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Abstract

Risk assessment of congestive heart failure (CHF) is essential for detection, especially help-

ing patients make informed decisions about medications, devices, transplantation, and end-

of-life care. The majority of studies have focused on disease detection between CHF

patients and normal subjects using short-/long-term heart rate variability (HRV) measures

but not much on quantification. We downloaded 116 nominal 24-hour RR interval records

from the MIT/BIH database, including 72 normal people and 44 CHF patients. These rec-

ords were analyzed under a 4-level risk assessment model: no risk (normal people, N), mild

risk (patients with New York Heart Association (NYHA) class I-II, P1), moderate risk

(patients with NYHA III, P2), and severe risk (patients with NYHA III-IV, P3). A novel multi-

stage classification approach is proposed for risk assessment and rating CHF using the

non-equilibrium decision-tree–based support vector machine classifier. We propose

dynamic indices of HRV to capture the dynamics of 5-minute short term HRV measure-

ments for quantifying autonomic activity changes of CHF. We extracted 54 classical mea-

sures and 126 dynamic indices and selected from these using backward elimination to

detect and quantify CHF patients. Experimental results show that the multistage risk

assessment model can realize CHF detection and quantification analysis with total accuracy

of 96.61%. The multistage model provides a powerful predictor between predicted and

actual ratings, and it could serve as a clinically meaningful outcome providing an early

assessment and a prognostic marker for CHF patients.

Introduction

Congestive heart failure (CHF) is a common chronic cardiovascular syndrome along with

autonomic nervous system (ANS) abnormality of the heart [1]. Patients experience no obvious
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symptoms during its early stages. Once diagnosed, physicians still cannot provide convenient

suitable medical care based on prognosis according to the patient’s physical condition. Fur-

thermore, poor prognosis results in 30–40% of diagnosed patients dying in a year [2]. Thus,

risk assessment of CHF is essential for saving lives and money. The severity of CHF has a well-

known measurement, namely, the symptomatic classification scale of the New York Heart

Association (NYHA) [3], which has proved to be a very useful factor for risk assessment of

CHF patients [4].

According to the NYHA classification, the severity scale of heart failure depends on the

severity of symptoms [5], which are partly modulated by the autonomic nervous system. Heart

rate variability (HRV) analysis has been confirmed as a reliable and noninvasive tool in the

prognosis and risk assessment of CHF, and it is widely used to assess the influence of the ANS

on the heart [6]. HRV measurements (time/frequency domain and non-linear) of 5-minute/

24-hour (5-min/24-h) data have already been studied in statistic difference levels between nor-

mal people and CHF patients [7]–[9]. Measurements of adverse changes in the autonomic

function of CHF manifest in altered HRV analysis [10]. In this paper, we redefined short-/

long-term (i.e., 5-min/24-h) HRV measurements as static indices (SI) to assess the autonomic

function of the recording.

As far back as 1996, the Task Force of the European Society of Cardiology and the North

American Society of Pacing and Electrophysiology published standards on statistical analysis

of short-/long-term HRV measurements [6]. In 2003, Asyali et al. applied Bayesian classifiers

to classical time/frequency HRV parameters of long-term measurements for CHF discrimina-

tion with an accuracy of 93.24% [11]. In 2007, Isler et al. utilized wavelet entropy and classical

HRV parameters with k–nearest-neighbor (KNN) classifiers for CHF diagnosis and achieved

an accuracy of 96.39% [12]. In 2011, Pecchia et al. applied two additional non-standard mea-

sures—ΔAVNN (average of RR intervals) and ΔLF/HF (average of LF/HF)—in CHF detection

with an accuracy of 96.4% [13]. In 2012, Yu et al. applied a support vector machine (SVM)

classifier and genetic algorithm (GA) into CHF recognition based on bi-spectral HRV analysis

and achieved an accuracy of 98.79% [14]. These studies mainly focused on the overall level

condition of autonomic function by static indices of HRV measurements for disease detection;

however, relatively little attention have been paid to assessing the autonomic activity change

among CHF patients. Among the results, many of these reports could distinguish CHF

patients from normal people with accuracies of more than 95%. This is consistent with the fact

that the redefined SI can discern the autonomic dysfunction of CHF patients from normal

function [10].

