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ABSTRACT Identifying the genomic regions that underlie complex phenotypic variation is a key challenge in modern biology. Many
approaches to quantitative trait locus mapping in animal and plant species suffer from limited power and genomic resolution. Here, I
investigate whether bulk segregant analysis (BSA), which has been successfully applied for yeast, may have utility in the genomic era for
trait mapping in Drosophila (and other organisms that can be experimentally bred in similar numbers). I perform simulations to
investigate the statistical signal of a quantitative trait locus (QTL) in a wide range of BSA and introgression mapping (IM) experiments.
BSA consistently provides more accurate mapping signals than IM (in addition to allowing the mapping of multiple traits from the same
experimental population). The performance of BSA and IM is maximized by having multiple independent crosses, more generations of
interbreeding, larger numbers of breeding individuals, and greater genotyping effort, but is less affected by the proportion of
individuals selected for phenotypic extreme pools. I also introduce a prototype analysis method for simulation-based inference for
BSA mapping (SIBSAM). This method identifies significant QTL and estimates their genomic confidence intervals and relative effect
sizes. Importantly, it also tests whether overlapping peaks should be considered as two distinct QTL. This approach will facilitate
improved trait mapping in Drosophila and other species for which hundreds or thousands of offspring (but not millions) can be studied.
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CONNECTING phenotypic diversity to the genetic vari-
ants that encode it is a fundamental challenge for

modern biology. In evolutionary research, there is strong
interest in revealing the genetic architecture of adaptive
phenotypic change, including the number of causative
genes and mutations, and their functional and population
genetic properties. In molecular genetics, the mapping of
phenotypic differences from natural or induced mutations
has great utility for elucidating genetic pathways that un-
derlie specific biological processes. In animal and plant

breeding, localizing the genes underlying agronomically
important trait variation can be a key step toward genetic
improvement.

Especially in species that can be experimentally crossed,
quantitative trait locus (QTL) mapping provides an impor-
tant tool for identifying genomic regions that contain caus-
ative genetic variants underlying a trait difference. Often,
the F2 or later offspring of a cross between phenotypically
contrasting parental strains are genotyped, individually
or in groups, to identify sections of the genome that were
inherited nonrandomly with respect to the phenotype (often
on the megabase scale). The simplest example of QTL anal-
ysis is F2 mapping, in which individual second generation
offspring are phenotyped and genotyped. To achieve much
genomic precision, however, this method requires the indi-
vidual genotyping of a large number of F2 offspring. Prepar-
ing many genomic DNA libraries for next generation
sequencing is often a time- and resource-intensive proposi-
tion, although progress has been made in this regard
(Andolfatto et al. 2011).
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Introgression mapping (IM) provides another alternative for
QTL analysis. Here, following an initial cross between parental
strains A and B, offspring of subsequent generations are repeat-
edly selected for strain A’s phenotype, but are back-crossed to
strainB (Figure 1). To allow recessive variants to be selected, this
selection and introgression can be performed in every second
generation. The desired result is an introgression line that is
largely similar to strain B across the genome, but that matches
strain A at loci that were selected along with the phenotype. A
notable modern example of this approach is described by Earley
and Jones (2011),who introgressedabehavioral difference from
Drosophila simulans into D. sechellia. Here, 30 F2 females were
tested for simulans-like behavior, and a subset was then back-
crossed to D. sechellia. After repeating this process for 15 gener-
ations, next-generation sequencingwas used to identify genomic
regions that introgressed with the trait from D. simulans.

In bulk segregant analysis (BSA), large numbers of progeny
(fromF2 or later generations) are sorted/selected by phenotype,
then contrasting phenotypic pools of individuals are each gen-
otyped (Figure 1) (Michelmore et al. 1991). Compared to IM,
BSA may allow for a larger number of unique recombination
events to be generated and sampled, which could yield sharper
QTL peaks. Like IM, BSA does not require large numbers of
offspring to be individually genotyped; instead, each phenotypic
extreme can be sequenced as a single pool. BSA has been
applied very successfully for selectable traits in yeast (e.g.,
Ehrenreich et al. 2010; Magwene et al. 2011; Parts et al. 2011
facilitated by a small genome and the ease of generating mil-
lions of segregants. BSA has also seen diverse applications to
trait mapping inmulticellular organisms (e.g., Michelmore et al.
1991; Wicks et al. 2001; Baird et al. 2008; Van Leeuwen et al.
2012; Haase et al. 2015), including Drosophila (Lai et al. 2007).

Here, I use simulations to examine the mapping signals of
BSA and IM under a wide range of experimental parameters
for the mapping of multigene traits. I find that BSA produces
stronger and better-localized mapping signals for all studied
experimental designs. The tradeoffs of effort andperformance
indicated by these results, along with the new simulation
programs that produced them, will help researchers design
more effective mapping experiments.

I alsouse this BSAsimulationapproach todevise anewQTL
inference method. Existing BSA analysis methods effectively
identify QTL from yeast data (e.g., Magwene et al. 2011;
Edwards and Gifford 2012). However, these methods do
not allow the discrimination of two nearby QTL peaks vs. a
single peak with noisy, ragged contours—an issue that may
be more problematic for organisms in which many fewer
segregants can be surveyed relative to yeast. These methods
also do not estimate the relative strength of each QTL.
The BSA inference method proposed here uses a multistep
simulation process to (1) identify significant QTL and their
genomic confidence intervals, (2) separate single- from mul-
tiple-linked QTL, and (3) provide a rough estimate of the
effect sizes of the identified QTL. This method is validated
using simulations in the present study and applied to data in
an accompanying article (Bastide et al. 2016).

