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ABSTRACT Functional annotations have been shown to improve both the discovery power and fine-mapping accuracy in genome-
wide association studies. However, the optimal strategy to incorporate the large number of existing annotations is still not clear. In this
study, we propose a Bayesian framework to incorporate functional annotations in a systematic manner. We compute the maximum
a posteriori solution and use cross validation to find the optimal penalty parameters. By extending our previous fine-mapping method
CAVIARBF into this framework, we require only summary statistics as input. We also derived an exact calculation of Bayes factors using
summary statistics for quantitative traits, which is necessary when a large proportion of trait variance is explained by the variants of
interest, such as in fine mapping expression quantitative trait loci (eQTL). We compared the proposed method with PAINTOR using
different strategies to combine annotations. Simulation results show that the proposed method achieves the best accuracy in iden-
tifying causal variants among the different strategies and methods compared. We also find that for annotations with moderate effects
from a large annotation pool, screening annotations individually and then combining the top annotations can produce overly optimistic
results. We applied these methods on two real data sets: a meta-analysis result of lipid traits and a cis-eQTL study of normal prostate
tissues. For the eQTL data, incorporating annotations significantly increased the number of potential causal variants with high probabilities.
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A large amount of annotation information of genomic
elements has been generated, such as the Encyclopedia

of DNA Elements (The ENCODE Project Consortium 2012).
Regulatory elements, such as those marked by DNase I hy-
persensitive sites (DHSs), have been shown to be enriched
with associations and explain a large proportion of heritabil-
ity (Maurano et al. 2012; Gusev et al. 2014). Incorporation
of these annotations into statistical association analyses can
improve both the power in genome-wide association study
(GWAS) discovery (Pickrell 2014) and the accuracy in fine
mapping underlying causal variants (Quintana and Conti
2013; Kichaev et al. 2014; Wen et al. 2015). However, the
number of annotations is often very large and many of them

may not be informative for the underlying causal genetic
variants. Currently, there is no systematic and effective way
to incorporate a large number of annotations in association
analyses, which is crucial to the full use of the available in-
formation. In practice, usually only a small number of anno-
tations are considered (Quintana and Conti 2013; Wen et al.
2015). A recent proposed algorithm, PAINTOR, suggests a
one-by-one test of each annotation selecting the top 4–5 for
inclusion. This has potential to waste the information from
the remaining annotations, which may together provide signif-
icant predictive power of the causal status. Another approach
(Pickrell 2014) considered a large number of annotations,
however, it has two limitations. First, it assumes the maximal
number of causal variants in each genomic region locus is
one, which may lead to suboptimal results (Hormozdiari
et al. 2014; Kichaev et al. 2014; Chen et al. 2015). Second,
the process of annotation selection may not fully explore the
available annotation information. In this study, we propose
a Bayesian framework to incorporate a large number of an-
notations simultaneously. Moreover, we extend our previous
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fine-mapping method, CAVIARBF, under this framework,
which enables the use of summary statistics. Simulation results
show that our proposed method achieves better or similar
performance compared to PAINTOR and fgwas under a variety
of different annotation selection strategies.

Methods

A general Bayesian hierarchical model to incorporate
functional annotations

Wefirst considerone regionor locus forfinemappingand later
extend it to multiple loci. For the locus of interest, suppose
there are m variants and n individuals. We assume that only
a subset of them variants is causal. Denote the phenotypes by
Yn3 1 and genotypes by Gn3m: The phenotypes can be quan-
titative traits or binary traits. The effect size of each variant is
denoted by bm3 1; which depends on the causal states,
denoted by cm3 1; where the elements of vector c are either
1, indicating the corresponding variant is causal, or 0 for non-
causal variants. For the ith variant, if ci ¼1; bi is assumed to
be normally distributed with a mean of zero and vari-
ance specified by s2

a (Servin and Stephens 2007; Guan and
Stephens 2008). For quantitative traits, Y and bi also depend
on a random variable t that specifies their variances, for which
we assign a noninformative prior (Servin and Stephens 2007;
Guan and Stephens 2008). If ci ¼ 0; then bi = 0. We assume
the causal states represented by c dependon the annotations of
the variants. For example, we can model the relationship be-
tween the annotation and the probability of being causal using
a logistic model. Suppose there are d annotations for each
variant and the annotation matrix is denoted by Am3 d and
Ai� denotes the ith row. Denote the annotation effects on the
causal states by g¼ðg0; g

T
1ÞT ; where T means transpose, g0 is

the intercept, and g1 is a vector of annotation effects. We
assume a normal prior distribution on the annotation effects
with alternate distributions considered later. The full model
can be written as follows, assuming quantitative traits and
a logistic model linking annotations to causal states:

Y jm;G;b; t � N
�
mþGb;

1
t
In

�
;

bijt; ci �
�
N
�
0;s2

a
1
t

�
if   ci ¼ 1

0; if   ci ¼ 0
;   i ¼ 1 . . . ;m;

cijg0; g1;Ai� � Bernoulli
�

1
1þ e2ðg0þAi�g1Þ

�
; i ¼ 1 . . . ;m;

g1 � N
�
0; l21Id3d

�
:

We assign noninformative priors on m, t, and g0: Specifically,

mjt � N
�
0;

s2
m

t

�
; t � Gðk1; k2Þ; and g0 � Nð0; l21

0 Þ; where

Gðk1; k2Þ is the Gamma distributionwith the shape parameter
k1 and the inverse scale parameter k2; and we let
s2
m/N; k1; k2; l0/0:

The above probabilistic model forms a hierarchical model,
or directed graphical model (Bishop 2006), as shown in Fig-
ure 1. In Figure 1, the nodes are random variables, where
open circles represent unobserved/hidden random variables,
shaded circles represent observed random variables, small
solid circles represent fixed parameters, and the arrows show
the dependencies between two random variables. The arrow
leaves from the node on which the receiving node depends,
for example, the causal state c depends on the annotation A
and the annotation effects g. Variables with noninformative
priors are not shown in Figure 1. When using summary sta-
tistics, we need only to replace Ywith the Z-test statistic, and
replace G with the correlation matrix

P
, which will be de-

scribed later. Compared to the previous model in CAVIARBF
(Chen et al. 2015), this model has additional levels to incor-
porate annotations, enclosed by the box in Figure 1. Com-
pared to PAINTOR (Kichaev et al. 2014) and the practical
inference procedure of FM-QTL (Wen et al. 2015), this model
has an extra level specifying the prior of the annotation
effects g, which turns out to be critical and enables the in-
corporation of a large number of annotations simulta-
neously into the model. For now we assume l is a known
fixed value, and later we will discuss ways to select the
optimal parameter.

Exact Bayes factors using summary statistics for
quantitative traits

Wepreviously showed(Chen et al.2015) that thefine-mapping
method CAVIAR (Hormozdiari et al. 2014) is approximately
equivalent to BIMBAM (Servin and Stephens 2007; Guan and
Stephens 2008). Based on this equivalence, we developed an
approximate Bayesian framework for fine mapping multiple
causal variants in a locus using only summary statistics. When
we assume at most one causal variant in a locus, it reduces
to the approximate Bayes factor (ABF) derived by Wakefield
(2009), and it produces exactly the same Bayes factor as in
fgwas (Pickrell 2014) when the variance of the effect size is
estimated (seeAppendix). The approximation depends on a key
assumption that the explained variance by each model is very
small compared to the total variance of the phenotype. This
assumption is reasonable for most GWAS hit regions due to the
small effect sizes. However, for fine mapping expression quan-
titative trait loci (eQTL), this assumption may not hold very
well because it is not uncommon that the gene expression trait
is moderately or highly correlated with certain variants close to
the gene. Fortunately, we found that for quantitative traits the
exact Bayes factors using a D2 prior (Servin and Stephens
2007) can still be calculated using only the marginal test sta-
tistics and correlation matrix. We assume a linear model as
follows:

y ¼ mþ Xcbþ e;

where e � N
�
0; 1t In

�
; In denotes the n3n identity matrix,

and n is the number of individuals. Xc is the coded genotype
matrix from putative causal variants. The D2 prior assumes
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thatb has a prior normal distribution ofN½0; vcð1=tÞ ;� where vc
is a diagonal matrix and b and e are independent. The jth
marginal test statistic zj is calculated from the model

y ¼ mþ Xcjbj þ ej;

where Xcj is the jth column of Xc: Denote the correlation
matrix by Sx: Let z* be the column vector where the jth

component is
�
zj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2j þ n2 2

q �
; and let S be a diagonal ma-

trix where the jth entry is the unbiased sample variance of Xcj:

The exact Bayes factor can be calculated as follows:

BF ¼



½ðn21ÞvcS�21 þ Sx




2ð1=2Þ


ðn21ÞvcS



2ð1=2Þ

3
h
12z*T

n
½ðn21ÞvcS�21þ Sx

o21
z*
i2ðn=2Þ

:

The detailed proof is shown in theAppendix. Besides the exact
calculation, to make it robust to different magnitudes of ef-
fect sizes, we also added the option in CAVIARBF to set mul-
tiple prior distributions for b using different variance values
and to calculate the averaged Bayes factor as in BIMBAM
(Servin and Stephens 2007; Guan and Stephens 2008).

Maximum a posteriori estimate using
expectation maximization

In general, techniques such as Markov chain Monte Carlo
(MCMC) can be used for inference based on the model in

Figure 1. However, this can be time consuming. Instead, we
calculate a point estimate of the annotation effects g, the
maximum a posteriori (MAP) estimate, and use it for all other
inferences. Wemay sacrifice some accuracy by using the MAP
estimate to represent the full posterior distribution of g, but
we gain computational speed. Given Y, G, A, and specified l,
l0; the posterior probability of g is

pðgjY ; G; A; l; l0Þ} pðg; Y ; G;A; l; l0Þ
} pðY jG; A; gÞ pðg1jlÞ pðg0jl0Þ:

Therefore,

ln pðgjY ;G;A; l; l0Þ ¼ ln pðY jG;A; gÞ þ ln pðg1jlÞ
þ ln pðg0jl0Þ þ constant

¼ ln pðY jG;A; gÞ2 1
2
lkg1k22 þ

m
2
ln l

2
1
2
l0g

2
0 þ

1
2
ln l0 þ constant;

where kxk22 ¼ Pq
i¼1x

2
i ; x is a q3 1 vector with elements xi;

and k � k2 is the l2 norm of a vector. The term constant repre-
sents all other terms which are not a function of g.

To maximize ln pðgjY ;G;A; l; l0Þ with respect to g, we
only need to maximize

L ¼ ln pðY jG;A; gÞ2 1
2
lkg1k22 2

1
2
l0g

2
0:

Because l0/0; L is simplified to

L ¼ ln pðY jG;A; gÞ2 1
2
lkg1k22:

This also shows the well-known correspondence between
a Bayesian model using a Gaussian prior and a penalized
likelihood model with l2/ridge penalty.