By 2013, Melillo et al. first tried to assess the severity of CHF disease by using long-term

HRV measurements. The classification and regression tree (CART) classifier was used to

separate lower-risk patients from higher-risk patients with a relatively low accuracy (i.e.,

85.4%) [15]. Two reasons may explain this result. First, the performance of the classifier

needed to be improved. Second, the static HRV measurement might not fully quantify trend

changes in the autonomic activity of CHF patients during different daily activity [10]. Thus,

we proposed a new measurement of HRV—dynamic indices (DI)—for the stratifying esti-

mate. DI reflects the dynamic of 5-min segments’ HRV measurement in 24 hours, described

in HRV measurement Part. The functional class of CHF patients tends to deteriorate

unevenly over time and this indices can demonstrated this fluctuation with low individual

difference [5].

In our present study, we developed a multistage CHF risk assessment model. The work pre-

sented in this paper involves the following contributions:
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1. We creatively establish a four-level risk assessment model for CHF detection and quantifi-

cation, including no risk (normal people, N), mild risk (patients with NYHA I-II, P1), mod-

erate risk (patients with NYHA III, P2), and severe risk (patients with NYHA III-IV, P3).

2. We extract dynamic HRV measurements to improve the precision of the model, especially

in disease quantification. These dynamic HRV measures better reflect the autonomic func-

tion change during different daily activity for individuals with CHF.

3. We apply the decision-tree-based support vector machine (DT-SVM) classifier to take

advantage of SI and DI in CHF detection and quantification, respectively. We improve the

performance of the classifier by integrating backward elimination (BE) with significance

difference.

Method

Fig 1 presents a flowchart of the entire work.

Data

We obtained the data used in this work from the widely-used MIT/BIH database in PhysioNet

[16]. All subjects provided informed written consent. The study was approved by the

Fig 1. Flowchart of entire work. N: normal people; P: CHF patients, in which 1 is of NYHA I-II, 2 is of NYHA III, 3 is of NYHA III-IV; S1:

basic measures of 24-h RR interval data, which reflect long-term data variation); S2: basic measures of the second 5-min segment, which

representing a stable measurement condition of short-term data; S3: mid-value of basic measures of 5-min segments, which showing an

intermediate state of short-term data; D1: mean value of basic measures of 5-min segments, for robustness improvement; D2: standard

deviation of each basic measure of 5-min segments; D3: root mean square of each basic measure of 5-min segments; D4: coefficient

variation of each basic measure of 5-min segments; D5: percentage of abnormal value (value intervening M±S) of each basic measure of

5-min segments; D6: sample entropy of each basic measure of 5-min segments; D7: fuzzy entropy of each basic measure of 5-min

segments.; DT-SVM: decision tree based support vector machine.

doi:10.1371/journal.pone.0165304.g001
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Institutional Review Boards of Beth Israel Deaconess Medical Center (Boston, MA) and the

Massachusetts Institute of Technology (Cambridge, MA). We chose four RR interval data-

bases, obtaining 116 nominal 24-h RR interval records: 72 normal person samples (N, aged 20

to 76) and 44 CHF patient samples (P, aged 22 to 79). The data of normal people came from

two databases: the MIT/BIH Normal Sinus Rhythm Database and the Normal Sinus Rhythm

RR Interval Database [16]. The data of the CHF patients came from the Congestive Heart Fail-

ure RR Interval Database and BIDMC Congestive Heart Failure Database [17]. These records

were all manually reviewed and corrected by experts.

All samples were grouped into four stages according to severity:

• 72 normal people labeled as no risk (N, aged 54.62±16.03 years);

• 12 patients in NYHA I-II labeled as mild risk (P1, aged 52.5±14.25 years);

• 17 patients in NYHA III labeled as moderate risk (P2, aged 57.24±9.28 years);

• 15 patients in NYHA III-IV labeled as severe risk (P3, aged56±11.50 years with one sample

unknown).