Materials and Methods

Preliminary simulations for BSA and IM

Simulation programs were written to assess the QTL signals
of BSA and IM (software related to this article is available
at https://github.com/JohnEPool/SIBSAM1). BSA simulation
analyses focused on a summary statistic, “ancestry differ-
ence” (ad). For a given genetic marker locus or genomic win-
dow of sequence, ad refers to the difference between the high
and low phenotypic pools in the proportion of ancestry
from the parental strain with the higher phenotypic value.
For example, if the high phenotypic pool is estimated to
have 60% of its ancestry from this parental strain at a
particular locus, and the low phenotypic pool 40%, then
ad = 0.6 2 0.4 = 0.2. For IM, the proportion of ancestry in
the mapping population from the nonbackcross parental
strain (ap) was evaluated. This quantity may approach zero
for noncausative loci after many generations of backcross-
ing to the other parental strain. For each statistic, I exam-
ined how often the tallest local QTL peak was observed
within 0.5 cM of the true simulated target locus and the
average (median) distance between the QTL peak and the
target locus.

The BSA and IM simulators are largely similar. These
programs track parental strain ancestry along the chromo-
somes of each individual in themapping population, from the
F1 generation until the end of the experiment. A Poisson-
distributed number of recombination events happen each
generation, with the expected number for each chromosome
being its length in morgans (interference is not modeled). To
focus on the case of Drosophila, chromosomes X, 2, and
3 were explicitly simulated, and no recombination was
allowed in males. A total of 5000 markers/windows were
simulated on each chromosome. In the BSA simulation, a
specified number of individuals exist in each new generation,

Figure 1 The investigated experimental designs for BSA and IM are illus-
trated. In BSA, offspring of reciprocal parental strain crosses are combined
and allowed to breed without trait selection for a number of generations.
Phenotyping occurs only in the final generation, and pools of individuals
with the highest and lowest trait values are each sequenced. The IM
framework investigated here involves trait selection and parental strain
backcrossing every second generation (allowing recessive genotypes from
the high parental strain to be expressed). In the last generation, one
phenotypic extreme is sequenced and compared against the backcross
parental strain genome.
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and each one draws random parents from the previous gen-
eration, with no phenotypic selection until the last genera-
tion. In the IM simulations, individuals were subject to
phenotypic selection in every second generation (allowing
recessive alleles from both parental strains to be expressed),
and the selected individuals were backcrossed to one of the
parental strains.

Phenotypes for each individual were modeled based on
genotypes and random variance (the latter may stem from
environmental effects, measurement error, or other causes).
Formostof thesepreliminary simulations, the samenumberof
equal-effect loci were simulated on each chromosome arm (X,
2L, 2R, 3L, and 3R). Random variance was added by modi-
fying each individual’s phenotypic value by a normally dis-
tributed random effect with mean 0 and SD equal to the
average trait value. For example, if each of the five arms holds
a single QTL that adds 1 to a diploid individual’s phenotypic
value for each allele inherited from the high parental strain,
the range of genetic contributions could range from 0 to 10,
with a mean of 5, and the SD for environmental variance
would also be 5. Phenotypic selection was then based on
choosing a defined quantile (q) of individuals from the map-
ping population with the highest and the lowest phenotypic
values.

For BSA, phenotypic selection happens only at the end of
the experiment, followed by sequencing/genotyping of both
high and low phenotypic pools. For IM, the last batch of
selected individuals is sequenced and compared against the
parental strains. The simulations model “depth” of sequenc-
ing coverage (or genotype sampling), drawing an appropri-
ate number of random ancestry-informative reads from the
selected pool of individuals for each window/marker. The
proportion of ancestry from each parental strain is then cal-
culated, and thus depends on both the sampling of individu-
als and the sampling of sequence reads.

To facilitate consistent analysis, QTL in these preliminary
simulations were spaced uniformly and each was assigned a
specific analysis zone along the chromosome. For example, if
the X chromosome had five QTL, they would be placed at
relative positions 0.1, 0.3, 0.5, 0.7, and 0.9 (representing the
chromosome as a 0-to-1 interval). Their zones of analysis
would thenbe0 to0.2, 0.2 to0.4, and soon. Theassessment of
QTL signal strength and precision was based on the location
within its zone of the highest QTL peak (i.e., the maximum ad
or ap), relative to the true QTL position.

Most simulation analyses assumed that each mapping
experiment would be analyzed separately. However, I also
investigated cases wheremultiple independentmapping pop-
ulations were constructed from parental strains sharing the
same causative genetic differences. Here, ad or ap for each
windowwas summed across replicatedmapping populations.

For a wide variety of experimental parameter combina-
tions, 1000 independent replicates were simulated and ana-
lyzed, and statistical performance was compared between
these scenarios to aid in the optimization of experimental
design.

Simulation-based inference of QTL from BSA: Overview

Preliminary empirical BSA data from the Pool laboratory
indicated the need for a QTL inference method capable of
dealing with neighboring QTL that have wide, overlapping
statistical signals. Such scenarios are difficult to account for in
most analysis approaches, but the simulation framework de-
scribed above offers a potentially flexible foundation for QTL
inference. I thereforedevelopedamethodof simulation-based
inference for bulk segregant analysis mapping (SIBSAM).
SIBSAM uses BSA simulations analogous to those described
above, with null model simulations yielding P-values for each
QTL peak, and an approximate Bayesian approach providing
estimates of QTL strength and genomic confidence intervals.
An important feature of SIBSAM is the ability to distinguish
individual QTL among clusters of linked causative loci.