To maximize L, notice that the first part of the equation is
a likelihood function with missing data, or hidden random
variables. Therefore we can use the expectation-maximization
(EM) algorithm to obtain the maximum likelihood estimate
(MLE) of g. For example, the causal status configuration c
can be considered missing. Even though the effect size pa-
rameter b is also unobserved, it can be integrated out ana-
lytically for quantitative traits or using approximations for
binary traits (Servin and Stephens 2007; Guan and Stephens
2008; Chen et al. 2015). Compared to the EMmethod forMLE,
the MAP estimate requires only a small change at the max-
imization (M) step.We first show how to use the EMmethod
for MLE when l is set to 0 (Kichaev et al. 2014; Wen et al.
2015). If c were observed, the full-data likelihood would be
pðY ; cjG; A; gÞ ¼ pðY jG; cÞ pðcjA; gÞ; where we have used the
dependence relationship in Figure 1. Therefore,

ln pðY ; cjG;A; gÞ ¼ ln pðY jG; cÞ þ ln pðcjA; gÞ:

Denote by pðcjY ;G;A; gtÞ the conditional distributionof c given
the observed data Y, G, A and the estimate gt at iteration t. In

Figure 1 Hierarchical models incorporating functional annotations. The
box indicates the added modeling block related to annotations. Shaded
s indicates observed data. A, the annotation matrix of variants; c, the
causal configuration vector of variants; G, full genotype matrix; Y, phe-
notype vector; b, effect size vector of genotypes on the phenotype; sa;

the parameter specifying the prior distribution of b; g, the effect size
vector of annotations on the causality state; l, the parameter specifying
the prior distribution of g.
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the expectation (E) step, we calculate the expectation of the
log likelihood of full data on this conditional distribution as

Ec½ln pðY ; cjG;A; gÞ� ¼ Ec½ln pðY jG; cÞ� þ Ec½ln pðcjA; gÞ�:

The first term is not a function of g, so it is irrelevant to the M
step where we maximize this expectation with respect to g.
Therefore, we only need to focus on the second term. Assume
given A, g, the probability of each variant being causal is
independent from each other. In implementation, we use
a logistic regression model which satisfies this assumption.
Then we have:

Ec½ln pðcjA; gÞ� ¼
Xm
i¼1

Ec½ln pðcijA; gÞ�:

And because

Ec½ln pðcijA; gÞ� ¼ p
�
ci ¼ 1jY ;G;A; gt�ln pðci ¼ 1jA; gÞ

þ p
�
ci ¼ 0jY ;G; A; gt�ln pðci ¼ 0jA; gÞ;

we have

Ec½ln pðcjA; gÞ� ¼
Xm
i¼1

�
p
�
ci ¼ 1jY ;G; A; gt�ln pðci ¼ 1jA; gÞ

þ p
�
ci ¼ 0jY ;G;A; gt�ln pðci ¼ 0jA; gÞ�:

In the M step, we update g by gtþ1 ¼ argmax
g

Ec½ln pðcjA; gÞ :�
If we use a logistic model that has pðci ¼ 1jA; gÞ ¼
ð1=1þ e2ðg0þAg1ÞiÞ; ðg0 þ Ag1Þi is the ith component of
g0 þ Ag1; and then the objective function is exactly the form
of the log-likelihood function in a logistic regression model.
Theonlydifference is that theobserveddata,pðci ¼ 1jY ;G;A; gtÞ;
i ¼ 1; . . . ; m; are not ones or zeros, but in the range of [0, 1].
Therefore for each iteration, the updated g can be solved by
fitting a logistic model treating pðci ¼ 1jY ;G;A; gtÞ as the re-
sponse and A as the data matrix. This was also used in Wen
et al. (2015). Because our aim is to find the MAP estimate
instead of the MLE, the M step changes to:

gtþ1 ¼ arg maxg Ec½ln pðcjA; gÞ�2 1
2
lkg1k22: (1)

The objective function to maximize has the same form of
a penalized log likelihood for logistic regression, with the
response being pðci ¼ 1jY ;G;A; gtÞ: In our implementation,
we use the R package glmnet (Friedman et al. 2010) to solve
the penalized logistic regression model.

For each iteration, pðci ¼ 1jY ;G; A; gtÞ needs to be recal-
culated. It is actually the posterior inclusion probability (PIP)
for variant i, and can be calculated based on existing methods.
Specifically, we first calculate the prior probability of each SNP
being causal given the annotations and the estimated annotation
effect size using priori ¼ pðci ¼ 1jA; gÞ ¼ 1=1þ e2ðg0þAg1Þi :
Then, any method that can calculate pðci ¼ 1jY ;G; priorÞ can
be used. For example, given the prior probability of each

SNP being causal, the original CAVIARBF can output the
PIPs for each variant using summary statistics (Chen et al.
2015). It needs to be calculated for each iteration because
the prior probability of each variant being causal changes
depending on the current estimate gt:

Extension to LASSO and elastic net penalties

In Equation 1, we can change the l2 penalty to other penalties,
for example, l1 (e.g., LASSO) penalty or elastic net (ENET),
which uses both l1 and l2 penalties. These penalties corre-
spond to different prior distributions of g1: Specifically, de-
note each component of g1 by g1i: If we assume a Laplace
prior, pðg1ijlÞ¼ l

2e
2ljg1ij;   i ¼ 1; . . . ; m; and g1i are indepen-

dent of each other, then for the MAP estimate of g, the objec-
tive function to maximize becomes

L ¼ ln pðY jG; A; gÞ2 lkg1k1;

where the l1 penalty is kg1k1 ¼ Pm
i¼1jg1ij: For ENET penalty,

the corresponding objective function is

L ¼ ln pðY jG; A; gÞ2l



ð12aÞ1

2
kg1k22 þ akg1k1

�
;

where a is a parameter that determines the mixture of l1 and l2
penalties. The corresponding prior is ðg1ijlÞ}e2lðð12aÞ12g2

1iþajg1ijÞ;
assuming the g1i is independent. Since only the penalty
term changes, the same EM method can be applied except
that in the M step, a different penalized model is solved. In
our implementation, the R package glmnet is used to fit all
three different penalized models.

Using summary statistics

The same framework can be applied if we have only the
summary statistics. Denote the marginal test statistics for
individual variants as Zm31; of which each component ap-
proximately follows a normal distribution. Denote the corre-
lation matrix among variants as

P
m3m : As shown in Chen

et al. (2015), in the fine-mapping setting, using (Y, G) is
approximately equivalent to using (Z, S). Therefore when
summary statistics are used, simply replace G with S, and Y
with Z. The posterior probability of g is

pðgjZ;S; A; l; l0Þ} pðZjS; A; gÞpðg1jlÞ pðg0jl0Þ:

To calculate the MAP estimate of g, similarly as using (Y, G),
we take the limit l0/0; and maximize the following penal-
ized likelihood

L ¼ ln pðZjS;A; gÞ21
2
lkg1k22;

which assumes an l2 penalty. A similar EM method can be
used to obtain the MAP estimate. Specifically, for the M
step, we only need to replace pðci ¼ 1jY ;G; A; gtÞ with
pðci ¼ 1jZ;S; A; gtÞ; which can be calculated using
CAVIARBF. Using the l2 penalty or ENET penalty is also
straightforward.
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Multi-loci extension

When there are multiple loci of interest, a joint model aggregat-
ingannotation informationacross all locimaybemorepowerful,
as proposed in Kichaev et al. (2014) and Wen et al. (2015). We
consider two scenarios here. For the first scenario, there is a sin-
gle trait for all loci. This corresponds to fine mapping multiple
GWAShit regions for a single trait. For the second scenario, each
locus has its own independent trait. For example, in fine map-
ping of eQTL, each locus has its own targeted gene expression
trait. Figure 2 shows the hierarchical model of K loci incorpo-
rating annotation effects with subscripts denoting loci indices.
All loci share the same annotation effect g, which further
depends on the parameter l. Figure 2A corresponds to the
model forfinemappingofmultipleGWAShit regions for a single
trait and Figure 2B corresponds to the model for fine mapping
of eQTLs, where Y1; . . . ; YK are gene expression traits and
G1; . . . ;GK are variants usually in a cis region of the correspond-
ing genes.We assume independence amongY1; . . . ; YK giveng
and the corresponding ðA1;G1Þ; . . . ; ðAK;GKÞ: The two models
in Figure 2, A and B, require both the phenotype and individual
genotype data. Figure 2C shows the model using only summary
statistics, which can be applied for both scenarios. It assumes
that themarginal test statistics Z1; . . . ; ZK are independent from
each other given g and the corresponding ðA1;S1Þ; . . . ;
ðAK ;SKÞ: For fine mapping GWAS hit regions for a single trait,
this assumption is usually reasonable if the genotypes of GWAS
hit regions are independent, e.g., they are not too close to each
other, or on different chromosomes. For the eQTL model, the
independence assumption of Y1; . . . ; YK implies the indepen-
dence assumption of Z1; . . . ; ZK : If we define G ¼ G1; . . .f
GK ; Z ¼ Z1; . . . ; ZK ;gfg S ¼ S1; . . . ;SK ;gf and A ¼ A1; . . . ;f
AK ; c ¼ c1; ::; cK ;gfg b ¼ b1; . . . ;bK ;gf and Y ¼ Y1; . . . ; YKgf
for the eQTL model, then Figure 2, A and B, can be collapsed
to Figure 1, and Figure 2C can be collapsed to Figure 1 with Y
and G replaced by Z and S, respectively.

The same EMmethod can be used for the MAP estimate of
g: For example, in case of using summary statistics, the likeli-
hood term in the penalized likelihood to maximize is

ln pðZjS;A; gÞ ¼
XK
i¼1

ln p
�
ZK j

X
K
;AK ; g

�
:

The only change in the EMmethod is that pðci ¼ 1jZ;S;A; gtÞ
now depends on observed data from all loci. However, we can
show that pðci ¼ 1jZ;S;A; gtÞ ¼ pðci ¼ 1jZj;Sj; Aj; g

tÞ;where
j is the locus where variant i is in, as follows:

p
�
cijZ;S;A; gt

�¼ pðci; Z;S;A; gtÞ
pðZ;S;A; gtÞ

¼
pðgtÞ p�ci; Zj;Sj;Ajjgt

� QK
l¼1;l6¼j

pðZl;Sl;AljgtÞ

pðgtÞ QK
l¼1

pðZl;Sl;AljgtÞ

¼ p
�
ci; Zj;Sj;Ajjgt

�
p
�
Zj;Sj;Ajjgt

� ¼ p
�
cijZj;Sj;Aj; g

t�:

In the above, we have assumed that Zl;Sl;Al; l ¼ 1; . . . ; K are
independent from each other given g. This means the PIPs can
be calculated based on data from each locus, which reduces the
computational cost. Similarly, for the eQTL model, we can use
pðci ¼ 1jY ;G; A; gtÞ ¼ pðci ¼ 1jYj;Gj; Aj; g

tÞ to compute the
PIPs.

Penalty parameters selection using Akaike information
criterion, Bayesian information criterion, and
cross validation

In the above, we assumed parameter l is a known fixed value.
For real data analysis we need to make it data adaptive for
better model fitting. To select the best parameter, we fit the
model using different penalty parameters l and choose the
best model based on several criteria, including the Akaike
information criterion (AIC), the Bayesian information crite-
rion (BIC), and cross validation (CV). Here the use of AIC and
BIC are more heuristic than mathematically strict, however,
theymay provide easy-to-calculate ways to compare different
models. For AIC, we use the formula

AIC ¼ loglik2 dfðlÞ;

where loglik is the log likelihood of the observed data using
the MAP estimate of g, which is the first term of the penal-
ized likelihood L: df ðlÞ is the effective number of parame-
ters, which will be explained soon. For BIC, we use the
formula

BIC ¼ loglik2
ln m
2

dfðlÞ;

Figure 2 Hierarchical models of K loci incorporating functional annota-
tions. All K loci share the same annotation effects. Shaded s indicates
observed data. The definitions of symbols are the same as in Figure 1
except the extra subscript indicating the locus index. There are three
different models depending on the input data: (A) full genotype and
a single phenotype, e.g., a GWAS data set; (B) full genotype and multiple
phenotypes for each locus, e.g., a eQTL data set; (C) marginal test statis-
tics and correlations among variants for each locus, which can be derived
from either a GWAS data set or an eQTL data set.
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wherem is the number of variants. We follow the calculation
of effective number of parameters/d.f. in Park and Hastie
(2008) and Tibshirani and Taylor (2012). Specifically, for
the l2 penalty,

dfðlÞ ¼ tr
h�
ATWAþ L

�
21ATWA

i
;

where trðÞ is the trace function on a matrix, L is
a ðdþ 1Þ3 ðdþ 1Þ diagonal matrix with the diagonal entries
being l except the first one being 0. W is a diagonal matrix
with diagonal entry Wii ¼ mb i ð12mb iÞ; where m̂ i is the final
fitted PIPs. For the l1 penalty,

dfðlÞ ¼ rankðAcÞ;

where Ac is a submatrix of A, with columns selected corre-
sponding to nonzero values in g. For ENET penalty, based on
results derived by Park and Hastie (2008) and Tibshirani and
Taylor (2012), we use

dfðlÞ ¼ tr
n�

AT
c WAc þ ð12aÞL�21

AT
c WAc

o
:

Compared to AIC and BIC, CV is more time consuming but
usually achieves better performance. When we have the
genotype- and phenotype-level data, i.e., Y, G are available,
we can partition the individuals into subsets, and do CV over
different values of l (and a for ENET penalty). Whenwe only
have summary statistics, we can partition the loci into subsets
and do CV, as used in Pickrell (2014). The partition based on
loci assumes independence among loci. For CV using parti-
tioned loci, we calculate the MAP estimate of g using the
training data, and then use it to calculate the log likelihood
of the testing data. The best parameter is chosen based on the
maximumof likelihood on the testing data, i.e., themaximum
of the sum of the log likelihood of all the testing data.