Patients in group P3 were receiving medical therapy; therefore, we considered it as a special

type with a higher risk of mortality different from groups P1 and P2. The subjects’ gender

information was partially abridged, so there was no description about gender. All these data

can be downloaded online from http://www.physionet.org/cgi-bin/atm/ATM [16] for free.

Before feature extraction, we preprocessed all these data:

1. deleting the first and the last RR interval;

2. excluding RR intervals longer than 3 seconds [6];

3. dividing the 24-h data into multiple 5-min segments saved in sequence.

The first two steps were performed in case of unstable measurement conditions and artifi-

cial error. The third step was for feature extraction.

HRV Measurement

In this study, dynamic and static indices of HRV measurement were analyzed from 116 pre-

processed RR interval data, both 24-h and 5-min segment RR intervals. This analysis process-

ing included two steps: classical HRV measurement calculation and our HRV measurement

calculation.

1) Classical HRV measurement calculation: After preprocessing, we had two types of data:

nominal 24-h RR interval records and 5-min segment RR interval data. With these two types

of data, we calculated 18 classical HRV measurements, which included:

Time Domain (T1~T5): average of RR intervals (T1); standard deviation of RR intervals (T2);

root mean square of successive RR interval difference (T3); percentage of successive RR

interval difference larger than 50ms (T4) [6]; coefficient variation (ratio of T2 to T1) of RR

intervals (T5) [18];

Frequency Domain (F1~F4): power of RR intervals in 0.04–0.15 Hz (F1); power of RR inter-

vals in 0.15–0.4 Hz (F2); ratio of F1 to F2 (F3); total power (F4) [6];

Nonlinear (E1~E9): low frequency wavelet entropy (E1); high frequency wavelet entropy (E2);

normalized low frequency wavelet entropy (E3); normalized high frequency wavelet

entropy (E4); ratio of E1 to E2 (E5); total power wavelet entropy (E6) [12]; approximate

entropy (E7); sample entropy (E8) [19]; fuzzy entropy (E9) [20].
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The time/frequency domain HRV measurements in our work followed International

Guidelines [6], and frequency domain HRV measurement was calculated based on Fast Fou-

rier Transform. The nonlinear HRV measurements are fully introduced in literature [12, 19

and 20]. The 18 Classical HRV measurement were calculated for both 24-h and 5-min segment

RR intervals as basic measures (T1~E9).

2) Our HRV measurement calculation: Based on the classical measurements, two types of

HRV measurement SI and DI were calculated, as we defined hereinafter.

The SI was calculated from HRV measurements of data in a period (5-min/24-h). This

series of indices demonstrated the global or average level of cardiovascular autonomic activity,

composed of four series with a total of 54 (= 18 basic measures�3 series) indices:

S1: basic measures of 24-h RR interval data, which reflect long-term data variation

(S1T1~S1E9);

S2: basic measures of the second 5-min segment, which representing a stable measurement

condition of short-term data (S2T1~S2E9);

S3: mid-value of basic measures of 5-min segments, which showing an intermediate state of

short-term data (S3T1~S3E9).

In contrast, the DI was calculated from 5-min segments’ basic measures in the nominal

24-h data to evaluate the dynamic changes of symptoms and autonomic function during dif-

ferent activities. Here, we analyzed each basic measure of 5-min segments from 6 aspects; thus,

DI has six series with a total of 126 (= 18 basic measures�7 series) indices:

D1: mean value of basic measures of 5-min segments, for robustness improvement

(S4T1~S4E9).