Throughout the SIBSAM pipeline, the distinction between
primary QTL peaks and secondary QTL peaks is relevant. A
primary QTL peak is defined based on the highest value of ad
across a continuous interval inwhich this statistic remains.0
(which is the null value expected in the absence of causative
loci). A secondary QTL peak within that same interval has a
lower height than its associated primary peak. An important
quantity in assessing the significance of a secondary peak is
its “secondary deviation” (v), defined as the difference be-
tween secondary peak height and the minimum ad value be-
tween the primary and secondary peaks (Figure 2). Multiple
secondary peaks may be associated with the same primary
peak, impacting the calculation of v, as discussed below.

A schematic of the SIBSAM pipeline is illustrated in Figure
3. First, primary and secondary peaks of ad are identified
from the empirical data. To determine which primary peaks
are unexpected in the absence of true QTL, null simulations

Figure 2 Definitions of primary and secondary peaks, along with second-
ary deviation, used by SIBSAM are illustrated here. Among a group of
contiguous windows with smoothed ad values .0, the primary peak is
defined by the window with the highest value. Secondary peaks repre-
sent other local maxima, and their significance is judged based on sec-
ondary deviation (v). Secondary deviation is determined by the difference
in ad between the secondary peak’s maximum value and the minimum
value between that peak and the primary peak (or a taller secondary
peak, whichever minimum is greater).
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are conducted in which phenotypes are determined by non-
genetic factors only. P-values can then be obtained for each
primary peak. Next, simulations with a single causative QTL
are conducted. Based on a rejection sampling approach, es-
timates of the strength and genomic confidence intervals
of each significant primary peak are obtained, along with a
P-value for each secondary peak. Lastly, simulations involving
a cluster of linked QTL are conducted, reflecting a primary
peak and its associated secondary peak(s). This phase allows
for the refinement of strength estimates and genomic confi-
dence intervals for each peak in the cluster.

All of the above simulations operate with user-defined
windowsofvariable centimorgan length.Thesewindowscould
also be viewed as markers separated by various centimorgan
distances, but this article’s terminology mainly assumes that
QTL mapping data come from the full resequencing of map-
ping population genomes. In the examples presented here, the
window base pair spans were based on D. melanogaster poly-
morphism data (Lack et al. 2015) and centimorgan distances
were calculated from empirical recombination rate estimates
(Comeron et al. 2012).Windows were defined to each contain
200 nonsingleton variable sites from the Zambia–Siavonga
population sample. The user can also define the “informative
depth” for eachwindow in each phenotypic pool. This quantity
refers to the number of sequence reads that contain informa-
tion about parental strain ancestry. The simulator will draw a
corresponding number of alleles at this window for ancestry
proportion calculations.

SIBSAM identification of primary and secondary peaks
from empirical data

Primary and secondary peaks of ad are identified from data
based on preliminary thresholds for primary peak height and
secondary peak deviation (adt and vt, respectively), plus an
optional smoothing step. The two thresholds should repre-
sent values low enough that no shorter peak would be statis-
tically significant (the default value for both is 0.1). The
smoothing enabled here is a simple weighted average. On
each side of the focal window, m flanking windows are in-
cluded (the default used here is m = 4). The focal window
receives a weight ofm+1, the adjacent window on each side
receives a weight ofm, the next windows receive a weight of
m2 1, and so on until themth window to each side receives a
weight of 1. Alternative smoothing schemes are not a focus of
this study; the optimal strategy should depend on the data
being analyzed. Empirical and simulated ad values must be
smoothed using the same procedure.

Primary peak identification is straightforward: the highest
value of ad in a continuous block of windows with ad . 0,
conditional on the peak value of ad exceeding adt. To identify
secondary peaks, local minima and maxima of ad moving
away from the primary peak are noted. A recovery, beyond
vt, from the low point since the last peak signifies a new
secondary peak. When ad drops more than vt below this sec-
ondary peak’s maximum value, this peak ends and its maxi-
mum value and associated window position are noted.

Statistical significance of these primary and secondary peaks,
along with their confidence intervals and relative strengths,
will be assessed in subsequent stages of this pipeline.

SIBSAM identification of significant primary peaks

The false positive probability (P) for each primary peak is
estimated by comparing empirical ad peak heights against
simulations under the null hypothesis of no true QTL, in
which all phenotypic variance in the mapping population is
random with respect to genotype. All primary peaks exceed-
ing adt from each simulation replicate are noted. The enrich-
ment (e) of peaks equal to or greater than a given peak’s height
in the real data are given by the ratio of the frequency of peaks of
this height in the real data relative to the simulated data. If there
is an enrichment (e . 1), an estimate of the proportion of real
peaks of this height representing false positives is then given by
1/e. For example, if ad peaks of at least 0.2 in height are three
times more common in the empirical data than in null simula-
tions, then on average one out of three such empirical peaks can
be explained by the expected false positive rate. Primary peaks
with an estimated P less than some threshold (by default, 0.05)
are carried forward for subsequent analysis.

SIBSAM inferences from single QTL simulations

Genomic simulations with a single QTL are used to estimate the
genomic confidence intervals and strength of each significant

Figure 3 A flow chart illustrating the SIBSAM analysis pipeline. A single
input file contains physical and genetic map positions of window bound-
aries for all chromosomes, along with ancestry difference values and in-
formative depth (the number of reads within information about parental
strain ancestry) for each window. Null simulations with no true QTL are
used to identify significant primary peaks in the empirical data. Simula-
tions with one QTL (matching a primary peak location) are then used to
estimate confidence intervals for primary peak effect size and genomic
location, while also identifying significant secondary peaks. For any pri-
mary peak with significant secondary peaks, cluster simulations are con-
ducted with QTL at each peak’s location, to generate final confidence
intervals for effect size and genomic location. These analyses are summa-
rized into a single output file containing all relevant inferences for each
significant peak.
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primary peak, along with a P-value for each secondary peak.
Single QTL simulations are performed with fixed genomic po-
sitions corresponding to thewindowwith the peakmaximum ad
for each QTL, thus conserving local window patterns of depth
and centimorgan distance. For a given set of simulated genomes
from the mapping population (preselection), a random QTL
effect size is drawn from an uninformative prior distribution
(ranging from 0 to 1). Such a QTL is then separately simulated
at each position corresponding to an empirical primary peak,
with phenotype simulation and read sampling performed sepa-
rately in each case. The simulated ancestries are reused for each
separate QTL simulation as a time-saving efficiency.