Significance of individual annotations and estimating
marginal effect sizes

Because the above framework incorporates all annotations
into themodel, whether an annotation is included in the final
model and the estimated effect sizes depend on all the avail-
able annotations. For screening a large number of annota-
tions, it is common practice to first assess their marginal
association significance and effect size. The top ranked anno-
tations may provide functional insight into the underlying
mechanism, and can be further combined in the final model
(Pickrell 2014). This may produce overly optimistic results
and needs validation on external independent data sets. To
perform this type of screening, we use the likelihood-based
method by setting l to 0; therefore, no parameter selection is
needed and it can be computed quite quickly. To test the
significance of individual annotations, we choose the likeli-
hood ratio test of nested models, similarly as in PAINTOR
(Kichaev et al. 2014). Denote the log likelihood as Lnull for
the null model without any annotation. Denote the log likeli-
hood of adding a single annotation in the model as La: Then,

under the null hypothesis that the annotation is not associ-
ated with the causal states, 2ðLa 2 LnullÞ approximately fol-
lows a x2ð1Þ distribution. To verify the null distribution, we
took the eQTL data (see later eQTL data analysis) and simu-
lated 105 independent annotations from the standard normal
distribution. Supplemental Material, Figure S1 shows the
Q–Q plot under the null hypothesis, where the observed
and theoretical quantiles match well.

Methods settings

We mainly compared the performance of CAVIARBF with
PAINTOR, which can also incorporate functional annotations
and showed very competitive performance over other meth-
ods (Kichaev et al. 2014). Because PAINTOR does not provide
a direct way to simultaneously incorporate all annotations,
several different strategies of selecting informative annota-
tions were tested. We also compared our method with fgwas,
assuming one causal variant and focusing on the different
annotation selection scheme, where the Bayes factors are
almost the same (they are exactly the same under certain
settings). We implemented the forward-backward annota-
tion selection proposed in Pickrell (2014) for both fgwas and
CAVIARBF for the comparison. For the forward-backward an-
notation selection, we defined the significance for individual
annotations using the P-value threshold 0.05. This may result
in false inclusion of irrelevant annotations at the first step
simply due to randomness given the large number of annota-
tions. The later backward exclusion might reduce this effect.
However, we still see obvious inflation of PIP and decreased
performance under the null annotations using this search
scheme. Because FM-QTL only considers as few annotations
as PAINTOR, it is not compared here. All tested analysis
methods are described in Table 1.

Without any specific change of settings, here is the default
setting for CAVIARBF: We used fivefold CV, when CV is
used for penalty parameter selection. We set the maximal
number of causal variants in each locus to 3, and the
parameter sa ¼ 0:1: For CAVIARBF_ENET_CV, the grid
search set for l and a was set to 2215; 2213;

�
. . . ; 25; 102;

103; 104; 105; 106 3 0; 0:2; 0:3; 0:5; 0:7; 0:8; 1gfg for simu-
lated data sets. For real data analysis, l was searched from
222; 221; . . . ; 210g�

for a finer grid search. For CAVIARBF_
L2 _CV and CAVIARBF_L1 _CV, the search set for l was the
same as that in CAVIARBF_ENET_CV. PAINTOR version 2.1
was used in all simulations and we set the maximal number
of causal variants to 3. For lipid data analysis, we assumed
the genotype effect sizes follow a normal distribution on the
standardized genotypes (mean, 0; variance, 1), to be consis-
tent with the assumption in PAINTOR (Chen et al. 2015). But
for the eQTL analysis, we assumed the genotype effect size
follows a normal distribution on the original scale of geno-
types, i.e., the counts of the specified allele.

Data simulation and evaluation

We first simulated a large number of annotations associated
witheachvariantandsomeof themwerecorrelated.Specifically,
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10 groups of annotations were simulated. Each group had
10 correlated annotations, and annotations between groups
were independent. Annotations in a groupwere simulated from
amultivariate normal distribution with the pairwise correlation
coefficient of 0.4. Then, the probability of being causal for each
variant was simulated based on the annotations using a logistic
model. Specifically, pðci ¼ 1jA; gÞ ¼ ð1=1þ e2ðAgÞiÞ;where A
is the m3 101 annotation matrix including the intercept
and all m variants, g is the annotation effect size vector,
ðAgÞi is the ith component of Ag:Due to different annotation
effects reported (Carbonetto and Stephens 2013; Kichaev
et al. 2014; Wen et al. 2015), we considered two different
settings for the annotation coefficient g: a small number of
annotations with large effects, and a large number of anno-
tations with moderate effects. For the first setting we chose
5 out of 100 annotations with an annotation coefficient/
effect size of log5. For the second setting we chose 40 out of
100 annotations with an annotation coefficient of log1.5.
The rest of the annotations had a coefficient of zero except

the intercept. To ensure the number of causal variants in each
locus was not too large, we set the intercept in g to
logitð0:01=nlÞ; where nl is the number of variants in each
locus, 35 for multiple loci data simulation. We only kept sam-
ples where the maximal number of causal variants in each
locus is no more than 5, because having .5 causal variants
in a locusmay not be very realistic, andwe used threemaximal
causal variants in all simulations and would not like the true
underlying model to deviate from our assumption too much.
For fine-mapping analysis, similarly to the simulation in
Kichaev et al. (2014), we only focused on the loci with at least
one causal variant. Therefore, the number of loci used for
analysis was often smaller than the initial simulated loci. We
simulated two different numbers of initial loci: 20 and 100.
The average numbers of loci with 1, 2, 3, 4, and 5 causal
variants across 100 data sets were summarized in Table S1.

Nextwe simulated thegenotypes formultiple loci.Weused
HAPGEN (Su et al. 2011) to simulate genotypes, using the
CEU population from the 1000 Genomes Project (Abecasis

Table 1 Different methods compared in this study

Name format Examples
Annotation

usage Explanation

,method._non CAVIARBF_non,
PAINTOR_non,
fgwas_non

No Fit the intercept using the traditional logistic regression in the EM
method. For fgwas_non, no annotation is used

CAVIARBF_glm CAVIARBF_glm Yes Fit all annotations using the traditional logistic regression in the EM
method

CAVIARBF_,penalty._,criterion. CAVIARBF_L2_CV,
CAVIARBF_L1_CV,
CAVIARBF_ENET_CV,
CAVIARBF_ENET_AIC,
CAVIARBF_ENET_BIC

Yes Use penalized models. L2, l2 penalty; L1, l1 penalty; ENET, elastic net
penalty; ,criterion. can be AIC, BIC, and CV

CAVIARBF_fb_CV CAVIARBF_fb_CV Yes Assume one causal variant and use the forward-backward annotation
selection proposed in fgwas

,method._top,k. PAINTOR_top40 Yes First, annotations are ranked by their individual increase in likelihood
compared to the model without any annotation. Then the top k
annotations are used

,method._top,k.t PAINTOR_top10t,
CAVIARBF_top10t

Yes All annotations are ranked as in top,k.. Then we sequentially select
the annotations with additional two thresholds: (1) the absolute
correlations between already selected annotations and the
annotation to select are less than a threshold, 0.2 in our simulations;
(2) the individual P-value of the annotation to select against the null
model without any annotation is less than a threshold, 0.05 in our
simulations. This method may not be able to select exactly k
annotations due to the additional constraints

,method._step,k.t PAINTOR_step5t,
PAINTOR_step10t

Yes The difference between step,k.t and top,k.t is that before
selecting a new annotation to include, all remaining candidate
annotations are ranked based on their individual contributions in
likelihood to the model with all current selected annotations.
Specifically, let L0 be the log likelihood from the model using the
current selected annotations and Li be the log likelihood from the
model using the current selected annotations plus candidate
annotation i. Then the difference Li 2 L0 is the contribution of adding
annotation i. It starts with the candidate annotation with the largest
contribution and checks the threshold in the same way as in
top,k.t. Once an annotation is selected, all the remaining
candidate annotations will be evaluated based on the increase of
likelihood for the next selection. This method may not be able to
select exactly k annotations due to the additional constraints

fgwas fgwas Yes fgwas with annotation and the forward-backward annotation selection
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et al. 2012) as the reference panel. We first randomly sam-
pled multiple loci on chromosome 8 and made sure the dis-
tance between loci was no less than 1 cM. For each locus, we
randomly selected a region of nl common SNPs (minor allele
frequency.0.01) and simulated n=10,000 individuals. The
genotypes were additively coded as 0, 1, and 2. Quantitative
traits were simulated based on the genotypes and specified
causal variants using a linear model. Let Gn3 l be the sampled
genotype matrix of causal variants in a locus, and bl3 1 the
corresponding coefficients. Suppose Gn3 l is centered with
zero mean in each column, then the sample variance of the
genotype component of this locus is ½ð1=nÞbTGTGb�: We uni-
formly sampled a value between 1 and 2 and set it to the
sample variance and obtained a solution of b, which made
sure the variance explained by each locus was similar. The
quantitative trait vector for n individuals was sampled from
NðPr

i¼1Gibi;s
2
e Þ; where r is the total number of loci and Gi

and bi are the causal genotype matrices and coefficients, re-
spectively. We set s2

e according to the total proportion of
variance explained (PVE) by all loci. Specifically, we used
the following definition of PVE (Guan and Stephens 2011;
Zhou et al. 2013):

PVE ¼ v
vþ s2

e
;

where v ¼ svðPr
i¼1GibiÞ: Function svðÞ is the sample vari-

ance, i.e., svðxÞ ¼ ð1=nÞPn
i¼1ðxi2xÞ2;where x is a vector with

each component denoted by xi; and x is the mean of all values
in x. Therefore s2

e ¼ ðð12PVEÞ=PVEÞv: We set PVE ¼ 0:25
for 100 initial loci and PVE ¼ 0:05 for 20 initial loci. Note
that the way we simulated genotype effects and the traits
were different from that in Chen et al. (2015). Here we did
not enforce the noncentrality parameters of causal variants to
be in a certain range, which may not be easy to control when
simulating a large number of loci. Similar as in Kichaev et al.
(2014), we also did not require a significance threshold
P-value of 5 3 1028 for each locus.

One interesting question is whether we gain much by
incorporating annotation information if we only have one
GWAShit,which isnotuncommon in realdata.Toaddress this
question, we also simulated 100 data sets with only one locus.
We set PVE ¼ 0:01 and nl ¼ 250: The simulation was the
same as above except the following: When simulating 40 in-
formative annotations with the effect size log1.5, the inter-
cept was set to logitð0:005=nlÞ;which ensured the number of
causal variants was not too large. The total numbers of data
sets with 1, 2, 3, 4, and 5 causal variants across 100 data sets
were 31, 28, 21, 16, and 4, respectively, for five informative
annotations. The distribution of causal variants was similar
for 40 informative annotations.

We simulated 100 data sets for each scenario: two settings
for annotation effect sizes and two settings for initial number
of loci. To compare different methods, we calculated the
proportion of causal variants included among 100 data sets
when selecting the top SNPs ranked by PIPs.

We also simulated binary annotation with 100 initial loci
when comparing CAVIARBF with fgwas. We first simulated
the continuous annotations as described above and then di-
chotomized them into binary annotations using a random
threshold. Everything else was the same as simulating con-
tinuous annotations. We also simulated scenarios under the
null where no annotation was informative. The data were
simulated in the same way as that with binary annotations
except that the annotation effect size was zero.