D2: standard deviation of each basic measure of 5-min segments (D1T1~D1E9);

D3: root mean square of each basic measure of 5-min segments (D2T1~D2E9);

D4: coefficient variation of each basic measure of 5-min segments (D3T1~D3E9);

D5: percentage of abnormal value (value intervening M±S) of each basic measure of 5-min

segments (D4T1~D4E9);

D6: sample entropy of each basic measure of 5-min segments (D5T1~D5E9);

D7: fuzzy entropy of each basic measure of 5-min segments (D6T1~D6E9).

Thus, 180 HRV measures, comprising 54 SI and 126 DI, were extracted from 72 normal

person samples and 44 CHF patient samples.

DT-SVM Algorithm based Multistage Risk Assessment Model

Construction

In our work, we constructed a multistage risk assessment model for CHF detection and quan-

tification (shown in Fig 2) based on the DT-SVM algorithm.

DT-SVM is an effective way of combining an SVM and a decision tree for solving multi-

class problems [21]. It is a modified method of the classical SVM for dealing with its difficulty

in multi-class problems, but DT-SVM brings another danger: cumulative error. This error is

caused by sample misjudgment at the upper node of the decision tree and lasts throughout the

rest of the classifier without elimination. The main idea of this algorithm is the conversion of

multiclass classification problems into multilevel binary classification problems. Each level

includes two nodes to be classified, and each node includes one or several classes. At every

Dynamic HRV Indices and 4-Level CHF Quantification
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node, a decision is made to assign the samples. This step is repeated until all the samples reach

a leaf node, to which only one class of samples is assigned. In this way, a hierarchy is formed

[22].

In our research, DT-SVM was applied to establish the tree-structure of the risk assessment

classifier. Performance of the classifier was determined by the tree structure and node decision

[22], which depended on the nodes and input features selection.

1) Node Selection: Usually, there are two kinds of tree structures: balanced or unbalanced

tree architectures [22]. Furthermore, the most separable classes should be separated at the

upper nodes [21]. In this study, one-way analysis of variance (one-way ANOVA) was used to

calculate the significance difference of indices among two-groups [23] as separability measure-

ment [22] on SPSS software (version 19, SPSS Inc., Chicago, IL, USA). The rule of node selec-

tion at each level is that a larger number of features in a smaller p value scale indicate a higher

separability for binary separation. The corresponding pair of groups was used as the suitable

nodes for the level.

Fig 2. Multistage classification algorithm based on DT-SVM for risk assessment. Upper diagram: tree-structured classifier. Lower

diagram: wrappers for feature selection. N: normal samples; P: CHF patients, in which 1 is of NYHA I-II, 2 is of NYHA III, 3 is of NYHA III-IV;

DSF: disease screening function; RAF: risk assessment function, in which I is for discriminating the higher risk from the lower risk, II is for

distinction of moderate risk and mild risk; BE: backward elimination; SD: significance difference.

doi:10.1371/journal.pone.0165304.g002
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In our work, the samples were divided into four stages, corresponding to a four-leaf-node

tree. The nodes for a level were selected as follows:

First, we denote the feature set as the data set {X(i): i = 1,2,. . .,N} and N as the feature num-

ber. We then define the significance differences of X(i) as P(i), which are calculated by one-

way ANOVA between all possible two-groups, where

PðiÞ ¼ fpði; kÞ; k ¼ 1; 2; . . . ;Mg; ð1Þ

where p(i,k) represents the p value of the ith feature for the kth pair. In this paper, M is 7 for

level 1 (the seven pairs are shown in Node and Feature Selection Part).

Then, we define the number of features in the particular significance value range as count:

countðkÞ ¼
XN

i¼1

dði; kÞ; ð2Þ

where d is the sign function discrimination matrix:

dði; kÞ ¼
1; if pði; kÞ � ε;

0; if pði; kÞ > ε;

(

ð3Þ

and ε is the particular significance value range. In this paper, ε is initially 0.001.

Finally, we define num as the maximum value of count:

num ¼ maxðcountÞ: ð4Þ

The pair corresponding to num yields the selected nodes for the level. If the maximum

value associates with more than one pair, we repeat this procedure, sequentially changing the

value of ε to 0.01, 0.05, and 0.1, until only one pair is determined for the level.

