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ABSTRACT

In individuals with HIV-1 infection, depletion of CD4� T cells is often accompanied by a malfunction of CD8� T cells that are
persistently activated and/or exhausted. While the dynamics and correlates of CD4 counts have been well documented, the same
does not apply to CD8 counts. Here, we examined the CD8 counts in a cohort of 497 Africans with primary HIV-1 infection eval-
uated in monthly to quarterly follow-up visits for up to 3 years in the absence of antiretroviral therapy. Statistical models re-
vealed that (i) CD8 counts were relatively steady in the 3- to 36-month period of infection and similar between men and women;
(ii) neither geography nor heterogeneity in the HIV-1 set-point viral load could account for the roughly 10-fold range of CD8
counts in the cohort (P > 0.25 in all tests); and (iii) factors independently associated with relatively high CD8 counts included
demographics (age < 40 years, adjusted P � 0.010) and several human leukocyte antigen class I (HLA-I) alleles, including HLA-
A*03:01 (P � 0.013), B*15:10 (P � 0.007), and B*58:02 (P < 0.001). Multiple sensitivity analyses provided supporting evidence
for these novel relationships. Overall, these findings suggest that factors associated with the CD8 count have little overlap with
those previously reported for other HIV-1-related outcome measures, including viral load, CD4 count, and CD4/CD8 ratio.

IMPORTANCE

Longitudinal data from 497 HIV-1 seroconverters allowed us to systematically evaluate the dynamics and correlates of CD8�

T-cell counts during untreated primary HIV-1 infection in eastern and southern Africans. Our findings suggest that individuals
with certain HLA-I alleles, including A*03 (exclusively A*03:01), persistently maintain relatively high CD8 counts following
HIV-1 infection, a finding which may offer an intriguing explanation for the recently reported, negative association of A*03 with
HIV-1-specific, broadly neutralizing antibody responses. In future studies, attention to HLA-I genotyping data may benefit in-
depth understanding of both cellular and humoral immunity, as well as the intrinsic balances of these types of immunity, espe-
cially in settings where there is emerging evidence of antagonism between the two arms of adaptive immunity.

CD8� cytotoxic T lymphocytes (CTLs) are critical to early im-
mune control of HIV-1 infection, and many studies have doc-

umented the dynamics and evolution of HIV-1-specific CTLs that
target viral epitopes in the context of differential presentation (re-
striction) by the highly variable human leukocyte antigen class I
(HLA-I) molecules (1–5). More often than not, the immune pro-
tection provided by CTLs is transient, as CTL escape mutations
are abundant in the circulating viruses, even in the presence of
favorable HLA-I variants like B*57 and B*81 (6–8). Concomi-
tantly, depletion of CD4� helper T cells can exacerbate the losing
battle for CTLs, leading to the accumulation of activated and ex-
hausted CD8 cells (9–13), as well as a persistent reversion of the
CD4/CD8 T-lymphocyte ratio (14–16). Moreover, the orchestra-
tion of cellular and humoral immunity can be problematic when
CTL impairment occurs early, as broadly neutralizing antibodies
usually take years to develop (17–19).

In the clinical realm, attention to the dynamics and functions
of CD8 cells per se has been rather limited, as much of the decision-
making process relies almost exclusively on the HIV-1 viral load
(VL) and CD4� T-cell (CD4) counts following diagnosis of HIV-1
infection. However, the new era of early and intensified antiretro-

viral therapy (ART) is likely to change this paradigm for three
reasons. First, the CD4 count alone is unable to fully gauge immu-
nologic health after ART (20–22). Second, CD8 cells are essential
to the eradication of residual HIV-1 reservoirs after ART initiation
(23–26). Third, CD8 cells can be induced to enhance the efficacy
of vaccination (27), as reported recently in nonhuman primate
models (28, 29). To this end, it is worthwhile to take a step back
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and examine the dynamics and correlates of CD8 counts before
ART initiation, especially in regions where such data remain
sparse.