Lipid data

The lipid data provides the meta-analysis results on four
phenotypes: total cholesterol (TC), low-density lipopro-
tein cholesterol (LDL), high-density lipoprotein cholesterol
(HDL), and triglycerides (TG) (Teslovich et al. 2010). To in-
clude as many SNPs as possible in the analysis, we down-
loaded the imputed results using ImpG (Pasaniuc et al.
2014) from http://bogdan.bioinformatics.ucla.edu/software/
impg/. SNPs with potential ambiguous allele coding, i.e., A/T
or C/G, and SNPs with a meta-analysis sample size of,80,000
were removed before applying ImpG. We extracted the hit
regions using a 100-kbwindow, the same sized region as used
in the previous analysis (Kichaev et al. 2014), with the
reported lead SNPs (Teslovich et al. 2010) in the center.
We excluded several hit regions where SNPs had high corre-
lations (.0.9 calculated using EUR populations from the
1000 Genomes Project) but showed large differences in Z
statistics. In the end, we had 30 hit regions for LDL, 41 for
HDL, 45 for TC, and 26 for TG.

Annotations used for lipid data

Wedownloaded the same annotation used in a previous study
(Pickrell 2014) from https://github.com/joepickrell/1000-
genomes. In brief, there are 451 annotations, where 450
are binary and only 1 is quantitative [distance to the nearest
transcription start site (TSS)]. The annotations are mainly
maps of DHSs in a wide range of primary cell types and cell
lines. It also includes the predicted genome segmentations
from six ENCODE cell lines (Hoffman et al. 2013). We nor-
malized the quantitative annotation to have a mean of 0 and
a variance of 1.

eQTL data

In the first stage, we identified all potential genes related to
prostate cancer (PrCa)-risk SNPs for each risk interval. Spe-
cifically, from146reportedPrCa-riskSNPs,we includeda total
of6324riskand in-linkage-disequilibrium(LD) tagSNPs(r2.
0.5) in 100 unique risk intervals. After quality control and
normalization, both RNA sequencing (RNA-seq) data of nor-
mal prostate tissue and genotype data were obtained from
471 individuals with European ancestry. Samples were geno-
typed using Illumina Infinium 2.5 M bead arrays and then
imputed using SHAPTIT and IMPUTE2 with reference files
from the 1000 Genomes Phase I integrated variant set. We
analyzed all SNPs in the risk intervals for association with
surrounding gene transcripts. In total there were 127,276
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SNP-gene pairs with 51 out of 100 risk intervals demonstrat-
ing a Bonferroni-significant eQTL signal (P-value , 1.96 3
10–7) and these were associated with 88 genes. More details
on the data collection and analysis can be found in Thibodeau
et al. (2015).

In the second stage, to fully identify all cis-eQTLs for these
88 target genes, we chose all candidate SNPs within 1.1 Mb
of each gene’s TSS or transcription end site positions. Because
some candidate SNPs overlapped in multiple target genes,
these violated our assumption of independence among loci.
As a proof of principle, we selected 41 target genes with non-
overlapping candidate SNPs in this analysis. The phenotype
of each target gene is the residual from regressing normalized
gene expression level on covariates: the histologic character-

istics, percent lymphocytes, percent epithelium, and 14 ex-
pression principal components. To reduce computational
burden, we first filtered candidate SNPs using a P-value
threshold of 1 3 1024 and kept a maximum of 250 SNPs
for each target gene/locus.

Annotations used for eQTL data

We collected 76 annotation tracks that may be related to cis-
eQTLs in normal prostate tissue. These include predicted
chromatin state using ChromHMM (Ernst and Kellis 2012)
in breast and prostate normal and cancer cells (Taberlay et al.
2014), DHSs from the normal and cancer prostate cells from
the ENCODE project (The ENCODE Project Consortium
2012), histone modifications such as histone acetylation,

Figure 3 Proportion of causal variants identified by different methods. The top panels correspond to 20 initial loci (�12 causal loci) and the bottom
5panels correspond to 100 initial loci (�65 causal loci). The left column corresponds to 5 informative annotations with large effects, and the right
column corresponds to 40 informative annotations with moderate effects. The numbers shown in the parentheses correspond to the average number of
SNPs required to identify 50 and 80% of the causal SNPs, respectively.
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histone methylation (He et al. 2010; Wang et al. 2011; Bert
et al. 2013; Hazelett et al. 2014), and transcription factor
bindings (Tan et al. 2012; The ENCODE Project Consortium
2012; Sharma et al. 2013; Hazelett et al. 2014; Takayama
et al. 2014). All annotations were aligned to human ge-
nome version 19 coordinates. For each category of the
predicted chromatin state from ChromHMM, we created
a binary annotation where 1 indicates the SNP is in that
category and 0 otherwise. Other annotations are quantita-
tive. For simplicity and proof of principle, we set themissing
annotation values to 0. More advanced annotation imputa-
tion (Ernst and Kellis 2015) may achieve higher imputation
accuracy. We normalized all annotations to have mean 0 and
variance 1.

Data availability

The detailed annotation list and Gene Expression Omnibus
track numbers are shown in File S2. The summary statistics
and annotation matrix used of the eQTL data are available
upon request. Software is available at https://bitbucket.org/
Wenan/caviarbf.

Results

Proportion of causal variants identified by
different methods

Results for all analyses are shown in Figure 3. The top panels
correspond to 20 initial loci and the bottom panels correspond

Figure 4 PIP calibration with 100 initial loci (�65 causal loci). The top two panels show results from CAVIARBF_ENET_CV, bottom two panels are from
PAINTOR_top5t. Left two panels, 5 informative annotations with effect size log5; right two panels, 40 informative annotations with effect size log1.5.
The x-axis shows the center of 20 bins of width 0.05. The y-axis is the proportion of causal SNPs. The blue points show the proportion of causal SNPs in
each bin. The red bars show the 95% C.I. (Wilson inversion of score statistic) of the proportion assuming a binomial distribution in each bin. 100 data
sets were used in each panel.
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to 100 initial loci. The left column corresponds to five infor-
mative annotations with large effects, and the right column
corresponds to 40 informative annotations with moderate
effects. CAVIARBF applied using the ENET penalty with CV
(CAVIARBF_ENET_CV) is the most robust and among the best
methods across all scenarios. When the number of informative
annotations is small and their effects are large, CAVIARBF
using the ENET penalty usually has similar performance as
that using the l1 penalty. On the other hand, when the number
of informative annotations is large and their effects are mod-
erate, CAVIARBF using the ENET penalty usually has similar
performance as that using l2 penalty. This is consistent with the
characteristics of these penalties (Tibshirani 1996; Zou and
Hastie 2005). As expected, for both CAVIARBF and PAINTOR,
including annotations increases the probability of identify-
ing the causal variants. CAVIARBF_glm, which uses only the
MLE without any penalty term when incorporating the
annotations, has much lower accuracy compared to all pe-
nalized models, sometimes even lower than CAVIARBF_non
(Figure 3, top two panels). This demonstrates the overfit-
ting problem when fitting a large number of annotations
without regularization. The same problem can be observed
for PAINTOR. For example, PAINTOR including the top
40 annotations (PAINTOR_top40) has worse performance
than PAINTOR applied with no annotation (PAINTOR_non)
in the top left panel. This shows the importance of using
penalties in the model when incorporating a large number
of annotations. There is no single best annotation selection
method for PAINTOR; the performance depends on the
number of loci and the number of informative annotations.
PAINTOR_top5t and PAINTOR_top10t appear to be good
options in general, even though when the number of infor-
mative annotations and loci are large (bottom right panel),

simply choosing the top 40 annotations (PAINTOR_top40)
achieves the best result for PAINTOR. The advantage of
CAVIARBF_ENET_CV over PAINTOR is larger when the
number of informative annotations is large. This illustrates
the benefit of incorporating all annotations with regulariza-
tion instead of only using the top annotations. When no
annotation is used, CAVIARBF has slightly better perfor-
mance than PAINTOR, although the magnitude of differen-
ces varies among different scenarios.

PIPs calibration

Toassess theaccuracyof estimatedPIPs,weputSNPs intobins
according to their PIPs and then compared the proportion of
causal SNPs in each bin with the center PIP of that bin (Guan
and Stephens 2011). Figure 4 shows the results using the
data sets with 100 initial loci. Note that the initial loci include
all causal and noncausal loci. The final data sets used in
testing include only causal loci (Table S1). This follows the
pattern of simulation used in PAINTOR (Kichaev et al. 2014).
The left two panels represent the scenario of five informative
annotations with an effect size of log5, the right two panels
represent the scenario of 40 informative annotations with an
effect size of log1.5. PIPs from CAVIARBF_ENET_CV, the top
two panels with different annotation patterns, are calibrated
well in general; while PIPs from PAINTOR_top5t, the bottom
twopanels, are overestimated. PIPs fromCAVIARBF_ENET_CV
show some downward bias in the middle, e.g., from 0.2 to 0.5,
resulting in conservative PIPs. However, this is preferable to
upward bias which results in overly optimistic PIPs. When
there are a large number of annotations with moderate
effects (top right), CAVIARBF_ENET_CV shows a small up-
ward bias, e.g., from 0.7 to 0.9. PAINTOR_top5t shows con-
sistent upward bias, which is larger in the middle and

Figure 5 Proportion of causal variants identified by CAVIARBF and fgwas. The left panel corresponds to 5 informative annotations with large effects,
and the right panel corresponds to 40 informative annotations with moderate effects. The numbers shown in the parentheses correspond to the average
number of SNPs required to identify 50 and 80% of the causal SNPs, respectively. CAVIARBF_ENET_CV_c3 assumes three causal variants.
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becomes smaller when PIPs are close to one. We note that the
number of loci harboring at least one causal variant has an
influence on the calibration and accuracy of PIPs. Figure S2
and Figure S3 show the results for 40 and 20 initial loci,
corresponding to �25 and 12 loci on average harboring at
least one causal variant (Table S1), respectively. For these
small numbers of loci, even though CAVIARBF_ENET_CV al-
ways shows better calibration than PAINTOR_top5t, there
exists upward bias, e.g., in the range of 0.6–0.9. Therefore,
when incorporating annotations and the number of loci har-
boring at least one causal variant is,20, we need to interpret
the PIPs with caution and consider the potential upward bias.
We discuss potential sources of these biases in the Discussion
section.

Comparison with fgwas assuming one causal variant

To make sure the Bayes factors were equivalent, we set W in
fgwas to 0.01, sa to 0.1, and SNP variance as the weight input
in CAVIARBF. A 10-fold CV was used for CAVIARBF as in
fgwas. Figure 5 shows the results. When no annotation was
used, CAVIARBF_non and fgwas_non had the same perfor-
mance (CAVIARBF_non is overlapped and not visible). This
also reflects their equivalence in Bayes factors. When there
were five informative annotations with large effects (left
panel), fgwas and CAVIARBF_ENET_CV showed similar
results when the number of selected SNPs was small, and
fgwas was slightly better when the number of selected SNPs
was large. When there were 40 informative annotations with
moderate effects (right panel), CAVIARBF_ENET_CV showed
better performance than fgwas. CAVIARBF_fb_CV uses the
same forward-backward annotation selection scheme as in
fgwas. The performance was similar to fgwas in general, even
though CAVIARBF_fb_CV was slightly better when the num-
ber of selected SNPs was large. The reason is not clear to us. It

might be due to a different optimization, where CAVIARBF
uses the EMmethod and fgwas uses a gradient search. In both
annotation scenarios, CAVIARBF_ENET_CV_c3, assuming three
maximal causal variants, showed much better performance
than those assuming one causal variant. The forward-backward
annotation selection was faster than CAVIARBF_ENET_CV. It
might be a good option when CAVIARBF_ENET_CV takes too
much time or we know that only a small portion of annotations
are informative among candidate annotations.