We iterated these steps for the remaining levels until each group consisted of only one class;

thus, the tree structure was determined (shown in Fig 2).

2) Feature selection: Owing to their high correlation, directly using all features for classifi-

cation might not give the best performance [24]; thus, using an appropriate selection method

for feature subset discrimination improves classifier performance. We applied BE [25] into fea-

ture selection at each node (shown in Fig 2).

First, we performed feature prescreening to remove invalid characters and improve algo-

rithm performance. The significance level was computed among three pairs (shown in Fig 2).

Considering the physiological rule, features with a high significance level (i.e., p>0.1) were

rejected; additionally, SI were used for disease detection and DI for quantification.

Then, we applied backward feature selection to the prescreened features (shown in Fig 2).

The BE algorithm begins with all features and iteratively removes them one-by-one until the

remaining features reach the highest precision. The feature selection was based on the follow-

ing iteration below.

We denote {X(i,j): i = 1,2,. . .,M; j = 1,2,. . .,N} as the feature matrix, in which M and N are

the numbers of samples and features, respectively. The samples are labeled by yi 2 {-1,1}. We

define r as the rate of training set and testing set and then select the training and testing set

from X(i,j) randomly in proportion. We define the line numbers of training and testing set in

the feature matrix as tr and te, respectively.

We define Ym = {X(i,k),i = 1,2,. . .,M;m 2{0,1,2,. . .,N}} as submatrices of the feature matrix,

where m represents the mth feature deleted from the feature matrix. Thus, N+1 submatrices

are formed, where k is the volume number of remaining features. Here, Y0 is the feature matrix

without deletion.

Dynamic HRV Indices and 4-Level CHF Quantification
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Thus, the training and testing sets are defined as Trainingm and Testingm:

Trainingm ¼ Ymðtr; kÞ 8tr 2 f1; 2; . . . ;Mg; ð5aÞ

Testingm ¼ Ymðte; kÞ 8te 2 f1; 2; . . . ;Mg: ð5bÞ

We input the training set into the SVM classifier and validate with testing set. Here, we

regard the SVM as a black box to score different feature combinations according to their pre-

dictive power [26]. We define the accuracy of the testing subset as ACCm, in which:

ACCm ¼
numberðcorrectly classified samples Þ

numberðall samplesÞ
: ð6Þ

We define S as the difference of ACC0 and the maximum of the other ACCm:

S ¼ ACC0 � maxðACC1;ACC2; . . . ;ACCNÞ: ð7Þ

If S> 0, the algorithm ends, and the final accuracy is ACC0; however, if S� 0, we need to

refresh the feature matrix to the associated submatrix of max(ACC1, ACC2,. . .,ACCN) and con-

tinue the iteration.

The submatrix of the highest accuracy is the optimal feature subset. We repeat this process

for the remaining levels. With the selected optimal subset, we have built the hierarchical model

for CHF detection and quantification.

Finally, we have achieved the risk assessment model. The decision hyperplane functions of

the three nodes were calculated. We define the hyperplane function for node decision as f(x):

f ðxÞ ¼ ωTxþ b;
if f ðxÞ > 0; then x 2 class1;

if f ðxÞ < 0; then x 2 class2;

(

ð8Þ

Where ω and b are the weight vector and the bias that maximize the margin [27], respec-

tively; x is the feature vector.

The weight vector ω and bias b are decided by the Lagrangian function:

Jðω;b; aÞ ¼
1

2
ωTω �

XM

i¼1

ai½yiðωxi þ bÞ � 1�; ð9Þ

Where ai is the Lagrange multiplier and xi is the training set. The weight vector and bias are

determined from the partial derivative of the function J as

ω ¼
XM

i¼1

aiyixi; ð10Þ

b ¼ �
maxi:yi¼� 1ωTxi þmini:yi¼1ωTxi

2
: ð11Þ

We named the resulting hyperplane functions according to their roles: disease screening

function (DSF; for separating normal heart function from abnormal heart function), risk

assessment function I (RAF I; for discriminating the higher risk from the lower risk), and risk

assessment function II (RAF II; for distinction of moderate risk and mild risk). During this

part, the SVM operated under a linear kernel with the same parameters.