Our findings, based on evaluations of 497 HIV-1-infected Af-
ricans with multiple pre-ART visits, now suggest that the indepen-
dent correlates of the CD8 count have little overlap with those
previously seen with the set-point VL, CD4 count, and CD4/CD8
ratio. The underlying biology deserves further investigation and
may have implications beyond cellular immunity.

MATERIALS AND METHODS
Study population, laboratory techniques, and outcome measures. Our
work here focused on 497 HIV-1 seroconverters (SCs) from Kenya,
Rwanda, Uganda, and Zambia who were enrolled under a uniform study
protocol developed and implemented by the International AIDS Vaccine
Initiative (IAVI). The study design and research procedures, including
written informed consent and laboratory testing (e.g., viral sequencing
and HLA genotyping), were approved by the institutional review boards at
IAVI, Emory University, and the University of Alabama at Birmingham.
Clinical and laboratory tests, including centralized, T-cell immunophe-
notyping during monthly to quarterly follow-up visits, have been de-
scribed in detail elsewhere (16, 30–33). ART initiation followed appropri-
ate national guidelines (34), but post-ART data were too sporadic (limited
to 56 person visits) to allow meaningful analysis. To facilitate a direct
comparison with earlier statistical models for establishing correlates of the
set-point VL, CD4 count, and CD4/CD8 ratio in primary HIV-1 infection
(16, 32, 33), the SCs included in this study must have had at least three
virologic and immunologic outcome measures in the 3- to 24-month
period after the estimated date of infection (EDI). In addition, all SCs had
fully resolved HLA-I genotypes, as also reported earlier (16, 32, 33).

Statistical analysis. Using software packages in SAS, version 9.4 (SAS
Institute, Cary, NC), data analyses focused on pre-ART CD8 counts, with
further consideration being given to earlier work that analyzed the pre-
ART VL, CD4 count, and CD4/CD8 ratio (16, 32, 33). We began with a
full assessment of log10-transformed CD8 counts in the 3- to 36-month
period after EDI, using Pearson’s correlation coefficients (r), local regres-
sion (LOESS) curves, mixed models for repeated measurements, analysis
of variance (ANOVA) of cross-sectional data (i.e., visit-specific data or
mean CD8 counts over a given time period), and logistic regression mod-
els for cross-sectional data. Association analyses targeted HLA variants
that were adequately prevalent (present in �5% of the study population),
with a focus being on individual alleles that met two thresholds of statis-
tical significance, i.e., a P value of �0.05 and a q value of �0.10. Summary
statistics included (i) P values and associated false discovery rates (FDR; q
values) when multiple testing was applied and (ii) the effect size of indi-
vidual factors on the CD8 count, as measured by mean regression beta
estimates (�), the standard error (SE) of �, and the degree of variance
explained by each factor (R2). In multivariable models, statistical adjust-
ments were made for demographics (sex and age), geography (eastern
versus southern Africa), and three categories (low, medium, and high) of
the set-point VL that have clinical and epidemiological implications (32).
The final statistical models were also subjected to sensitivity analyses that
were restricted to data from the 3- to 24-month period after EDI. For
individual correlates of the CD8 count (with log10 transformation), the
statistical significance was accepted at the level of a P value of �0.05 and a
q value of �0.10 in the initial screening models, followed by an adjusted P
value of �0.05 in multivariable tests.