Performance under null annotations

Figure 6 (left panel) shows the performance of PAINTOR
and CAVIARBF. CAVIARBF with different penalties showed
similar or slightly decreased performance compared with
CAVIARBF_non. CAVIARBF_ENET_CV performed similarly
to CAVIARBF_non in terms of ranking causal variants when
there were no informative annotations. On the other hand,
the performance of PAINTOR_top5t or PAINTOR_top10t was
far poorer than PAINTOR_non. Figure 6 (right panel) shows
the comparison between fgwas and CAVIARBF assuming one
causal variant. CAVIARBFwith different penalties had similar
performance, but fgwas had decreased performance com-
pared to fgwas_non. Figure S4 shows the result of PIP calibra-
tion. Assuming threemaximal causal variants, CAVIARBF_non
(top left) shows good calibration, and CAVIARBF_ENET_CV
(top right) has some inflated PIP estimation. The pattern is
similar for CAVIARBF assuming one causal variant (middle
panels). For fgwas without annotations, it shows good cal-
ibration (bottom left), however, when null annotations are
included (bottom right), the PIP is more inflated than
CAVIARBF. We also compared the number of SNPs with
PIP .0.9. Figure S5 (top panel) shows the histogram of the
difference between CAVIARBF_ENET_CV and CAVIARBF_non.
Out of 100 data sets, 68 had exactly the same number between

Figure 6 Proportion of causal variants identified when the annotation effect size is zero. The left panel shows comparison between PAINTOR and
CAVIARBF assuming three maximal causal variants. The right panel shows comparison between fgwas and CAVIARBF assuming one causal variant.
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CAVIARBF_ENET_CV and CAVIARBF_non. There are only
8 out of 100 data sets where CAVIARBF_ENET_CV has more
than three SNPs than CAVIARBF_non. Given that the average
number of causal variants was 50, the increase of the number
of SNPs .0.9 for CAVIARBF_ENET_CV under the null was
either zero or very small. We also compared the number of
SNPs that reached 90% of the expected causal variants
(called “90% confidence set” as in Table 2 in Kichaev et al.
2014, although it is not much related to a confidence level or
a credible set if the number of causal variants in each locus is
more than one). Figure S5 (bottom panel) shows the histo-
gram of the difference. Out of 100, 40 had exactly no differ-
ence. However, there were also �36 data sets with
a reduction of SNPs.30 by CAVIARBF_ENET_CV. Therefore,
the reduction of SNPs by the current implementation of
CAVIARBF_ENET_CV does not provide convincing evidence of
the informativeness of annotations. After examination of the
difference between CAVIARBF_non and CAVIARBF_ENET_CV,
we conclude this is due to falsely choosing a small penalty
parameter instead of a large penalty parameter, even though
the CV likelihood increased very little. Better ways to avoid
this may be useful, such as choosing the largest penalty
that achieves similar CV likelihood as the maximal CV
likelihood.

Comparison of AIC, BIC, and CV for penalty
parameters selection

We also compared performance using different model criteria
including AIC, BIC, and CV (Figure S6). The performances of
CV are better than that of using AIC or BIC. In terms of com-
puting time, CV is more computationally intensive than AIC
or BIC. Even though AIC and BIC are not the best options,
incorporating annotations using AIC or BIC can still achieve
improved performance than that without annotations. For
example, the performance of methods using AIC is consis-
tently better than CAVIARBF_non. In most situations, the
performance of methods using AIC is better than or similar
to those using BIC, which are usually close to CAVIARBF_non.
This may be due to too much penalization in BIC. The only
exception is when the number of informative loci is 5 and the
total initial loci is 100 (bottom left panel), formethods using l1
or ENET penalties, the performance using BIC is better than
that using AIC.

Performance when there is only one GWAS hit

Figure 7 shows the results incorporating annotations when
there is only one locus of interest. Because CV partitions loci,
it requires at least two loci, so only AIC or BIC can be used for
parameter selection. There is not much difference between
CAVIARBF_non and CAVIARBF using annotations. This is
reasonable because the number of causal variants in a single
locus is very small, no more than 5, even though the number
of noncausal variants is large. The information from the cau-
sal/noncausal contrast is limited, which makes it hard to de-
termine informative annotations and make use of them. It is
similar to the situation where there are only a few cases but

a large number of controls in a logistic regression, in which
case it is difficult to estimate the effects of covariates or de-
termine their significance. And this is exactly what happens
in the computation: for each iteration of the EM method,
a logistic regression is fitted with the PIPs as the outcome
and annotations as the covariates. Because PAINTOR uses
the MLE without regularization, simply choosing a large
number of annotations, e.g., PAINTOR_top40, severely dete-
riorates the performance. Even with careful screening of
annotations considering correlation and significance levels,
e.g., PAINTOR_top10t or PAINTOR_step10t, the perfor-
mance can still be much worse than that using no annota-
tions. This also illustrates the advantage of the proposed
penalized model or Bayesian framework: it is adaptive to
the information available in the annotation. When there is
very little information in the annotation, the penalized frame-
work has similar results as that using no annotation. When
there is enough information in the annotation, the penalized
framework can use it and achieve better performance.

Fine mapping when the true correlation matrix is
not available

Sometimes only the marginal Z statistics resulting from asso-
ciation analysis are available, for example, meta-analysis
results based onmarginal Z statistics of multiple studies with-
out direct access to the underlying genotype data. If we as-
sume there is at most one causal variant for each locus,
CAVIARBF reduces to the ABF (Wakefield 2009). Under this
assumption, both CAVIARBF and PAINTOR do not need the
correlation matrix. Alternatively we can choose a reference
population similar to the population being studied, e.g., from
the 1000 Genome Project, and use the correlation calculated
from the reference population as an approximation. Applying
penalization/shrinkage on the correlation matrix may also
improve the performance (Wen and Stephens 2010; Chen
and Schaid 2014; Pasaniuc et al. 2014). Specifically in our
simulation, we added a small positive value to the main di-
agonal of the correlation matrix calculated from the haplo-
types of 379 EUR subjects in the 1000 Genome Project. We

Table 2 Computing time of different methods in seconds

PAINTOR CAVIARBF fgwas

c = 1

PAINTOR_non 0.46 CAVIARBF_non 1.8 fgwas_non 0.2
PAINTOR_top10t 50 CAVIARBF_top10t 259 fgwas 454

CAVIARBF_L2_CV 1,341
CAVIARBF_L1_CV 1,789
CAVIARBF_ENET_CV 10,727

c = 3

PAINTOR_non 9 CAVIARBF_non 10
PAINTOR_top10t 1151 CAVIARBF_top10t 621

CAVIARBF_L2_CV 3,126
CAVIARBF_L1_CV 6,541
CAVIARBF_ENET_CV 46,184
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empirically set this positive value to 0.2; using other values
showed similar conclusion.

To compare different options for the unknown correlation
matrix, we simulated data sets as described above using
40 initial loci and set the PVE to 0.1. In total, 100 data sets
were simulated for each type of annotation setting and �25
loci on average harboring causal variants were generated
(Table S1). This number of loci matches better with that of
the lipid datawewill analyze later than using 20 or 100 initial
loci.

We used either one or three maximal number of causal
variants, denoted by c1 or c3, respectively. Results are shown
in Figure 8. The left two panels correspond to five informative
annotations with an effect size of log5, and the right two
panels correspond to 40 informative annotations with an
effect size of log1.5. We first compare different options of
PAINTOR and CAVIARBF using the top10t strategy (the top
two panels). Unsurprisingly, for both CAVIARBF and PAINTOR,
using the true correlation matrix (CAVIARBF_top10t_c3 and
PAINTOR_top10t_c3) perform the best compared to other
options. When the true correlation matrix is not available,
CAVIARBF using a well-matched reference panel with shrink-
age (CAVIARBF_top10t_c3_EUR0.2) achieves the best per-
formance. Using the shrinkage on the reference correlation
matrix significantly improves the performance compared to
no shrinkage (CAVIARBF_top10t_c3_EUR). Even though
assuming at most one causal variant is not optimal, it is
better than using the reference panel without shrinkage.
This can be useful if a well-matched reference panel is not
available. For the same option, CAVIARBF has similar or
slightly better performance than PAINTOR. Next we com-
pare the top10t strategy with ENET using CV (the bottom
two panels). CAVIARBF using the ENET to incorporate all

annotations (CAVIARBF_ENET_CV_c3_EUR0.2) further improves
the performance of CAVIARBF_top10t_c3_EUR0.2, and is very
close to the performance assuming known correlation matrix
(CAVIARBF_ENET_CV_c3).When assuming at most one causal
variant, ENETusing CV (CAVIARBF_ENET_CV_c1) is in general
still better than the top10t strategy (CAVIARBF_top10t _c1).
We noted that PAINTOR 2.1 uses a new default strategy
of setting the noncentrality parameters (NCP). Switching
to the old setting of NCP showed a slight improvement but
did not change the general pattern of the results.

Figure 9 shows the PIP calibration of CAVIARBF_ENET_
CV_c3_EUR0.2 (two top panels), CAVIARBF _ENET_CV_c1
(two middle panels), and PAINTOR _top10t _c1 (two bottom
panels). The left column corresponds to five informative
annotations with effect size log5, and the right column cor-
responds to 40 informative annotations with an effect size of
log1.5. In general, CAVIARBF_ENET_CV_c3_EUR0.2 and
CAVIARBF _ENET_CV_c1 show slightly better calibration than
PAINTOR _top10t _c1, especially when the annotation’s effect
size is moderate (the right column). The PIP of CAVIARBF_
ENET_CV_c3_EUR0.2 and CAVIARBF_ENET_CV_c1 is a little
inflated when its value is .0.5. For high PIPs, e.g., PIP .0.95,
PIPs of all three methods are closer to the true proportion of
causal variants in the data sets.

In summary, it is best to use the true correlation matrix
when it is available. When the true correlation matrix is not
available but there is a well matched reference panel, the
correlation matrix from the reference panel with shrinkage
achieves the best performance. To find a well-matched refer-
ence panel, we can use the continental populations from the
1000Genomes Project, e.g., matching sampleswith European
ancestry with the EUR population. When the (imputed) geno-
types of a subsample are available, we can use correlations

Figure 7 Proportion of causal variants identified when there is only one locus. The left column corresponds to 5 informative annotations with large
effects, and the right column corresponds to 40 informative annotations with moderate effects. The numbers shown in the parentheses correspond to
the average number of SNPs required to identify 50 and 80% of the causal SNPs, respectively.
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computed from the subsample as an approximation of that
from the full data. Otherwise, assuming at most one causal
variant and using ENET to incorporate all annotations seems
to be the current best practice.

Estimated annotation effect sizes and bootstrap-based
confidence intervals

Figure S7 shows the distribution of estimated annotation
effect sizes averaged over 100 data sets for CAVIARBF_
ENET_CV. For null annotations, the median of the estimate
is close to zero with both positive and negative variations; for

informative annotations, the estimate is more likely have the
correct sign but with shrinkage of the effect size. It is clear
that the estimated coefficients reflect the underlying annota-
tion status in the averaged plot. However, in real data anal-
ysis, we need to distinguish random variation from true
nonzero annotation effect size. We tried to use a bootstrap
method to estimate the confidence interval of estimated
annotations effect sizes. Specifically, we resampled the loci
with replacement and calculated the confidence interval us-
ing the percentile method. Even though bootstrap-based con-
fidence intervals can be problematic for penalized models

Figure 8 Proportion of causal variants identified with and without the true correlation matrix or with reference correlation matrix. The two panels on
the left correspond to 5 informative annotations with effect size log5, and the two on the right correspond to 40 informative annotations with effect size
log1.5. The numbers shown in the parentheses correspond to the average number of SNPs required to identify 50 and 80% of the causal SNPs,
respectively. c3 and c1 indicates that the maximal number of causal variants is 3 or 1, respectively. EUR means using the correlation matrix calculated
from the EUR population in the 1000 Genomes Project and EUR0.2 means adding 0.2 to the main diagonal of the correlation matrix calculated from the
EUR population.
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Figure 9 PIP calibration of CAVIARBF _ENET_CV_c3_EUR0.2 (two top panels), CAVIARBF _ENET_CV_c1 (two middle panels), and PAINTOR _top10t_c1
(two bottom panels). c3 and c1 indicates that the maximal number of causal variants is 3 or 1, respectively. EUR0.2 means adding 0.2 to the main
diagonal of the correlation matrix calculated from the EUR population. The left column of panels, 5 annotations with effect size log5; the right column of
panels, 40 annotations with effect size log1.5. The bins and calculation of C.I.s are the same as in Figure 4.
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(Kyung et al. 2010), we still tried to assess how helpful it could
be for our model. Table S2 shows the coverage of 90% boot-
strap confidence intervals based on 20 data sets and averaged
over different categories of SNPs. For five informative annota-
tions with large effects, the coverage for nonnull SNPs does
not reach the specified level. One challenge is the biased
(shrunken) estimation resulting from penalized models. For
40 informative annotations, the coverage for nonnull SNPs is
close to the nominal. However, it can be hard to distinguish the
nonnull from null annotations based on the confidence inter-
vals. One potential reasonmay be the small effect sizes. Figure
S8 shows the individual bootstrap confidence intervals for
each SNP. In our applications in this article, we simply rank
annotations based on the size of the effects (corresponding to
the standardized annotations). Better ways to rank the anno-
tations and distinguish between null and nonnull annotations
will need further investigation. For example, a fully Bayesian
approach might provide a valid interval (credible interval).