Dynamic HRV Indices and 4-Level CHF Quantification
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Validation and Performance

In our work, we randomly divided the data into training and testing sets at a ratio of approxi-

mately 1:1 (i.e., 57 samples for the training set and 59 samples for the testing set). To measure

the performance of the tree-structured multistage classifier for risk assessment, we used confu-

sion matrixes (CM) [28]. From these matrixes, we computed the widely used parameters [6]

for binary classification to make a comparison with others. Calculation were performed on

software MATLAB 7.11.0 (version R2010b, The MathWorks, Inc., Natick, MA, USA)

Results

Feature Performance Analysis with C-SVM

With the static and dynamic HRV indices introduced in Method Section, we tested their per-

formance in 4-level risk assessment with linear kernel classical support vector machine

(C-SVM) in Table 1. The input features were SI, DI and SI+DI, all with p value under 0.1. Fea-

ture selection method of the two classifiers was the same, i.e. the backward elimination

method. The accuracy rate of C-SVM classifier was close under different input feature combi-

nation, all under 80%. Results were only 76.27% in 4-level risk assessment of CHF with SI/SI

+DI inputted; while only DI inputted, the result was even 10% lower.

While taking apart 4-level risk assessment into disease detection (N vs. P) and disease quan-

tification (P1 vs. P2&P3), our features presented different from above. Table 2 compares our

results with SI and DI in disease detection and quantification based on C-SVM classifier. Per-

formance with different feature combinations was introduced in the table among different

pairs under the linear kernel SVM. The p values of the input features in Table 2 were lower

than 0.1, and all the features were selected with the BE method. For the discrimination of nor-

mal people and CHF patients (Table 2: N vs. P), the CHF detection accuracy of SI was 98.31%,

which was higher than DI and DI + SI by over 11% and 8%, respectively.

In contrast, prominent diversity existed when distinguishing between higher risk (P2&P3)

and lower risk (P1) CHF. The disease quantification accuracy was 91.30% with DI or DI + SI

inputs, but the accuracy of SI dropped by nearly 20% from the omission of DI.

Table 1. Classification performance of classical SVM in 4-level risk assessment.

Method Input Feature * Accuracy (%)

Classical SVM SI 76.27

DI 67.80

SI+DI 76.27

SI: static indices; DI: dynamic indices;

* represents that significance value of features were under 0.1.

doi:10.1371/journal.pone.0165304.t001

Table 2. Performance of different feature combinations for disease detection and quantification.

Groups Accuracy Destination Method

SI* DI* SI* + DI*

N vs. P 98.31 86.44 89.83 Disease detection C-SVM

P1 vs. P2&P3 73.91 91.30 91.30 Disease quantification

N: normal samples; P: CHF patients, in which 1 is of NYHA I-II, 2 is of NYHA III, 3 is of NYHA III-IV; SI: static indices; DI: dynamic indices;

* represents that significance level of features were under 0.1; C-SVM: classical SVM.

doi:10.1371/journal.pone.0165304.t002
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Multistage Risk Assessment Model Construction based on DT-SVM

On account of feature performance analysis result, 4-level risk assessment model was con-

structed under DT-SVM algorithm and significance analysis, which was described in Method

Part. For each binary SVM of DT-SVM, linear kernel and other default parameter was the

same. Thus, DT-SVM classifier construction included two parts: node and input feature selec-

tion and model construction, as below.

Node and feature selection. Table 3 shows the results of node selection based on the sig-

nificance difference analysis. For the first node, there were seven possible pairs, and it was

apparent that the majority of features were extremely significant between the normal person

samples and the patient samples (N vs. rest, 57 features with p<0.001) among all these possible

pairs. The number of features of this pair was larger than that of all other pairs at each signifi-

cance level range (79 with p<0.01, 98 with p<0.05, and 105 with p<0.1). Thus, the first node

decision was between normal people and CHF patients (N vs. rest).