Bioinformatics. Several public databases were surveyed for sup-
porting evidence of genomics data pertinent to HLA/major histocom-
patibility complex (MHC) gene expression and effective tagging of
individual HLA alleles by single nucleotide polymorphisms (SNPs).
Specifically, MHC SNPs that tag HLA class I alleles in Africans (35) were
first queried in HaploReg, version 4.0 (http://www.broadinstitute.org
/mammals/haploreg/haploreg_v4.php, last accessed on 2 September
2016) (36) for patterns of linkage disequilibrium (LD) uncovered by The

1000 Genomes Project and for functional properties annotated by the
ENCODE project (37, 38). SNPs already associated with immune disor-
ders and/or gene expression quantitative trait loci (eQTLs) (39) were
checked in the NCBI Global Cross database (http://www.ncbi.nlm.nih
.gov/) and the SCAN database (http://www.scandb.org/newinterface
/index.html, last accessed on 11 March 2016). Findings on HLA-I variants
were interpreted in light of these bioinformatics data, with further refer-
ence being made to a panel of fine-mapped, causal SNPs linked to various
genome-wide association studies (40).

RESULTS
Steady CD8 counts in 497 SCs. In the 3 to 36 months after EDI,
CD8 counts were available for a total of 4,131 person visits. Over-
all, CD8 counts ranged from 2.40 to 3.30 log10 (a roughly 10-fold
range), being relatively stable within individuals and similar be-
tween 185 women and 312 men (P � 0.60) (Fig. 1). For example,
the linear correlation between the first CD8 count after 3 months
of infection and the last count before 36 months was quite strong
for both men (Pearson r � 0.77, P � 0.0001) and women (r �
0.78, P � 0.0001). Evaluation of other demographic features re-
vealed that longitudinal CD8 counts differed between individuals

FIG 1 Local regression curves for CD8 counts in seroconverted men and
women (3 to 36 months after the estimated date of HIV-1 infection). Solid and
dotted lines, mean values and 95% confidence intervals, respectively (P � 0.60
between the two patient groups).
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in two age groups (P � 0.027 for individuals �40 years old versus
individuals �40 years old) but were similar between individuals
from eastern and southern Africa (P � 0.47). Differences between
age groups were confirmed by analysis of the mean CD8 counts
(with log10 transformation) during the 3- to 36-month intervals
(P � 0.018) (Fig. 2).

HLA variants as genetic correlates of CD8 counts. In the
study cohort, 12 HLA-A, 16 HLA-B, and 9 HLA-C variants had to
be observed in at least 25 (5%) individuals to facilitate statistical
screening for potential associations with repeated measures of
CD8 counts (Table 1). After statistical adjustments for potential
confounding by age, sex, geography, and duration of HIV-1 infec-
tion, individual alleles that met the thresholds of statistical signif-
icance included A*03 (exclusively A*03:01) (� � 0.08 � 0.03, P �
0.003, q � 0.048), B*15:10 (� � 0.06 � 0.02, P � 0.005, q �
0.059), and B*58:02 (� � 0.07 � 0.02, P � 0.001, q � 0.015). The
only variant that appeared to have a negative impact on CD8
counts was B*58:01, but the borderline statistical significance
(P � 0.049) had a high probability of false discovery (q �
0.394) (Table 1).

Visualization using LOESS curves indicated steady differences
between subjects with and without these HLA variants (e.g., for
the A*03-positive [A*03�] versus A*03-negative [A*03�] groups
in Fig. 3). In multivariable models, all three genetic correlates were
independent of other potential confounders (adjusted P-value
range, �0.001 to 0.013) (Table 2). An alternative model for mean
CD8 counts led to almost identical results for the HLA variants of
interest (adjusted P-value range, �0.001 to 0.013) (Table 2). In
contrast, both statistical models failed to detect differences in CD8
counts that could be attributed to the three HIV-1 VL groups
(adjusted P-value range, 0.251 to 0.795).

Supporting evidence from sensitivity analyses. When analy-
ses were restricted to the 3- to 24-month period after EDI, the
multivariable model for repeated outcome measurements (3,440
person visits) also supported the independent associations be-
tween CD8 counts and A*03 (adjusted � � 0.06 � 0.03, P �
0.019), B*15:10 (adjusted � � 0.07 � 0.02, P � 0.003), and
B*58:02 (adjusted � � 0.07 � 0.02, P � 0.001) (Table 3), as did
the alternative model for mean CD8 counts (adjusted P-value
range, � 0.001 to 0.019 as well) (Table 3). Again, the variance in
mean CD8 counts was not attributable to distinct VL groups (ad-
justed P-value range, 0.340 to 0.527).