Computing time

Table 2 shows the computing time of each method on a sim-
ulated data set with 34 loci, each with 35 SNPs, and
100 annotations. The central processing unit is Intel(R)
Xeon(R) E5-4640 2.40 GHz. For CAVIARBF with penalized
models, 10-fold CV was used. The parameter search space
was the same as in the simulation. Because CAVIARBF is now
provided in an R package using Rcpp to interfacewith the C++
code, it may appear slower when the R code takes a large
portion of the time. This might explain that CAVIARBF_top10t
is slower than PAINTOR_top10t for onemaximal causal variant
but faster for three maximal causal variants. When a penal-
izedmodel is applied, CAVIARBF takesmuch longer than fgwas,
but is still practical for fine mapping. For example, assuming
three maximal causal variants in each locus, CAVIARBF_
ENET_CV takes �13 hr to finish. Application of the sampling-
based methods instead of exhaustive enumeration of causal
configurations can further reduce the computing time (Benner
et al. 2016).

Lipid data fine mapping

The lipid meta-analysis summary statistics have been used in
previous studies for either improving the power of GWAS
discovery (Pickrell 2014) or fine mapping (Kichaev et al.
2014). Therefore it is natural to test our proposed method
on this data set and compare it with other methods (see
Methods for more details). After some initial investigation
of the marginal Z-test statistics from meta-analysis and the
correlationmatrix fromEURpopulation in the 1000Genomes
Project, we found that there are inconsistencies, see more in
Discussion. To alleviate spurious findings due to mismatched
Z statistics and the LD matrix, we set the maximal number of
causal variants to 1, therefore not influenced by the potential
mismatches. The sample sizes for each variant are relatively
stable, ranging from 80,000 to �100,000. Therefore we sim-
ply set the sample size parameter to 80,000 for CAVIARBF;
setting to 100,000 showed similar results. Table 3 shows the Ta
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top 10 ranked annotations by different methods for HDL trait
and ranked by the absolute value of the standardized coef-
ficients from CAVIARBF_ENET_CV. The top-ranked annota-
tions are generally different among different methods. For
example, Repressed (k562), a repressed region in the k562
cell line, is ranked as the second top annotation by CAVIARBF_
ENET_CV and included by CAVIARBF_top10t, but not by
other methods. DHSs in the fMuscle (arm) cell line is top
ranked by all methods considered. Among the top 10 ranked
annotations by CAVIARBF_ENET_CV, Repressed (k562),
Repressed (hepg2), Transcribed (k562), Repressed (hela),
DHSs (fetal large intestine), and DHSs (fetal muscle), are
also identified as top annotations in Pickrell’s results
(Pickrell 2014).The effect sizes from CAVIARBF_ENET_CV
are much smaller than that from fitting each annotation
individually. This is because the effect size from CAVIARBF_
ENET_CV is the additional effect after accounting for other
correlated annotations. The penalization used in the model
also shrinks the effect size. Due to the correlation among
annotations, top annotations from the top10t strategy are
in general not the same as the top 10 annotations by in-
dividual P-values. For CAVIARBF and PAINTOR, top anno-
tations and annotations from the top10t strategy are
similar, showing three common annotations with similar
effect size. We note that the top annotations in Table 3 are
not all the same as those from Figure 1 in Pickrell (2014)
or as those in Table 6 from Kichaev et al. (2014). This may
be due to several differences among the analyses: First,
the methods used are different, even though they share
some similarities. Second, the final data sets used for fine
mapping are different. In Pickrell (2014), all regions were
used to fit the model no matter whether there were signif-
icant signals. Even though both our and the analyses of
Kichaev et al. (2014) were restricted to regions showing
significant signals, the regions selected were different;
41 regions in our analysis vs. 37 in Kichaev et al. (2014), and
the maximal number of causal variants assumed may also
differ. The individual annotation results for LDL, TC, and TG
can be found in File S1.

Next we compared the top ranked variants by different
methods (Table 4). CAVIARBF with and without annota-
tions (CAVIARBF_ENET_CV vs. CAVIARBF_non) do not
show much difference, even though for rs2923084, the
PIP is �0.95 from CAVIARBF_ENET_CV and 0.86 from
CAVIARBF_non. CAVIARBF_ENET_CV has similar PIPs as
CAVIARBF_top10t for most SNPs; but for rs1800961, the
PIP is �0.06 from CAVIARBF_ENET_CV but �0.58 from
CAVIARBF_top10t. This is likely due to overoptimism of
the top10t strategy. To illustrate this, we analyzed the sim-
ulateddata setswithmoderate annotationeffects and40 initial
loci, setting the maximal number of causal variants to 1. We
calculated the percentage of causal variants where both PIPs
from CAVIARBF_non and CAVIARBF_ENET_CV fell within
0–0.1 and PIPs from CAVIARBF_top10t fell within 0.5–0.7.
The percentage is 0.23 (17 out of 74). When adding the condi-
tion that PAINTOR_top10t fell within 0.8–1 and PAINTOR_non Ta
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fell within 0–0.2, the percentage is 0.15 (7 out of 47). This
illustrates the overoptimism pertaining to the top10t strat-
egy. On the other hand, for SNPs where both PIPs from
CAVIARBF_non and CAVIARBF_top10t fell within 0–0.1
and PIPs from CAVIARBF_ENET_CV fell within 0.5–0.7,
the percentage of causal variants is 0.57 (29 out of 51),
calibrated well with the PIP range. Comparing CAVIARBF
and PAINTOR, for some SNPs there are large PIP differences

even though in general PIPs are similar. For example, for
rs2923084, the PIP from CAVIARBF_non is �0.86, but it is
�0.20 from PAINTOR_non. Since the causal state needs
confirmation from laboratory experiments, we cannot con-
clude which method is more accurate on this SNP, but being
aware of the differences may be helpful for future applica-
tion and comparison. Results for LDL, TC, and TG can be
found in Table S3.

Figure 10 P-values, PIPs, annotations,
and the LD for cis-eQTL analysis of
SFXN2. The green lines are PIPs. The
LD between the peak SNP and the
remaining SNPs are color coded in the
top panel. The three middle panels illus-
trated the annotations for individual
SNPs. The bottom diagonal matrix
shows the LD pattern among all SNPs
in this locus.
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cis-eQTL fine mapping

The objective of this study was to identify cis-eQTLs for genes
related to PrCa risk SNPs (Thibodeau et al. 2015) using gen-
otypes and RNA-seq data from normal prostate tissue samp-
les from 471 individuals. Figure 10 shows the advantage of
using PIPs instead of P-values in identifying cis-eQTLs on
gene SFXN2. It is difficult to identify the potential causal
variants from the P-values due to the large number of SNPs
in LD. The green lines show the PIPs by applying our pro-
posed method by taking both the LD information and the
annotation information into account. It is clear that there
are at least two highly likely causal variants influencing the
gene expression. Actually there are three potential causal
variants, two of which are very close in position.

We set themaximal number of causal variants to 3 because
many loci showmultiple eQTL signals. This can be illustrated
using the sum of PIPs for each loci, an estimation of expected
causal variants. Figure S9 shows the histogram of added final
PIPs (using CAVIARBF_ENET_CV) for each target gene,
which supports the multiple eQTL signal assumption for
many loci.

We first compare estimated PIPs using approximate and
exact calculations on data sets showing different proportions
of variance explained in gene expression traits. We selected
two target genes, onewith a relatively small PVEby individual
variants and the other with a large PVE. Themaximal number
of causal variants was set to 3. We then ran different fine-
mapping options/methods with results displayed in Figure
S10. When variants explain a small proportion of the vari-
ance (left panel), methods using the approximation, such as
PAINTOR and CAVIARBF using the approximate calculation,
have similar PIPs as CAVIARBF using the exact calculation. In

this scenario, PIPs are also not sensitive to the parameter of
sa: However, when variants explain a large proportion of the
variance (right panel), PAINTOR and CAVIARBF using the
approximation have similar PIPs, but their results are differ-
ent from CAVIARBF using the exact calculation. PIPs are also
sensitive to the parameter of sa: Therefore for all eQTL fine
mapping, we did not run PAINTOR and used CAVIARBF with
the exact calculation and chose a set of values for sa (0.1, 0.2,
0.4, 0.8, 1.6) to calculate the average Bayes factors, similar to
those used in Wen et al. (2015).

The distance to TSS has been shown to associate with the
enrichment of cis-eQTLs (Gaffney et al. 2012; Wen et al.
2015). As a validation, we tested the significance of this an-
notation in our eQTL data. Surprisingly, the P-value for the
distance to the TSS is 0.3215, which appears inconsistent
with previous findings. Plotting the final fitted PIPs vs. the
distance to the TSS (Figure S11) and further examination
provide an explanation. There is an obvious decreasing pat-
tern for PIPs when the distance to the TSS is ,200 kb, how-
ever, PIPs are almost flat further away. In other words, the
size of the region selected around the TSS can influence the
significance test. We verified this by using the same fitted
PIPs but picking SNPs within different distances from the
TSS. The P-values from linear regression testing are 0.311
for the threshold of 1.1 Mb, 0.0624 for 200 kb, 0.000304
for 100 kb and 0.0091 for 50 kb. This is consistent with
previous significant results using 100 kb to the TSS as the
boundary of selected regions (Gaffney et al. 2012;Wen et al.
2015).

Table 5 shows the results of top-ranked annotations by
different methods and sorted by the magnitude of the esti-
mated effect size by CAVIARBF_ENET_CV. Androgen recep-
tor (AR) binding sites and DHSs in LNCaP cells are the top

Table 5 Top-ranked annotations for the eQTL study

Data ID Cell line Type

CAVIARBF _ENET_CV CAVIARBF _Individual_Annotation
CAVIARBF_top10t

g Standardized g P-value g g

GSM698597 LNCaP AR 0.0760 0.5885 2.16 3 10203 0.4260 0.2595
GSM736565 LNCaP DHS 0.1193 0.1529 2.30 3 10209 0.2565 0.2272
GSM686926 LNCaP FoxA1 20.0667 20.1112 5.76 3 10201 20.1945 0.0000
GSE57498 MCF7 ChromHMM.Enhancer 20.0847 20.1085 5.47 3 10202 20.5081 0.0000
GSE57498 PC3 ChromHMM.Enhancer 0.0836 0.1005 4.33 3 10202 0.1996 0.0000
GSM989640 LNCaP NKX3-1 0.1077 0.0963 2.97 3 10205 0.2423 0.0000
GSM1410771 VCaP RUNX1 0.0808 0.0955 3.37 3 10204 0.2369 0.0000
GSE57498 PC3 ChromHMM.Heterochromatin 20.0820 20.0941 3.45 3 10203 20.3140 20.2469
GSM816637 LNCaP DHS 0.0688 0.0930 1.26 3 10203 0.1303 0.0000
GSM736603 LNCaP DHS 0.0691 0.0849 2.99 3 10208 0.2658 0.0000
GSE57498 HMEC ChromHMM.Repressed 0.0591 0.0657 3.65 3 10202 0.1652 0.1612
GSM686935 LNCaP H3K4me3 0.0620 0.0641 1.28 3 10203 0.2240 0.1453
GSE57498 MCF7 ChromHMM.Transcribed 0.0532 0.0635 2.51 3 10202 0.2184 0.1576
GSE57498 MCF7 ChromHMM.CTCF 0.0364 0.0363 2.74 3 10202 0.2229 0.1850
GSM816634 LNCaP DHS 0.0221 0.0294 1.57 3 10204 0.1662 0.0000
GSM699633 LNCaP NKX3-1 0.0204 0.0236 7.31 3 10204 0.1252 0.0000
GSM1024742 PrEC DHS 20.0073 20.0069 1.12 3 10203 0.2143 0.0000
GSE57498 PrEC ChromHMM.Promoter 20.0008 20.0009 1.76 3 10203 0.2307 0.0000