Based on the result of node 1, Table 4 shows the numbers of features at different signifi-

cance level ranges between the three possible pairs for node 2. The higher risk (P3) patients

had one feature with p< 0.001 corresponding with the lower risk (P1 & P2) patients and no

other pairs had this extremely significant feature. In other ranges of p values, the separability

of P3 also performed well. Thus, the second node decision was made between higher risk and

lower risk (P3 vs. rest) patients. Therefore, the third node decision was between P1 and P2.

Overall, an unbalanced tree was formed under our rules (shown in Fig 3) for multistage risk

prediction of CHF. The first node was a binary tree between normal people and CHF patients

(N vs. P); the second node was a binary tree between higher risk and lower risk (P3 vs. P2 &

P1); the third was a binary tree between moderate risk and mild risk (P2 vs. P1).

The selected features for decisions of each node are shown in Table 5. Input features for

each node are in sequence from SI with a p value under 0.1, DI with a p value under 0.1, and

SI + DI with a p value under 0.1. With the aforementioned feature selection method (Method

Part), the optimal features were selected from the input. The effectiveness of features also

Table 3. Result of node selection for level 1 among all samples.

Node number of p<0.001 number of p<0.01 number of p<0.05 number of p<0.1 number of p>0.1

N vs. rest 57 79 98 105 75

P1 vs. rest 0 17 39 51 129

P2 vs. rest 15 41 73 86 94

P3 vs. rest 28 52 68 83 97

N&P1 vs. rest 48 65 88 102 78

N&P2 vs. rest 29 51 71 86 94

N&P3 vs. rest 33 61 85 97 83

N: normal samples; P: CHF patients, in which 1 is of NYHA I-II, 2 is of NYHA III, 3 is of NYHA III-IV.

doi:10.1371/journal.pone.0165304.t003

Table 4. Result of node selection for level 2 among CHF patients.

Node number of p<0.001 number of p<0.01 number of p<0.05 number of p<0.1 number of p>0.1

P1 vs. rest 0 3 19 39 141

P2 vs. rest 0 0 7 22 157

P3 vs. rest 1 9 35 49 131

P: CHF patients, in which 1 is of NYHA I-II, 2 is of NYHA III, 3 is of NYHA III-IV.

doi:10.1371/journal.pone.0165304.t004
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showed that a portion of the input features could fully represent them all with relatively low

percentages of 7.21%, 4.08%, and 33.33%. During the feature selection of the first node, we

found a subset with 23 features that provided maximum discrimination power (i.e., the accu-

racy was 100%) in classification between N and P. Considering the computational cost, the

number of input features of node 1 (S1T1, S1T5, S1F4, S2T1, S3T1, S3T3, S2F3, and S3E8) was

chosen to be similar to the other nodes (shown in Table 5). These features were fully described

in Method.

Fig 3. Multistage risk assessment model of CHF. DSF: disease screening function to detect normal from patients; RAF: risk assessment

function, in which I is for discriminating the higher risk from the lower risk, II is for distinction of moderate risk and mild risk; N: normal

samples; P: CHF patients, in which 1 is of NYHA I-II, 2 is of NYHA III, 3 is of NYHA III-IV.

doi:10.1371/journal.pone.0165304.g003

Table 5. Selected optimal feature subsets for each level with backward elimination.

Node Input feature numbers Optimal feature subsets * Effectiveness (%)

Node 1 111 S1T1,S1T5,S1F4,S2T1,S3T1,S3T3,S2F3,S3E8 7.21

Node 2 49 D5F4,D5E1 4.08

Node 3 12 D2T4,D3F3,D4T1,D5E5 33.33

*: Meaning of features were defined in HRV Measurement; Effectiveness is ratio of number of selected features to number of input features at each node.

doi:10.1371/journal.pone.0165304.t005
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DT-SVM based 4-level Risk Assessment Model. As the tree structure and optimal feature

subsets of each node had already been obtained, it was easy to construct the final classification

model. Fig 3 is the unbalanced multistage classification model of CHF with hyperplane func-

tions, with input and outputs at each binary choice. These functions were described in Method

Part.