No clear additive effects of three HLA factors. In the study
cohort, 26 SCs had a combination of A*03, B*15:10, and B*58:02.

The mean CD8 counts over the 3- to 36-month intervals were
found to be the highest in this small subgroup when the counts
were compared with those in SCs with a single HLA factor and the
reference group (all others) without any HLA variants of interest
(Fig. 4) (P � 0.0001 by ANOVA), but the difference between the
first two subgroups was modest (P � 0.281 by t test). The mean
CD8 counts over the 3- to 24-month intervals yielded similar re-
sults (P � 0.272 for multiple alleles versus a single allele).

Findings based on bioinformatics. In populations of African
ancestry (35), HLA-A*03:01 is known to be tagged by rs2524024, a
SNP that is distant (30 kb away) from the 5= end of HLA-A, while
B*15:10 is tagged by two SNPs, rs3819294 (an HLA-B intronic
SNP) and rs2523638 (a SNP between DHFRP2 and MICA). These
SNPs are also in strong LD with multiple neighboring variants,
including eQTLs associated with gene expression profiles in Afri-

TABLE 1 Univariable analyses of major HLA-I variants for potential
association with log10-transformed CD8 countsb

HLA variant
No. of
individuals Frequency

Impact
(� � SE)

Adjusted
Pa

FDR
(q)

A*01 62 0.12 0.02 � 0.02 0.305 0.727
A*02 173 0.35 0.01 � 0.02 0.678 0.784
A*03 (*03:01) 45 0.09 0.08 � 0.03 0.003 0.048
A*23 75 0.15 �0.01 � 0.01 0.605 0.747
A*29 47 0.09 �0.02 � 0.02 0.432 0.727
A*30 177 0.36 0.01 � 0.02 0.427 0.727
A*33 25 0.05 0.03 � 0.03 0.357 0.727
A*34 36 0.07 �0.04 � 0.03 0.145 0.619
A*36 41 0.08 �0.04 � 0.03 0.179 0.653
A*66 32 0.06 �0.02 � 0.03 0.517 0.747
A*68 (mostly

*68:02)
121 0.24 0.00 � 0.02 0.945 0.945

A*74 63 0.13 �0.01 � 0.02 0.609 0.747
B*07 66 0.13 �0.01 � 0.02 0.761 0.853
B*14 46 0.09 0.03 � 0.03 0.262 0.727
B*15:03 87 0.17 0.02 � 0.02 0.393 0.727
B*15:10 55 0.11 0.06 � 0.02 0.005 0.059
B*15:xx (other

B*15s)
24 0.05 0.00 � 0.03 0.932 0.945

B*18 34 0.07 �0.01 � 0.03 0.626 0.747
B*35 (*35:01) 28 0.06 0.01 � 0.03 0.838 0.912
B*42 66 0.13 �0.02 � 0.02 0.432 0.727
B*44 51 0.1 �0.02 � 0.02 0.343 0.727
B*45 81 0.16 0.00 � 0.02 0.866 0.916
B*49 38 0.08 0.04 � 0.03 0.143 0.619
B*53 94 0.19 �0.01 � 0.02 0.543 0.747
B*57 46 0.09 �0.04 � 0.02 0.074 0.458
B*58:01 55 0.11 �0.05 � 0.02 0.049 0.394
B*58:02 72 0.14 0.07 � 0.02 �0.001 0.015
B*81 25 0.05 �0.02 � 0.03 0.581 0.747
C*02 91 0.18 �0.01 � 0.02 0.549 0.747
C*03 71 0.14 0.04 � 0.02 0.053 0.394
C*04 158 0.32 �0.01 � 0.02 0.589 0.747
C*06 146 0.29 0.02 � 0.02 0.151 0.619
C*07 179 0.36 �0.02 � 0.02 0.279 0.727
C*08 63 0.13 0.02 � 0.02 0.402 0.727
C*16 67 0.13 �0.02 � 0.02 0.282 0.727
C*17 80 0.16 �0.01 � 0.01 0.589 0.747
C*18 42 0.08 �0.03 � 0.03 0.194 0.653
a Adjusted for demographics (age, sex, and geography), as well as duration of infection.
b By repeated measures for 497 HIV-1 seroconverters during the 3- to 36-month period
after EDI.