The simulated QTL strength, s, ranging from 0 to 1, is the
estimated proportion of variance that a QTL explains among
the mapping population individuals. In these single locus
simulations, all other phenotypic contributions are modeled
as random variance, which here is intended to encompass the
effects of unlinked QTL in addition to nongenetic effects on
phenotypic measurements. The amount of random variance
simulated is fixed to approximate the variance contributed by
a codominant locus in which each allele adds 1 to the phe-
notypic score. This effect was implemented by obtaining
Gaussian random values with mean 0 and SD 1, and then
multiplying each value by

ffiffiffiffiffiffiffi

0:5
p

to obtain the random vari-
ance effect on each individual’s phenotypic score. The simu-
lated effect size of each QTL, f, describes the quantity that
each allele of this locus (inherited from the high parental
strain) adds to an individual’s phenotypic score. Since ran-
dom effects correspond to the variance contributed by a locus
with f= 1, the proportion of variance contributed by a single
QTL (s) is equal to f/(1 + f ). And correspondingly, a single
QTL intended to have strength s is simulated with an effect
size f = s/(1 + f ).

A simple approximate Bayesian framework, using rejection
sampling based on observed ad peak height, is used to esti-
mate s and its confidence interval, along with a confidence
interval for genomic location. For each simulated replicate,
the simulated strength is recorded, along with each QTL’s
maximum ad height, peak window location, and maximum
secondary deviation. To analyze the one locus simulation
data for each primary peak, a rejection sampling approach
is used to identify simulation replicates in whichmaximum ad
falls within a specified tolerance (default 0.025) of the em-
pirical peak’s maximum ad. For each accepted simulation
replicate, the strength of the simulated locus goes into the
posterior distribution for the empirical QTL’s strength (from
which strength values corresponding to the 0.05, 0.5, and
0.95 quantiles are returned). A genomic confidence interval
is similarly obtained by examining the far left and far right
quantiles for the simulated peak locations resulting from a
QTL simulated at the empirical peak location. This assumes a
certain transitivity. SIBSAM simulates QTL with fixed posi-
tions and observes how far away the maximum ad falls in
these simulations. In the empirical data, one observes the
location of the maximum ad, and would like to know how
far from this window the true QTL might be. Thus, the

method assumes the distances from true QTL to maximum
ad in the simulated data are a good proxy for the distances
between maximum ad and true QTL in the empirical data.

Lastly, the secondary deviations from each accepted sim-
ulation enable P-values to be calculated for each of the em-
pirical primary peak’s associated secondary peaks. If more
than one secondary peak is present on the same side of the
primary peak in the empirical data, the tallest secondary peak
is tested first, and its v is based on the difference between its
height and the lowest ad value between itself and the primary
peak (even if other secondary peaks exist between this peak
and valley; Figure 2). For a shorter secondary peak between a
primary peak and a taller secondary peak, vwould be defined as
the difference between its height and the higher of the valleys
on either side of it. Giving taller peaks this priority avoids the
situation of a shorter secondary peak being deemed significant
and a taller peak beyond it missing this threshold (as might
occur if secondary peaks were simply evaluated sequentially
by position). After such adjustments, each secondary peak de-
viation in the empirical data associatedwith this primary peak is
compared to the distribution of v from accepted simulations
only. The proportion of simulations with a v greater than ob-
served for a given empirical secondary peak estimates the
P-value for that peak (i.e., the probability of getting a secondary
deviation this extreme when the true model is a single QTL of
the observed magnitude). Rejection sampling based on primary
peak height thus allows the approximation of secondary peak
P-values in the absence of precise knowledge of the primary
QTL’s strength, which here represents a “nuisance parameter”
that will impact the expected width of the QTL interval, and
hence the distribution of v expected from it.

Figure 4 Results are shown for exploratory BSA and IM simulations with
varying numbers of QTL and numbers of jointly analyzed independent
crosses. As a proxy for method performance, the median centimorgan
distance between the true QTL and the statistic maximum (of ad for BSA
or ap for IM) is shown. The null expectation for a randomly located peak
within a QTL’s analysis window is also shown (gray). These results indi-
cate: (1) the increasing challenge of more polygenic scenarios for all
approaches, (2) a general advantage of BSA over IM, and (3) the utility
of combining data from independent crosses that all share a given QTL in
common.
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SIBSAM inferences from QTL cluster simulations

In cases where an empirical primary peak is accompanied by
one or more statistically significant secondary peaks, the
strengths and confidence intervals of all peaks in this “QTL
cluster” are best approximated from simulations that include
each member QTL. For example, a pair of nearby QTL may
each add to the ad peak height of the other, leading to over-
estimates of effect size. Therefore, multi-QTL simulations are
conducted separately for each QTL cluster inferred from the
empirical data. For simplicity, the window position of each
simulated QTL is fixed according to the windows showing
maximum ad for each significant peak in the empirical cluster.
To examine each QTL separately, each is assigned an analysis
zone with boundaries corresponding to the empirical valleys
(local minima) between peaks. Moving away from the outer
peaks in the cluster, this analysis zone is bounded only by the
ends of the chromosome.