Rows in boldface font indicate the top 10 annotations ranked by different methods. CAVIARBF_ENET_CV ranks annotations based on the absolute value of coefficients,
CAVIARBF_Individual_Annotation ranks annotations based on individual P-values. LNCaP, a prostate adenocarcinoma cell line; PC3, a prostate cancer cell line; HMEC,
a normal mammary epithelial cell line; MCF7, a breast cancer cell line; PrEC, a normal prostate epithelial cell line.
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two ranked annotations by CAVIARBF_ENET_CV; where
DHSs in LNCaP cells, the second top annotation, has a P-value
of 3.43 3 10209, the smallest P-value among all annotations.
These two annotations are also selected by CAVIARBF_top10t.
Most annotations selected by CAVIARBF_top10t have a large
standardized effect size g in CAVIARBF_ENET_CV, even
though in general the annotations selected by these two
methods are not the same. Other top-ranked annotations
from CAVIARBF_ENET_CV include the enhancer region, tran-
scription factor binding sites, the heterochromatin state, the
repressed and promoter region, and histone modification
annotations. Similarly as in the lipid data, due to the correla-
tion among annotations, annotations from the top10t strategy
are in general not the same as the top 10 annotations by in-
dividual P-values. The effect sizes from CAVIARBF_ENET_CV
are also smaller than that from fitting each annotation individ-
ually. In general, the sign of the effect sizes matched well with
the function of annotations for both CAVIARBF_ENET_CV or
CAVIARBF using individual annotations. For example, the het-
erochromatin state annotation has a negative value, therefore
decreasing the probability of being eQTLs. This is intuitive
because under the heterochromatin state, DNA sequences
are tightly packed and hard to access. On the other hand,
DHSs, except one from the PrEC cell line which is very small

in magnitude (20.0073), and H3K4me3 all have positive
values, consistent with their roles of DHSs and promoting
gene regulation.

Finally, we compare the top ranked SNPs and PIPs using
different methods in Table 6. Clearly, incorporating annota-
tions increased the number of potential eQTLswith high PIPs.
There are 25 SNPs with PIP.0.9 using CAVIARBF_ENET_CV,
compared to 14 SNPs with PIP.0.9 using CAVIARBF without
annotations (CAVIARBF_non). For most SNPs listed in Table
6, CAVIARBF_ENET_CV and CAVIARBF_top10t have similar
PIPs. However, there is still a relatively large PIP difference for
SNP rs1044527, with 0.9044 from CAVIARBF_ENET_CV and
0.6407 from CAVIARBF_top10t. Given the better performance
of CAVIARBF_ENET_CV over the top10t strategy based on
simulation studies, the results from CAVIARBF_ENET_CV
may be more reliable. We further examined several SNPs
with large increase of PIPs when incorporating functional
annotations. The major annotation components are presented
in Table 7. Several SNPs only rely on one major annotation
component to increase the PIPs, e.g., rs3760511 within an an-
drogen response element (Clinckemalie et al. 2013). Other
SNPs combine multiple annotations together to improve the
PIPs. Among these SNPs, rs10486567 is reported as a risk en-
hancer affecting both NKX3-1 and FOXA-AR motifs (Hazelett

Table 6 Top-ranked variants with PIPs of different methods for the eQTL study

Chr Target gene rsid Position
Dosage
allelea z CAVIARBF_ENET_CV CAVIARBF_non CAVIARBF_top10t

5 IRX4 rs12655062 1890877 A 226.758 1.0000 1.0000 1.0000
10 SFXN2 rs2902548 104487382 T 216.385 1.0000 1.0000 1.0000
10 NCOA4 rs10993994 51549496 T 22.665 1.0000 1.0000 1.0000
17 HNF1B rs3760511 36106313 G 6.623 1.0000 0.0343 1.0000
22 TBX1 rs1978060 19749525 A 21.090 1.0000 1.0000 1.0000
2 SEPT2 rs115271170 242347614 T 29.950 1.0000 1.0000 1.0000
2 RAB17 rs13404216 238491258 A 211.072 1.0000 0.9999 1.0000
X GJB1 rs747181 70432708 A 212.501 0.9999 0.9999 0.9999
5 IRX4 rs6890484 1890577 G 6.966 0.9989 0.9960 0.9960
6 HLA-L rs114620415 31239821 G 220.153 0.9986 0.9794 0.9971
6 HLA-L rs116373865 31239296 G 223.825 0.9983 0.9782 0.9967
6 HLA-L rs114172808 31303275 G 12.760 0.9980 0.9968 0.9972
7 HOTTIP rs10486567 27976563 A 6.358 0.9967 0.1844 0.9975
2 C2orf43 rs72784331 20877436 A 7.622 0.9951 0.8203 0.9963
10 SFXN2 rs3818708 104503584 T 214.792 0.9899 0.1126 0.9985
17 HNF1B rs4430796 36098040 G 27.334 0.9881 0.0835 1.0000
21 TMPRSS2 rs8134378 42893758 A 214.832 0.9858 0.3305 0.9578
21 TMPRSS2 rs56095453 42893808 A 7.872 0.9841 0.3941 0.9756
17 FAM57A rs2644715 632686 A 11.924 0.9800 0.9542 0.9552
17 FAM57A rs2474694 618039 A 219.853 0.9643 0.7060 0.7953
4 BMPR1B rs6853490 95544718 G 210.289 0.9602 0.0319 0.9862
5 COMMD10 rs804152 115670932 C 10.097 0.9577 0.9558 0.9586
1 LOC284581 rs9438393 205782718 G 52.062 0.9500 0.6991 0.9143
2 NOL10 rs7567304 10790029 T 12.020 0.9331 0.9001 0.9329
14 SYNJ2BP rs1044527 70833819 G 13.428 0.9044 0.5466 0.6407
10 SFXN2 rs2297451 104503459 A 13.710 0.8727 0.0393 0.9808

No. of SNPs
(PIP .0.9)

25 14 24

Variants have at least one PIP .0.9 from different methods. Rows in boldface font indicate at least one method outputs PIP ,0.9. The variants are sorted by PIPs from
CAVIARBF_ENET_CV in descending order. Chr, chromosome.
a Dosage value is the count of this allele.
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et al. 2014), SNP rs8134378 was reported within an androgen
response element and reduces binding and transactivation by
the androgen receptor (Clinckemalie et al. 2013).

Discussion

In this study, we proposed a framework to systematically
incorporate a large number of annotations in association
studies. By using CAVIARBF to calculate the PIPs, the frame-
work only requires summary statistics. For quantitative traits,
when the explained variance of the traits is high, e.g., for
some eQTLs, calculating Bayes factors from the summary
statistics using approximation may produce misleading
results. Instead we derived an exact calculation. Further
investigation for binary traits with high explained variances
may be useful.

Our method shares similarities with some existing meth-
ods, but also differs significantly from them. The most signif-
icant difference is that our method is a general framework to
systematically incorporate functional annotations, and it uses
the ENET in the penalized model with CV for parameter
selection. In principle, anymethod that can output PIPswhich
take into account the prior probability of each variant being
causal can be usedwithin this framework. Compared to fgwas
(Pickrell 2014), our method results in a more robust way to
automatically select sparse annotations, it also allows multi-
ple causal variants in each locus where fgwas assumes no
more than one. The performance of fgwas is similar to that
of CAVIARBF_L1_CV, except that CAVIARBF_L1_CV does not
show decreased performance under the null annotations.
There are also other differences: fgwas only supports bi-
nary annotations or a distance model using integers, while
CAVIARBF can use any numeric annotations (binary or contin-
uous). fgwas uses a penalized likelihood in CV for the testing
fold while CAVIARBF uses the likelihood directly. Com-
pared to the top5t or top10t strategy recommended by
PAINTOR (Kichaev et al. 2014), the proposed method does
not have the dilemma of choosing the significance thresh-
old: if the P-value threshold is too stringent, we may lose
informative annotations; if it is too liberal, we may include
too many noninformative annotations. Fitting the model
with top-ranked annotations without penalization may also
result in overfitting (Pickrell 2014). FM-QTL (Wen et al.
2015) uses the full genotype data, assumes a small number
of annotations and uses the same maximum likelihood-
based method to incorporate annotations as in PAINTOR.
iBRI (Quintana and Conti 2013) uses an L2 penalty with
a fixed parameter, which may not be optimal. For PIP calcu-
lation, both FM-QTL and iBRI use an MCMC-based approach,
which may be faster when there are a relatively larger num-
ber of causal variants in a large region. Therefore, an alter-
native is to use MCMC to perform genome-wide association
analysis and fine mapping simultaneously, such as in Zhu
and Stephens (2016). There are also other sampling-based
methods showing highly reduced computing cost (Benner
et al. 2016).

The proposedmodel assumes independence among differ-
ent loci. Some eQTLs may regulate more than one gene, thus
are shared for more than one locus. This may create depen-
dencies among loci but the extent and how much it will
influence the final results are not clear. More investigation
is needed to accommodate the overlapping scenario.

When the number of loci is small, e.g., �20 loci, the esti-
mated PIP may be overly optimistic. One reason may be that
we use a point estimation (MAP) from glmnet instead of a full
Bayesian method. A full Bayesian method for the proposed
graphical model may show better calibration. Another possi-
ble cause is that CV among loci may not be very effective if the
number of loci is small. This may result in overfitting with the
grid search to tune parameters. If full genotype data are avail-
able, CV by partitioning individuals instead of partitioning
loci would be a better solution, and the assumption of inde-
pendence between individuals is much easier to satisfy than
the assumption of independence between loci. Otherwise,
better methods may be needed to tune the parameters. In the
extreme case, when the number of loci is very small, e.g., ,5,
the benefit from annotations is not likely to be obvious. In this
case we can perform fine mapping without using annotations.

When ranking annotations based on the MAP point esti-
mate of g, there is no direct quantification of the uncertainty
of this estimate. To measure the estimation variance, we can
use the bootstrapmethod by resampling the loci as previously
proposed (Kichaev et al. 2014). Because we use CV to choose
the best penalty parameters, different partitioning of the loci
may select different penalty parameters resulting in different
MAP estimates. In this case, we may need to run the CV
several times and pick the penalty parameters with the high-
est frequency, i.e., the mode of all selected penalty parame-
ters. We ran CV five times for real data application in this
paper, except the HDL data, where we ran CV 20 times to pick
the mode because several parameters show similar frequen-
cies and the mode is not very sharp.

The proposed framework can also be used to incorporate
pathway information. One simple method is to code each

Table 7 Major annotation components that largely improve the
PIPs of SNPs in the eQTL study

rsid Annotations

rs3760511 AR binding in LNCaP
rs10486567 DHS, NKX3-1 binding in LNCaP
rs3818708 DHS in LNCaP
rs4430796 AR binding peak in LNCaP
rs8134378 DHS, NKX3-1, AR binding in LNCaP, RUNX1 binding in

VCaP
rs56095453 DHS, NKX3-1in LNCaP, RUNX1 binding in VCaP
rs6853490 DHS, NKX3-1in LNCaP
rs1044527 RUNX1 binding in VCaP, NKX3-1, AR binding in LNCaP
rs2297451 DHS in LNCaP
rs2474694 DHS, H3K4me3in LNCaP, RUNX1 binding in VCaP
rs9438393 H3K4me3, DHS in LNCaP, ChromHMM.Heterochromatin

in PC3 and HMEC, ChromHMM.Promoter in PC3,
RUNX1 binding in VCaP
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pathway as an annotation, where 1 indicates the variant is
in the pathway and 0 otherwise. How much the pathway
information can improve the performance needs further
study.