FIG 2 Mean CD8 counts in HIV-1 seroconverters defined by two age groups.
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cans, but none of them have been associated with outcomes re-
lated to HIV-1 infection (41–43). On the other hand, B*58:02 is a
somewhat unfavorable allele in HIV-1 infection (44) and has no
strong LD with any neighboring SNP variants. Thus, high-
throughput SNP genotyping platforms are not expected to pro-
vide sufficient coverage of all three HLA alleles being highlighted
here.

Genetic evidence from other studies. At least two studies have
examined the genetic impact on CD8 T-cell counts in human

populations (45, 46). In study cohorts from Australia and the UK
(45), a SNP (rs2524054) located in an intergenic region between
HLA-B and HLA-C was associated with absolute CD8 T-cell
counts in the general population. However, rs2524054 (close to
HLA-B) is not known to tag specific HLA alleles in Africans (35).
Instead, it is part of a sequence motif that has potential regulatory
function, as reflected by its association with eight quantitative
(gene expression) traits. Strong LD between rs2524054 and two
downstream SNPs (rs2524143 and rs2853928) precludes a defin-
itive mechanism, but HLA-B gene expression might be a possible
connection (45). On the other hand, the relationship between an
HLA-A*03-related MHC haplotype and CD8 T-cell counts was
inconclusive for highly selected patients with hereditary hemo-
chromatosis (iron overload) from three geographically distant re-
gions (46).

DISCUSSION

Our analyses of longitudinal data from HIV-1-infected Africans
suggest that CD8 T-cell counts have characteristics that differ

TABLE 2 Correlates of CD8 counts in 497 HIV-1 SCs revealed by two
multivariable models

Individual factors in
each model

For repeated
measurementsa For mean CD8 countsa

� � SE P � � SE P

Age �40 (n � 75) vs
�40 yr (n � 422)

�0.05 � 0.02 0.010 �0.05 � 0.02 0.007

Women (n � 185) vs
men (n � 312)b

0.00 � 0.02 0.913 0.00 � 0.02 0.915

Zambia (southern
Africa, n � 195)b,c

�0.01 � 0.01 0.660 �0.01 � 0.02 0.685

Low VL (n � 140)d �0.01 � 0.02 0.588 �0.00 � 0.02 0.795
High VL (n � 92)d �0.02 � 0.02 0.251 �0.01 � 0.02 0.517
Duration of infection

(per quarter)
�0.07 � 0.01 �0.0001 NA NA

HLA-A*03:01 (n � 45) 0.06 � 0.03 0.013 0.06 � 0.03 0.013
HLA-B*15:10 (n � 55) 0.06 � 0.02 0.007 0.06 � 0.02 0.010
HLA-B*58:02 (n � 72) 0.07 � 0.02 �0.001 0.07 � 0.02 �0.001
a CD8 counts in the 3- to 36-month period after the estimated date of infection with
log10 transformation. NA, not applicable.
b For consistency with earlier reports, these factors were retained in the models because
they were associated with the HIV-1 viral load and CD4 counts in the same cohort.
c Compared with subjects from other countries in eastern Africa (n � 302).
d The three HIV-1 VL categories are defined as low (�104 RNA copies/ml), medium
(104 to 105 RNA copies/ml), and high (�105 RNA copies/ml), according to their
differential impact on HIV-1 transmission and disease progression (7, 57), with the
medium VL (n � 265) being the reference group for comparison.