For each cluster simulation replicate, a random strength
value is first drawn for the full cluster (representing the
cumulative proportion of phenotypic variance explained by
the QTL in this cluster). That cluster strength is randomly
apportioned among the QTL, and each peak’s strength is then
translated into the simulated effect size as described above.

Posterior estimates for each QTL’s strength and genomic
location are obtained from an approximate Bayesian proce-
dure similar to that described above for the analysis of single
QTL simulations. But here, a cluster simulation replicate is
accepted only if the local maximum ad in every QTL’s analysis
zone falls within a tolerance of the corresponding empirical
peak heights. Since matching multiple QTL heights may en-
tail lower acceptance rates, it could be necessary to use a
slightly higher tolerance value to accrue enough accepted
simulations (default ad tolerance 0.05). This or any other
simulation step in SIBSAM can be parallelized to increase
the number of replicates, followed by joint analysis of multi-
ple simulation output files (Figure 3).

The estimated strength of each peak in cluster, along with
confidence intervals of strength and genomic position, are
obtained from a similar rejection process as described for the
one locus simulations (based on the distribution of strength
values and peak locations for that peak among the accepted
simulations). Thus, the cluster QTL simulations provide esti-
mates of effect size and genomic confidence intervals for all
significant secondary peaks. They also replace prior estimates
of these quantities for the associated primary peaks, since
cluster estimates that account for the effects of linked QTL
should be more accurate.

In summary, SIBSAM utilizes heuristic statistics based on
ancestry differences (primary peak height and secondary de-
viation) in a null simulation framework to test the significance
of QTL peaks and uses peak heights in a simple approximate
Bayesian framework to estimate the strength and genomic
locationofboth individualQTLandQTL in linkedclusters. The
final SIBSAMoutput file contains, for each significant primary
and secondary peak, its P-value, the genomic coordinates of

Figure 5 The results of exploratory BSA and IM simulations are shown in
which one or more experimental variables were manipulated. (A) Increas-
ing the total number of generations in the experiment reduces the me-
dian centimorgan distance between the true QTL and the observed peak.
(B) A broad optimal range of selection proportion exists for the focal BSA
and IM scenarios. (C) Scaling up the experimental population size (and
hence the number of phenotyped individuals), along with the sequencing
depth, leads to improved statistical performance.
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the peak window, the confidence interval for the QTL’s geno-
mic location, and the point estimate and confidence interval
for QTL strength. Information such as P-values for nonsignif-
icant peaks can be found in the intermediate files produced at
different stages of the SIBSAM pipeline (Figure 3).

Simulations testing the performance of SIBSAM

Simulation testing of SIBSAM was performed to test its QTL
detection power under different scenarios and to confirm that
estimates and confidence intervals of genomic location and
QTL strength were performing in line with expectations.
Although a nearly infinite range of scenarios could potentially
be investigated, I focused on experimental parameters rele-
vant to our current empirical applications in Drosophila (e.g.,
Bastide et al. 2016), in which 1200 individuals interbreed for
16 generations, and 10% phenotypic tails are selected for
sequencing. Test simulations sampled 1000 informative
reads for each window for each phenotypic pool, which is
about half the median depth per window from current em-
pirical applications (e.g., Bastide et al. 2016). Windows were
designed to each contain 200 nonsingleton variable sites in
the Zambia–Siavonga population genomic data described by
Lack et al. (2015). These 14,107 windows had a median
length of 6.8 kb.

Simulations with one genuine QTL were performed with
varying locus strengths (s = 0.05, 0.1, 0.15, 0.2, 0.25, 0.33,
and 0.5). These initial test simulations used fixed genomic
positions corresponding to the locations of Drosophila pig-
mentation genes tan (on the X chromosome) and ebony (on
arm 3R). Additional 3R scenarios with s = 0.2 investigated
the consequences of the remaining variance being due to
unlinked QTL (one with s = 0.8 or else four others with
s = 0.2) instead of random Gaussian variance. Comparing
each test replicate against SIBSAM null simulations revealed
the true positive rate for QTL detection. Running the test
replicates through the SIBSAM, one locus simulation analysis
indicated the frequency at which secondary QTL were falsely
inferred, along with allowing the inferred distributions of
QTL strength and genomic location to be compared against
known true values.

Additional simulations were conducted (focusing on the
3R location) to investigate SIBSAM’s performance in the
presence of two linked QTL. Scenarios with symmetric QTL

strength (s = 0.15 or 0.3) and asymmetric QTL strength (s =
0.15 and 0.3) were investigated. The distance between the two
QTLwas varied at 2.5, 5, 10, and 25 cM. The test replicateswere
then evaluated with SIBSAM to (1) test the power to detect one
or both QTL, (2) test the rate of falsely detecting three or more
QTL, (3) evaluate the performance of QTL localization, and (4)
evaluate the performance of QTL size estimation.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. Source code is available from https://
github.com/JohnEPool/SIBSAM1.

Results

Initial simulation study of BSA and IM

Simulationswere performed to examine the properties ofQTL
signals under BSA and IM approaches. Importantly, these
exploratory simulations are not connected to any formal
QTL inference. Instead, they focus on the performance of
summary statistics related to the signature of a QTL. For
BSA, I examine ancestry difference (ad), the difference be-
tween high and low phenotypic pools in the proportion of
ancestry sampled from the parental strain with the higher
phenotypic value (at a particular genomic locus). For IM, I
examine ancestry proportion (ap), the proportion of the map-
ping population’s ancestry that derives from the nonback-
cross parental strain. Rather than focusing on the raw
values of these statistics, I assess the performance of BSA
and IM by examining the genetic distance between a true
simulated QTL and the “QTL peak” (the maximum value of
ad or ap in this part of the genome).

