhance statistical models in realism and generality. Just 

designing an ABM for agents (students) for the above example could literally force 

statistical modelers to consider the micro-foundations that realistically underlie the 

dynamics of intervention—how student behaviors could have changed through the influence 

of fellow students, teachers, and parents. Continuing to use the social network example, one 

would argue for a “contagion” model for obesity among students, that is, students within a 

close social network would affect each other’s behaviors and that may lead to obesity 

“contagion” (Christakis & Fowler, 2007). A potential solution to build in contagion into a 

statistical model is to employ the following hybrid modeling strategy: (1) conduct a small-

scale social network analysis to understand the network structure of students; (2) simulate 

agents that interact with each other according to the network structure discovered from Step 

1, and explore different underlying ABMs (e.g., first-order logic for agent interaction) to 

mimic the influence of social network on behavior and weight; and (3) construct a formal 

probabilistic model to refine the contagion model in Step 2.

Discussion

Systems science is a relatively new class of methodologies that could appear to be 

intimidating to social and behavioral scientists working in the public health field. Because 

they often have limited exposure to anything other than statistical models that excel along 

the precision dimension, such as regression and ANOVA, the transition to a broader view of 

modeling and to a new paradigm of system science thinking will require overcoming some 

initial barriers. During the Envision meetings, one question that was often directed to ABM 

researchers was, “Where are the data?” Other frequent questions were “How valid is the 

model?” or “How do you validate the model?” Although there are some published articles 

that address these issues (e.g., Caro, Briggs, Siebert, & Kuntz, 2012; Grimm et al., 2010; 

Rahmandad & Sterman, 2012; Sterman, 1984), our framework perhaps could be an 

additional way to help people think about models as imperfect representations of the world. 

The framework could also be used to help convey the point that modelers often have to work 

under time and resource constraints such that a balance has to be made among generality, 

realism, fit, and precision for answering the question at hand.
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Recently, the choice of computational and statistical models has also attracted much 

attention in the field of cognition (Pitt, Myung, & Zhang, 2002; Roberts & Pashler, 2000, 

2002; Rodgers & Rowe, 2002). Multiple criteria for selecting computational and stochastic 

models for cognition were discussed, and some of them bear strong resemblance to the 

generality-realism-fit-precision paradigm, although in the cognition context the term model 

was used in a more restricted way. Jacobs and Grainger (1994) summarized the criteria for 

model choice into the following: (1) plausibility (are the assumptions of the model 

biologically and psychologically plausible?), (2) explanatory adequacy (Is the theoretical 

explanation reasonable and consistent with what is known?), (3) interpretability (does the 

model and its parts—e.g., parameters—make sense?), (4) descriptive adequacy (does the 

model provide a good description of observed data?), (5) generalizability (does the model 

predict well the characteristics of data that will be observed in the future?), and (6) 

complexity (does the model capture the phenomenon in the least complex—i.e., simplest—

possible manner?). Pitt et al. (2002) argued that computational models usually satisfied the 

first three criteria during their course of evolution, leaving the latter three to be the primary 

criteria on which they are evaluated. The first three criteria are components of the concept of 

internal validity, which are related to qualitative realism in the Levins framework. On the 

other hand, the latter three criteria can be conveniently—though with imperfection—mapped 

onto the fit, generality, and precision desiderata of the our framework. Generalizability in 

Jacobs and Grainger (1994) is related to the property of external validity, which is more 

restrictive than what the generality desiderata in Levins framework intends to cover. 

Generalizability concerns whether the model can be applied to data (in a targeted 

population) other than the sample at hand, or to similar data collected in the future. In 

contrast, the generality desiderata in Levins framework pertains to a broader schema; here 

generality refers to the quantity and variety of phenomena a model or set of models 

successfully relate to (Matthewson & Weisberg, 2009). The reader is encouraged to read 

other authors who tackle the subject of systems science methodologies as contrasted with 

statistical ones (Andersen, 1980; Harlow, 2010; Robinson & Levin, 2010; Rodgers, 2010a, 

2010b; Weisberg, 2007) and to read elaborations of the Levins framework (Matthewson & 

Weisberg, 2009).

From a dialectical world view, how we break up a phenomenon into parts, and what features 

we choose to include and not to include in our model, and what data we choose to use, must 

be a function of our modeling goals. Reliance on one specific modeling approach is unlikely 

to accomplish a comprehensive understanding of a phenomenon. A more pragmatic solution 

for modeling building could be based on a pluralistic modeling strategy. There is already 

evidence that hybrid modeling strategies are increasingly used. For example, MCMC and 

Bayesian statistical methods (see Table 2) were used in system dynamics models for 

exploring model calibration (Vrugt et al., 2009). With a long history of developing sampling 

theory and constructing precise models, statistics could perhaps benefit from systems 

science methodology as much as it can contribute to systems science. Encouraging 

synergistic activities between systems scientists and statisticians is a key to bringing mutual 

benefits to the stakeholders and accelerating the pace of moving the field of systems science 

forward.
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Figure 1. 
Operationalizing the socioecological model in Glass and McAtee (2006) for the LA Health 

Study.
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Table 1

Examples of Different Modeling Approaches Within the Levins Framework.

Model Generality Realism Fit Precision

Statistical model

 Simple linear regression Moderate Low Low High

 Large-scale tree-based model for handwriting recognition Low Low High High

Agent-based model

 Small-scale specific application for bird flocking behavior Moderate High Low Low

 Large-scale agent-based model for human pandemic Moderate High Moderate Moderate

System dynamics model

 Mathematical modeling High Low Low Moderate

 System dynamics model for relating energy imbalance to weight change Moderate High Moderate High

Socioecologic model (qualitative) High High Low Low

Note. Generality: applicability of model to phenomena other than that for which it was developed. Realism: degree to which the model reflects 
reality as viewed by experts in the field. Fit: degree to which the model output matches historical data and has predictive accuracy. Precision: 
fineness of model and level of details specified.
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Table 2

Interaction Between Statistical Modeling (SM) and Agent-Based Modeling (ABM).

Possible Synergistic Activity
(1) SM to ABM 
Input

(2) SM to ABM 
Output

(3) ABM to SM 
Input (4) ABM to SM Output

a Explore potential 
mechanism by fitting 
models to data

Assess goodness-of-
fit of ABM to real 
data

Explore micro-
foundations that 
underlie empirical 
patterns

Assess generative sufficiency

b Provide effect strength 
in the form of 
estimated input 
parameters

Provide tools for 
assessing theory for 
long-term behavior 
in simplified models

Prioritize data gap—
that is, identify 
“weak spots” within 
a system where new 
data are needed

Test statistical tools as in virtual 
epidemics

c Identify relevant 
factors for inclusion in 
ABM through 
statistical variable 
selection

Provide techniques 
in exploratory data 
analysis for seeking 
unexpected patterns

Create synthetic data 
for testing robustness 
of statistical model 
for alternative data 
sets

Visualize statistical results, 
especially long-term dynamics

d Provide advanced 
simulation techniques 
of high- dimensional 
numerical data such as 
Bayesian method and 
Markov chain Monte 
Carlo

Provide formal 
measure of 
uncertainty (e.g., 
confidence bands) 
on plausible 
outcomes

Integrate data from 
different sources

Provide retrodiction— that is, use 
current models to infer/ explain 
past phenomena
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