In our lipid data analysis, we found inconsistencies
between the available Z statistics and the LD from the
EUR population in 1000 Genomes Project. For example,
rs2144300 and rs4846914 are in perfect LD, correlation co-
efficient is 1, in EUR. However, the meta-analysis z-scores are
9.16 and 9.442. Without using annotation and assuming one
maximal causal variant, this difference results in rs4846914
with PIP 0.61, much higher than rs2144300 with PIP 0.05,
even though it makes more sense that these two should have
the same or at least very similar PIPs. If the difference of
z-scores is not due to computing error, there are two potential
sources which may also be common for other meta-analysis
results. First, there may be other populations that show dif-
ferent LD patterns from the EUR population. To address this
problem, previous studies (Kichaev and Pasaniuc 2015; Wen
et al. 2015) have developed different ways to handle multiple
populations. Our framework can also be extended similarly,
which is an interesting future direction. Second, and more
likely to be the source, imputed genotypes or meta-analyzed
z-scores were not computed for the same set of individuals,
given that usually an r2 threshold is used for imputed geno-
types, e.g., 0.3 for the meta-analysis results (Teslovich et al.
2010). This is discussed in detail in Zhu and Stephens
(2016). Therefore, a better way is to report summary statis-
tics using all imputed genotypes without applying a thresh-
old. In our method, we assume the sample sizes are the same
or at least similar. Strictly speaking, it is not fair to compare
two SNPs if their sample size is different because the Bayes
factors depend on the sample size. However, if the sample
size difference is small, it might not influence the comparison
much.
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Appendix

CAVIARBF Reduces to the ABF When There Is at Most One Causal Variant

We derive the equivalence using the ABF Equation 3 in Chen et al. (2015). When m ¼ 1; Equation 3 reduces to

BF2 ¼ j1þ nvj2ð1=2Þexp
�
1
2
z2
h
1þ ðnvÞ21

i21
�
:

Therefore,

BF21
2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ nv
p

exp
�
2
1
2
z2

nv
1þ nv

�
:

The corresponding ABF21 (H1 vs. H0, from Equation 2 in Wakefield 2009) is

ABF21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V þW

V

r
exp

�
2
z2

2
W

V þW

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þW

V

r
exp

�
2
z2

2
W=V

1þW=V

�
:

Therefore, CAVIARBF in the casem ¼ 1 and ABF have the same form. If ðW=VÞ ¼ nv; then CAVIARBF and ABF are exactly the
same. This is the case in the application of ABF in fgwas (Pickrell 2014) when V is not available from data. For quantitative
traits, it is estimated as 1=ð2nfð12 f ÞÞ; where f is the allele frequency (this is half of the value in Equation 14 from Pickrell
2014, and is used in fgwas code). We have ðW=VÞ ¼ nW2f ð12 fÞ: The Bayes factor in CAVIARBF and fgwas are exactly the
same if v ¼ W2f ð12 fÞ: This can be done in CAVIARBF by setting sa ¼

ffiffiffiffiffi
W

p
and setting the weights to the variance of the SNP

using 2f ð12 fÞ: For binary traits, V ¼ n=½2n1n2fð12 f Þ ;� where n is the total sample size, n1 is the number of cases, and n2 is the
number of controls. Therefore W=V ¼ nn1n2=n2W2fð12 f Þ: The Bayes factor in CAVIARBF and fgwas are exactly the same if
v ¼ ½ðn1n2=n2ÞW2fð12 f Þ :� This can be done in CAVIARBF by setting sa to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2=n2W

p
and setting the weights to the

variance of the SNP using 2f ð12 fÞ: From the above derivation, we can also see that fgwas assumes the prior normal
distribution of the variant effect size on the original scale as in BIMBAM instead of the standardized scale (Chen and Schaid
2014). The only difference between CAVIARBF and ABF is that in our previous derivationwe assumed zwas a score statistic but
Wakefield assumed a Wald statistic, however, these two statistics are asymptotically equivalent under the null or small
deviation from the null, thus very similar due to the large sample size and small effects in GWAS.

Exact Bayes Factors Using Marginal Statistics for Quantitative Traits

In this section we derive the exact Bayes factors using a D2 prior (Servin and Stephens 2007), which only depends on the
marginal statistics and the correlation matrix. Suppose Xc is an n3m matrix with coded genotypes, where n is the number of
individuals and m is the number of coded columns from putative causal variants. Without loss of generality, we assume Xc is
centered, i.e., 1=n

Pn
i¼1Xcij ¼ 0;  j ¼ 1; 2; . . . ; m; where Xcij is the element of row i and column j in Xc: Let sj be the sample

variance of the jth column, i.e., sj ¼ 1=ðn21ÞPn
i¼1X

2
cij: The quantitative phenotype y is an n31 vector. We assume a linear

model as follows:

y ¼ mþ Xcbþ e; (1)

where b is the effect size and e � Nð0; 1
t InÞ: Here In denotes the n3n identity matrix. The D2 prior assumes that b has a prior

normal distribution N(0, vcð1=tÞÞ; where vc is a diagonal matrix and b and e are independent. Let v ¼


0

vc

�
; where empty

blocks are simply 0s. Then the Bayes factor using a D2 prior (Servin and Stephens 2007) can be written as:

BF ¼ n1=2jv21 þ XTXj2ð1=2Þjvcj2ð1=2Þ
"
yTy2yTX

�
v21 þ XTX

�21XTy
yTy2ny2

#2ðn=2Þ
; (2)

where X ¼ ½1; Xc ;� i.e., the augmented matrix with all 1s in the first column, y is the mean value of y. The superscript Tmeans
the transpose of the corresponding matrix or vector. Equation 2 can be further simplified to
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BF ¼ jv21
c þ XT

c Xcj
2ð1=2Þjvcj2ð1=2Þ

"
12

yTXc
�
v21
c þ XT

c Xc
�21XT

c y
yTy2ny2

#2ðn=2Þ
:

Let S be the diagonal matrix with diagonal entries sj;   j ¼ 1; . . . ; m: Then the correlation matrix of Xc is
Sx ¼ 1

n2 1S
2ð1=2ÞXT

c XcS2ð1=2Þ; therefore XT
c Xc ¼ ðn2 1ÞS1=2SxS1=2: Then we have

v21
c þ XT

c Xc ¼ ðn2 1ÞS1=2
n
½ðn21ÞvcS�21þ Sx

o
S1=2;

and

yTXc
�
v21
c þ XT

c Xc
�21XT

c y
yTy2 ny2

¼
yTXc½ðn21ÞS�2ð1=2Þn½ðn21ÞvcS�21þ Sx

o21½ðn21ÞS�2ð1=2ÞXT
c y

yTy2ny2
:

Let zj be the marginal test statistics corresponding to the jth column of Xc; denoted by Xcj; then zj ¼ b̂ j=ŝ jðXT
cjXcjÞ2ð1=2Þ; where

b̂ j ¼ ðXT
cjXcjÞ21XT

cjy; ŝ j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðn2 2ÞðyTy2 ny2 2 b̂T

j X
T
cjyÞ:

q
Because sj ¼ 1

n2 1X
T
cjXcj; we have

zj ¼
�ðn21Þsj

�2ð1=2ÞXT
cjyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n22

n
yTy2 ny2 2

�ðn21Þsj
�21

�
XT
cjy

�2or :

Then yTy2 ny2 can be written as

yTy2 ny2 ¼
�ðn21Þsj

�21
�
XT
cjy

�2�
z2j þ n2 2

�
z2j

:

Therefore we have �ðn21Þsj
�2ð1=2ÞXT

cjyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yTy2ny2

p ¼ zjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2j þ n2 2

q ;

where we have used the fact that XT
cjy has the same sign as zj: Let z* be the column vector where the jth component is

ðzj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2j þ n2 2

q
Þ; the correlation coefficient between Xcj and y; then we have:

yTXc
�
v21
c þ XT

c Xc
�21XT

c y
yTy2ny2

¼ z*T
n
½ðn21ÞvcS�21þ Sx

o21
z*:

Therefore the Bayes factor can be written using only the marginal test statistics and correlation matrix as follows:

BF ¼ j½ðn21ÞvcS�21þSxj2ð1=2Þjðn21ÞvcSj2ð1=2Þ
h
12z*T

n
½ðn21ÞvcS�21þSx

o21
z*
i2ðn=2Þ

:
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Table S1. Average number of loci with different number of causal variants across 100 simulated 
data sets. 

*
Binary annotations. 

Initial 
loci 

Informative 
annotations 

1 2 3 4 5 Total loci with 
causal variants 

20 5 7.18 3.46 1.29 0.26 0.08 12.27 
20 40 7.63 3.99 1.41 0.31 0.09 13.43 
40 5 14.78 6.82 2.45 0.62 0.21 24.88 

40 40 14.91 7.74 2.82 0.86 0.17 26.5 
100 5 37.01 17.67 5.55 1.50 0.48 62.21 
100 40 37.42 20.67 7.44 1.73 0.39 67.65 

100
*

0 30.83 7.45 1.13 0.17 0.02 39.6 
100

*
5 34.05 14.81 4.35 1.11 0.14 54.46 

100
*

40 32.43 8.56 1.76 0.27 0.00 43.02 



Table S2. Coverage of the 90% bootstrap confidence interval 

Non-null SNPs Null SNPs Overall 
5 informative annotations 0.61 0.993 0.974 
40 informative annotations 0.8725 0.988 0.942 



 
Table S3. Top ranked annotations for LDL, TC and TG traits 

chr rsid position 

dosage 
allele

*
 

imputation 
quality

**
 z 

CAVIARBF 
_ENET_CV 

CAVIARBF 
_non 

CAVIARBF 
_top10t 

PAINTOR 
_top10t 

PAINTOR 
_non 

LDL                     

11 rs964184 116648917 C 0.986 10.492 1.000 1.000 1.000 1.000 0.999 

16 rs2000999 72108093 A 1 -9.755 0.985 0.979 0.985 0.932 0.899 

5 rs6882076 156390297 C 1 -9.748 0.967 0.959 0.970 0.820 0.764 

1 rs629301 109818306 T 1 -27.854 0.966 0.968 0.987 0.968 0.928 

1 rs2479409 55504650 A 1 11.061 0.935 0.922 0.985 0.942 0.736 

20 rs6072249 39656342 G 0.943 -8.827 0.479 0.179 0.874 0.990 0.186 

TC                     

11 rs964184 116648917 C 0.986 15.739 1.000 1.000 1.000 1.000 1.000 

2 rs1260326 27730940 C 1 10.731 0.991 0.979 0.999 0.999 0.962 

16 rs2000999 72108093 A 1 -10.153 0.985 0.971 0.985 0.947 0.880 

5 rs6882076 156390297 C 1 -10.940 0.984 0.982 0.985 0.876 0.854 

2 rs7570971 135837906 A 1 -5.618 0.977 0.978 0.984 0.953 0.932 

1 rs2479409 55504650 A 1 10.136 0.958 0.926 0.981 0.927 0.724 

5 rs12916 74656539 C 1 -14.363 0.951 0.914 0.993 0.954 0.774 

1 rs629301 109818306 T 1 -24.350 0.812 0.789 0.905 0.812 0.696 

TG                     

11 rs964184 116648917 C 0.986 32.244 1.000 1.000 1.000 1.000 1.000 

15 rs138570705 44266730 A 0.924 -11.097 1.000 1.000 1.000 1.000 1.000 

2 rs1260326 27730940 C 1 24.539 1.000 1.000 1.000 1.000 1.000 

8 rs12678919 19844222 G 1 22.849 0.999 0.999 0.999 0.969 0.970 

15 rs2412710 42683787 A 1 -5.624 0.920 0.914 0.702 0.359 0.774 

10 rs2068888 94839642 A 1 5.582 0.569 0.567 0.920 0.909 0.445 
*
Dosage value is the count of this allele. 

**
This is the r2pred output from ImpG indicating the 

quality of imputed z statistics, 1 indicates the original z statistics from meta-analysis. Variants 
have at least one PIP > 0.9 from different methods. Rows in bold indicate at least one method 
outputs PIP less than 0.9. The variants are sorted by PIPs from CAVIARBF_ENET_CV in 

descending order. 
 
 
 

 
 
 
 

 
 
 
 

 
 



File S1: Annotation results for LDL, TC and TG. (.xlsx, 187 KB) 

 

Available for download as a .xlsx file at: 

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188953/-/DC1/FileS1.xlsx 
 



File S2: Annotation list and GEO track numbers for eQTL study. (.xlsx, 12 KB) 

 

Available for download as a .xlsx file at: 

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188953/-/DC1/FileS2.xlsx 
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