The above approach allows awider range of scenarios to be
examined than would be computationally feasible under the
full SIBSAMinferenceprocess. Beyonda tentative comparison
of the genomic precision of BSA vs. IM, an important goal here
is to optimize critical experimental parameters to improve the
outcomes of future trait mapping studies.

As a point of reference, these simulations began with a
“default” scenario in which 600 individuals were bred each
generation, for 10 total generations, phenotypic selection

Figure 6 Outcomes of exploratory BSA and IM
simulations with variable sequencing depth are
shown. To more clearly illustrate the influence
of depth on sampling variance, depth is plotted
in terms of the average number of reads for
each individual in a phenotypically selected
pool. From a group of 600 phenotyped individ-
uals, results for a series of selection proportions
are illustrated. Results illustrate the advantage
of increased sequencing depth, with some di-
minishing returns.

Bulk Segregant Mapping in Drosophila 1301

http://flybase.org/reports/FBgn0086367.html
http://flybase.org/reports/FBgn0000527.html
https://github.com/JohnEPool/SIBSAM1
https://github.com/JohnEPool/SIBSAM1


retained the 20%most extreme individuals in each direction,
and each window/locus had a sequencing depth of 300. In-
dividual parameters were then varied, alone or in combina-
tion, and the accuracy of the ad or ap signal was examined.

First, performance was examined when tandemly varying
the number of QTL and the number of independent crosses.
Within each simulation case, all QTLwere of equalmagnitude
and explained 5/6 of total phenotypic variance. Independent
crosses could represent cross replicates using the same pa-
rental strains, or distinct pairs of parental strains from the
same populations thatmay share someQTL in common.Here,
multicross simulations assumed that all crosses shared a given
QTL difference between them, and ad or ap were added
between crosses for each genomic window to test whether
a more precise localization emerged from this joint signal.
Three primary themes emerged from this analysis. First,
BSA outperformed IM for any given combination of crosses
and loci (Figure 4). Second, combining data from multiple
crosses had a markedly positive effect on the accuracy of
these ancestry signals. Third, performance showed a pre-
dictable decline for more/weaker QTL. Still, cases with
multiple crosses managed relatively stronger performance
for more polygenic scenarios (Figure 4), particularly in the
case of BSA. For simplicity, the remaining simulations be-
low will focus on a single cross replicate and a scenario
with five QTL.

The number of generations before genotyping/sequencing
was also varied. Strong performance improvement was ob-
servedby increasing thenumberofgenerations to8or10,with
further increases yielding ongoing but diminishing improve-
ments (Figure 5A). Additional generations allow more re-
combination between parental genetic backgrounds, which
should lead to sharper QTL peaks.

Past results indicate that selecting only the most extreme
individuals is not optimal for BSA (Magwene et al. 2011).
Concordantly, for the focal simulation scenario studied here,
optimum bulk proportions were�10–15% for each BSA pool,
and 20% for the single IM pool (Figure 5B). These results
appear to reflect a balance between enriching for causative
genotypes (favoring fewer individuals) and minimizing the
effects of random sampling variance (favoring more individ-
uals). Thus, both BSA and IM studies may benefit from select-
ing significant numbers of individuals, which should help to
maximize the diversity of recombination breakpoints repre-
sented in the final data.

Related to the issue of sampling variance are parameters
such as the number of individuals present in each generation
and the number of genotypes sampled in the data (e.g., se-
quencing depth). When simulations jointly scaled up the
number of individuals present in each generation, the num-
ber sampled for sequencing, and the sequencing depth, per-
formance improved considerably (Figure 5C). The number of
individuals sampled in the final generation made a particular
difference, at least if depth was scaled up linearly (Supple-
mental Material, Figure S1). Increasing sequence depth
consistently led to better performance (via a reduction in

sampling variance), although with some diminishing returns
(Figure 6).

Simulations also considered the interaction between se-
lection proportion and population size. The optimal selection
proportion (s) tends to scale inversely with population size
(N). For BSA population sizes between 100 and 2400, there
was a relative stability in the optimal number of sampled
individuals for sequencing (Ns), with this quantity ranging
only from 35 to 60 (Table S1). In line with the findings of
Magwene et al. (2011), this result suggests that reducing
sampling variance is of primary importance, whereas enrich-
ing for the most phenotypically extreme individuals is a sec-
ondary priority.

Figure 7 (A) Results of one locus test simulations assessing the power of
the SIBSAM pipeline to detect a QTL on the autosomes (red diamond) or
the X chromosome (blue X). The scenario investigated here involves a
population of 1200 individuals with 600 phenotyped after 16 generations
and 10% retained in each phenotypic pool, and with a depth of 1000 in-
formative sequencing reads per window. This scenario showed interme-
diate power for a QTL explaining 15% of phenotypic variance in the
experimental population, with low/high power below/above that mark.
(B) The ability of a larger experiment to boost detection power for weaker
QTL was investigated. The mapping population size, number of individ-
uals phenotyped, and sequencing depth was multiplied (compared to the
numbers given above) as shown on the x-axis. In a sufficiently large
experiment, the power to detect QTL explaining 10% or even 5% of
phenotypic variance was considerably increased.
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Simulation testing of the SIBSAM pipeline

As elaborated in the Materials and Methods section, I devel-
oped a prototype method for simulation-based inference for
BSA mapping (SIBSAM). The flexibility of this simulation-
driven pipeline allows a range of inferences, including for
challenging cases in which two or more QTL are part of
the same complex peak (Figure 2). The goals of SIBSAM in-
clude assessing the significance of peaks, and estimating
the strength and genomic confidence interval of significant
QTL. The performance of SIBSAM was assessed via a series
of test simulations with one or more QTL. While a vast range
of QTL and experimental scenarios could potentially be ex-
amined, I focus here on parameters relevant to ongoing em-
pirical work in Drosophila (Bastide et al. 2016). The BSA
experimental design simulated here went for 16 generations,
with 1200 individuals in each generation, with 600 females
phenotyped in the last generation with 10% pools selected,
and 1000 informative sequence reads for each genomic
window.