FIG 3 Local regression curves for CD8 counts in seroconverters with and
without HLA-A*03 (3 to 36 months after the estimated date of HIV-1 infec-
tion). For each stratum (presence and absence of A*03), solid and dotted lines
correspond to the mean values and 95% confidence intervals, respectively.

TABLE 3 Sensitivity analyses of two multivariable models for CD8
counts in the 3- to 24-month period after EDI

Individual factors in
each model

For repeated
measurementsa For mean CD8 countsa

� � SE P � � SE P

Age �40 (n � 75) vs
�40 yr (n � 422)

�0.05 � 0.02 0.010 �0.05 � 0.02 0.008

Women (n � 185) vs
men (n � 312)b

0.01 � 0.02 0.721 0.01 � 0.02 0.725

Zambia (southern
Africa, n � 195)b,c

�0.01 � 0.02 0.552 �0.01 � 0.02 0.541

Low VL (n � 140)d �0.01 � 0.02 0.527 �0.01 � 0.02 0.497
High VL (n � 92)d �0.02 � 0.02 0.340 �0.02 � 0.02 0.384
Duration of infection

(per quarter)
�0.07 � 0.01 �0.0001 NA NA

HLA-A*03:01 (n � 45) 0.06 � 0.03 0.019 0.06 � 0.03 0.019
HLA-B*15:10 (n � 55) 0.07 � 0.02 0.003 0.07 � 0.02 0.004
HLA-B*58:02 (n � 72) 0.07 � 0.02 �0.001 0.07 � 0.02 �0.001
a See footnote a of Table 2.
b See footnote b of Table 2.
c See footnote c of Table 2.
d See footnote d of Table 2.

FIG 4 Lack of additive effect of HLA variants on CD8 counts. The mean CD8
counts (3 to 36 months after the estimated date of HIV-1 infection) in three
subgroups of HIV-1 seroconverters were compared on the basis of the pres-
ence and absence of three HLA variants of interest (A*03, B*15:10, and B*58:
02). Heterogeneity among the three groups is evident (P � 0.001 for the overall
comparison).
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starkly from those of two other commonly studied outcomes, i.e.,
the HIV-1 VL and CD4 T-cell counts. First, unlike the VL and
CD4 counts, which often differ by sex and geography (a proxy for
viral subtypes) (32, 33, 47), CD8 counts and their trajectories dur-
ing primary HIV-1 infection are similar between men and women
and between eastern and southern Africans, which can substan-
tially simplify the search for generalizable and biological correlates
using aggregated (instead of stratified) data (47). Second, despite
their narrow ranges, log10-transformed CD8 counts are informa-
tive quantitative traits for various statistical modeling, as multiple
factors associated with CD8 counts can be established. Third, HLA
variants (A*03:01, B*15:10, and B*58:02) associated with CD8
counts have little or no overlap with those (e.g., B*18, B*45, B*53,
B*57, and B*81) previously reported for VL and CD4 counts in the
same study cohort (32, 33, 47), suggesting that the underlying
mechanisms should be distinct and may even precede HIV-1 in-
fection (i.e., through intrinsic functions). Analyses of similar data
from other cohorts should facilitate a better understanding of
CD8 T-cell function in HIV-1 infection and in general popula-
tions (45).