For the above scenario, SIBSAM’s QTL detection power
went from weak for a QTL explaining 10% of the experimen-
tal population’s phenotypic variance (with the remainder due
to random environmental or measurement variance) to
strong for a 20% QTL, with intermediate power for 15%
QTL (Figure 7A). The low power for weaker QTL could in-
dicate that a larger mapping experiment is needed to detect
them. A second set of test simulations was conducted in
which mapping population size, the number of phenotyped
individuals, and the sequencing depth were each multiplied

by either 2, 4, 8, or 16, relative to the focal scenario. For
example, since the focal scenario involves selecting on the
phenotypes of 600 individuals, the 16x scenario involves
9600 individuals. These scaled-up experiments resulted in
higher power to detect QTL of strength 5, 10, or 15% (Figure
7B). Scaling up by a factor of 4 resulted in 83% power to
detect a 10% QTL, while a multiplier of 16 was necessary
to attain 74% power for a 5% QTL. Thus, larger mapping
experiments substantially improve the prospects for detect-
ing weaker QTL.

The estimation of QTL strength for significant peaks was
quite accurate for intermediate strength QTL (15–33%)
when the remaining phenotypic variance was random
and normally distributed (Figure 8A). However, in other
scenarios, the strength estimate could be overestimated.
For a weaker QTL (e.g., 10% in this example), there ap-
pears to be a “winner’s curse” in which only the test rep-
licates giving the tallest peaks were deemed significant,
and since these peaks are unusually high for a s =
10% QTL, their strength was typically overestimated. If
strength estimates for nonsignificant peaks were included,
there was no directional bias. The highest QTL strength
(50%) showed upward bias, which may reflect a “satura-
tion effect” of the ad statistic. Here, peak heights were very
close to 1 (individuals were well sorted into the extreme
pools based on QTL genotype), which is the same outcome
produced by a QTL with s . 50%. Upward strength bias
was also observed if the remaining phenotypic variance
was produced by other strong QTL, rather than normally

Figure 8 SIBSAM inferences largely
conform to expectations. (A) For the
same test simulations analyzed in
Figure 7A, performance in estimat-
ing QTL effect size (the proportion
of phenotypic variance explained).
Accurate performance was obtained
for intermediate strength QTL. Some
overestimation of effect size was ob-
served for the weakest QTL (due to a
winner’s curse in which only the
taller peaks are detected) and for
the strongest QTL (due to saturation
of the ad statistic). (B) For a given
primary peak, the probability of
falsely inferring a secondary peak
was near or below the expected
5% for all QTL strengths. (C) The
proportion of replicates in which
the SIBSAM effect size confidence
interval contains the true value is typ-
ically close to the 95% expectation,
but somewhat reduced for the
weakest QTL simulated. (D) The pro-
portion of replicates in which the
SIBSAM genomic confidence inter-
val contains the true simulated po-
sition was close to the expected
proportion but again slightly re-
duced for the weakest QTL.
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distributed random variance. If a 20% QTL was accompa-
nied by an unlinked 80% QTL (with no environmental/
measurement variance), the median estimate of s was
24.2%. If a 20% QTL was accompanied by four unlinked
QTL of equal strength, the median estimate of swas 31.4%
(although power increased from 94 to 100% for both of
these cases). In light of the recurrent bias in effect size
estimation, the reported quantities are best viewed as
rough estimates of QTL strength. Future methodological
studies may explore alternative approaches to the estima-
tion of QTL strength in a simulation framework.

Other aspects of SIBSAM inference performed largely as
expected on the simulated data. Based on 10,000 null
simulations, the false positive probability for detecting a
QTL when none existed was 3.46%. In simulations that had
a single true QTL, only �5% of significant primary peaks
had a false positive secondary peak (in line with null ex-
pectations; Figure 8B). Thus, for a strong QTL associated
with very high power (e.g., s = 25%), there is an �95%
probability of correctly inferring a single QTL and a 5%
chance that a secondary QTL will be incorrectly suggested.
For QTL strengths with adequate power, approximately the
predicted proportion of loci fell within the provided confi-
dence intervals for QTL strength and genomic position
(Figure 8, C and D), with performance only declining for
the weaker s = 10% case that was rarely detected for this
scenario.

Detection power was also examined for cases involving
two linked QTL (of strength 15% and/or 30%) separated by
various distances (2.5, 5, 10, and 25 cM). For QTL of equal
strength, the 25-cM linkage had no adverse effect on QTL
detection. Powerwasactually slightlyhigher in the caseof two
15% QTL separated by 25 cM (relative to the unlinked case),
even though55%of these test replicates had oneof theQTL as
a secondary peak. Power to detect a second peak dropped
significantly as the distance between QTL dropped to 10 and
5 cM (Figure 9). In the case where one QTL had s= 30% and
the other had s= 15%, power remained high for the stronger
QTL at all distances, but was low for weaker QTL at 10 cM or
closer (Figure 9).

Power for a 15%QTLwasnotably higherwhenanunlinked
15 or 30% QTL was present, compared to the single QTL
scenario in which all other phenotypic variation was due to
normally distributed random variance (Figure 9 vs. Figure 7).
Together with the multi-QTL results described above (in
which power for a 20% QTL increased in the presence of an
unlinked 80% QTL or else four other 20% QTL), these find-
ings suggest that power to detect a QTL may be higher than
indicated in Figure 7 when at least some of the remaining
phenotypic variance comes from other QTL of appreciable
strength, instead of random variance.

Discussion

Mapping the genetic architecture of phenotypic trait dif-
ferences remains a challenging but critical problem in the

fields of genetics and evolutionary biology. Above, I have
compared the behavior of bulk segregant analysis and
introgression mapping, while assessing the experimental
parameters that modulate their outcomes. I then offered a
new simulation-based approach to BSA inference, geared
toward systems like Drosophila in which hundreds or
thousands (but not millions) of individuals can be exam-
ined, and in which BSA QTL signals may sometimes over-
lap each other.

A general principle of QTLmapping is that performance
is enhanced by sampling a diverse range of recombinant
genotypes. Thus, simulation results suggest that BSA and
IM should both bemore successful whenmore generations
of interbreeding occur,when larger numbers of individuals
are present in the mapping population, and when greater
sequencing effort is employed. The importance of sam-
pling at least a few tens of individuals in phenotypically
selected pools is clear as well. These results suggest that
the typical method of introgression mapping, in which
small numbers of individuals are phenotypically selected
every generation or two, is not advisable for mapping
oligogenic traits (and is not ideal for monogenic traits
either; Figure 4). Instead, if IM is used, larger numbers
of phenotyped and retained individuals are desirable.

Figure 9 The detection power of SIBSAM in test simulations with two
linked QTL. Top panels illustrate the power to detect the second of two
linked QTL of equal magnitude, conditional on detecting the first. The
bottom panel illustrates the power to detect either the weaker or the
stronger of two linked QTL of unequal sizes.
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However, based on the criteria employed here, BSA gave a
more precise mapping signal than IM for every combina-
tion of experimental and QTL parameters examined. This
finding may again relate to the principle of maintaining a
diversity of recombination breakpoints, which is maxi-
mized by avoiding IM’s population bottlenecks associated
with phenotypic selection during the intermediate gener-
ations of interbreeding.

The tradeoffs among BSA, IM, and other mapping ap-
proaches are complex and merit further attention. A com-
pelling advantage of BSA is that the same experimental
population may be used to map multiple trait differences
(e.g., once the adults have already reproduced, select for
one trait in generation 12, another trait in generation 13,
etc.). For the same set of experimental parameters as de-
fined here, BSA actually requires less effort than IM dur-
ing the experiment, since phenotyping must be performed
only in the last generation. BSA does require the sequenc-
ing of two phenotypic pools (high and low), whereas
IM requires just one phenotypic pool to be sequenced
(note, however, that doubling IM depth does not allow
it to match BSA’s performance; Figure S1). Because both
parental strains’ genotypes are present across the ge-
nomes of mapping population individuals, BSA may
be more influenced by the complexities of epistatic interac-
tions. IM also results in the production of a genetically
stable strain, which may prove useful in downstream
experiments.

In the course of a BSA experiment, parental strain an-
cestry frequencies in the mapping population could deviate
from 50%. The effects of genetic drift should be modest
when the population size is vastly greater than the number
of generations of interbreeding, and SIBSAM allows for
drift’s occurrence. Although not modeled here, inadvertent
laboratory selection could also shift mapping population
ancestry frequencies. In general, such ancestry shifts
should not lead to false positive QTL, because both pheno-
typic pools will be equally affected. If ancestry frequencies
become extreme, the response of ad to a QTL could be
dampened, leading to reduced power and underestimation
of QTL strength. This concern could be amplified for
crosses between partially reproductively isolated species.
But even for within-species mapping, it may be worthwhile
to collect BSA sequence data before an excessive number of
generations have elapsed. Genomic regions found to show
ancestry shifts could be interesting in their own right, since
they may contain drivers of laboratory adaptation, differ-
ential mating success, incompatibilities, or segregation
distortion.

It is more challenging to compare BSA or IM against
alternative mappingmethods such as those involving individ-
ual genotyping (e.g., Andolfatto et al. 2011) or the generation
of recombinant inbred lines (e.g., King et al. 2012). However,
it may be worth evaluating the benefits of combining ele-
ments of BSA with these approaches. Following multiple
generations in a large mapping population, offspring with

extreme phenotypes could be individually genotyped. Or, the
mapping population could be used to found a large number of
recombinant inbred lines (RILs), with BSA and RIL mapping
potentially integrated.

The mapping approach and method described here re-
quires a moderate investment of researcher time and funding
and delivers a range of QTL inferences. While useful in its
current form, SIBSAM may also motivate future simulation-
based mapping methods. Although motivated by Drosophila
QTL mapping, this approach may prove broadly useful for
nonmodel insects and other smaller organisms with short
generation times.
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Figure	S1.		The	results	of	exploratory	BSA	and	IM	simulations	are	shown	in	which	one	or	
more	experimental	variables	were	manipulated.		(A)	Increasing	the	number	of	mapping	
population	individuals	present	in	each	generation	reduces	the	median	centiMorgan	
distance	between	the	true	QTL	and	the	observed	peak,	albeit	with	diminishing	returns	if	
other	parameters	are	not	co-varied.		(B)	Increased	sequencing	depth	improves	QTL	
precision.		(C)	Stronger	improvements	are	observed	if	both	the	number	of	individuals	in	
the	last	generation	and	the	sequencing	depth	are	jointly	increased.			
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Table S1.  The relationship between population size, selection proportion, and median peak-to-QTL cM 
distance is illustrated. (.xls, 33 KB) 
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