Although they were statistically significant in the overall anal-
yses and robust in sensitivity models, the effects of three HLA
variants on CD8 counts were all relatively modest during the study
intervals (Tables 1 and 2), mostly within a magnitude of a 15 to
17% (0.06- to 0.07-log10) difference. The biological consequences
may depend on the longevity of these seemingly minor differences
and the subsets of CD8 T cells that are mostly affected. Earlier
research has suggested that steady CD8 T-cell counts during
chronic HIV-1 infection may reflect a prolonged differentiation
rather than elevated activation (9). This long-lasting phenomenon
may indirectly impair other arms of immune responses, at least in
individuals with HLA-A*03 (exclusively A*03:01 in the study co-
hort) because this allele is enriched in subjects who did not de-
velop HIV-1-specific, broadly neutralizing antibody responses
(48). Assuming that antagonism and competition do exist be-
tween the cellular and humoral arms of adaptive immunity, espe-
cially in lymphoid tissues, where both space and resources are
limited (49, 50), one can also envision that HLA alleles B*15:10
and B*58:02 may operate in a similar fashion. Meta-analyses of
data from different studies should offer new insights into this new
hypothesis. Indeed, a recently reported association between HLA-
A*02 and enhanced humoral (IgG) responses to HIV-1 vaccina-
tion (the RV144 trial in Thailand) (51) may be viewed as anecdotal
evidence for this hypothesis, although it is still not clear if such
conclusions can apply to various populations that differ in HLA-I
allelic profiles and/or allele frequencies.

Previously, a genome-wide association study (45) identified a
single SNP (rs2524054) to be a major correlate of CD8 counts in
healthy adolescent twins from Australia (effect size � �0.31 �
0.03 log10). Located between HLA-C and HLA-B, rs2524054 has
some functional attributes (gene expression patterns), but there is
no indication that rs2524054 tags specific HLA-I alleles (35) or
SNPs (rs2524024, rs3819294, and rs2523638) that are in strong
LD with A*03:01 and B*15:10. Recent fine-mapping data do
suggest that LD between rs2524054 and a functional (causal)
SNP variant (rs2247056-T) can account for the association of
rs2524054 with serum triglycerides in healthy subjects (40). Al-
though fine mapping can be influenced by ethnic backgrounds, a
focus on gene expression and lipid metabolism is expected to ex-

pedite future research on immunogenetic control of the CD8 T-
cell function in health and diseases.

On the other hand, the positive impact of B*58:02 on CD8
counts is not complicated by neighboring SNPs (35). In several
studies of HIV-1-infected Africans (52–54), B*58:02 has been rec-
ognized to be unfavorable (associated with a high viral load and
low CD4 counts), being functionally and epidemiologically dis-
tinct from another closely related allele, B*58:01 (52–54). By our
analysis, B*58:01 and B*58:02 do seem to have opposing im-
pacts on CD8 counts, but the statistical power in our study
favors the analysis of B*58:02 rather than B*58:01 (which were
found in 72 versus 55 subjects, respectively, in our cohort). A
more definitive conclusion will obviously require a larger sample
size to strengthen the analysis of B*58:01.

One major limitation in this study is the lack of CD8 count data
before HIV-1 infection and after ART initiation. As our study
cohort was designed for the evaluation of primary HIV-1 infec-
tion, preinfection and post-ART data from other study popula-
tions will help assess the relationships between HLA-I alleles and
the dynamics of CD8 counts in Africans. For example, a hematol-
ogy reference panel has included CD8 counts in 2,105 healthy
subjects from eastern and southern Africa (55). Preparation for
vaccine trials may justify HLA-I genotyping in this large study
population. Meanwhile, assembling a prospective post-ART data
set will likely require years of concerted efforts, as the implemen-
tation of new guidelines for early HIV-1 therapy has been a slow
process.

The frequencies of HLA-I alleles being highlighted in this study
ranged from 9% to 14% in our study cohort (Table 1). Collec-
tively, they were found in over 29% of subjects (Fig. 4). The dis-
tribution of these alleles in other ethnic groups can vary, but
A*03:01 is a globally common allele and should be readily ana-
lyzed in other cohorts, including general populations where CD8
T-cell counts are measured (45, 55). Overall, our findings should
broaden the attention to immunogenetic factors, since variability
in CD8 counts before antiretroviral therapy may relate to the
function of multiple HLA-I variants. This concept can be equally
pertinent to studies of CD8 T-cell function after antiretroviral
therapy (56).
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