All these functions were computed by SVM with the same linear kernel. The three calcu-

lated hyperplane functions are shown in Fig 3:

DSF : y ¼ w1 � X � 3:6652 ð12Þ

RAF I : y ¼ w2 � X þ 24:7320 ð13Þ

RAF II : y ¼ w3 � X � 38:8712 ð14Þ

where the parameters were:

w1 = [1.1537,1.2578,1.0164,−1.5321,1.19423,0.3027,−0.1286,2.4483];

w2 = [−0.3569,−0.6534];

w3 = [−0.4116,−1.4049,0.3175,0.4810].

The parameter X is the input feature subsets, as showed in Table 5; the parameter y is the

output value of the function, for which y> 0 indicates that the output type is positive (+) and

vice versa.

Validation

The performance of the DT-SVM-based multistage classifier for 4-level risk assessment of

CHF is shown in Fig 4 and Table 6. Fig 4 shows the CM of the three binary trees and the multi-

stage classifier. According to the CM, classification error only occurred at the classification of

moderate risk (P2), in which one was misclassified as N at node 1 and one misclassified as P3

at node 2.

Table 6 contains some common measures computed from the CM—accuracy (ACC), sensi-

tivity (SEN), specificity (SPE), precision (PRE), and area under the curve (AUC). With the

DT-SVM algorithm and backward feature selection method, we achieved a high total accuracy

of 96.61%. The accuracies of nodes 1, 2, and 3 were 98.31%, 95.45%, and 100% respectively.

Moreover, the precision (PRE) of each node was 100%, which demonstrated a lack of false pos-

itives. Meanwhile, the values of AUC are over 90% for every node.

Discussion

In this paper, we applied DI and SI of HRV measurements to construct a multistage risk

assessment model of CHF. This model integrated a DT-SVM classifier, the backward feature

selection method, and significance difference analysis. The final calculated hyperplane func-

tions (shown in Fig 3) achieved a total accuracy of 96.61%.

Comparison with Others

As the changes of HRV are influenced under interact of nervous and humoral regulation, auto-

nomic nervous system is part of the reason [29]. Mortara et al. found that static HRV was sig-

nificantly lower in CHF patients with abnormal heart autonomic nerve function [30]. The

adverse change of autonomic function in CHF patients was confirmed [10]. Autonomic nerve

dysfunction may increase the incidence of sudden cardiac death in patients with CHF by
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altering ventricular electrophysiology (correlation with HRV) [31]. We speculated that CHF

related to autonomic nerve abnormality. HRV measurements have been confirmed as a nonin-

vasive tool for assessing autonomic nerve function [32]. Thus, the CHF risk assessment model

of HRV proposed in this paper can serve as a noninvasive and reliable predictor of the incident

risk of CHF.

Table 7 highlights the comparison with related studies. Yu et al. applied a SVM classifier

and GA into CHF detection based on static (bi-spectral HRV) analysis and achieved an accu-

racy of 96.38% [14]. Isler et al. utilized static HRV measurements with a KNN classifier a KNN

classifier for CHF detection, resulting in an accuracy of 96.39% [12]. These studies demon-

strated that static HRV measurements could distinguish CHF patients from normal people

with accuracies of more than 95%. However, Melillo et al. first attempted to distinguish low

risk CHF patients from higher risk ones with a relative low accuracy (i.e., 85.4%) [15]. Ques-

tion that arose then was what causeed the low prediction accuracy? Here we analyzed in two

Table 6. Classification performance.

Node TP TN FP FN ACC (%) SEN (%) SPE (%) PRE (%) AUC (%) Total ACC (%)

Node1 36 22 0 1 98.31 97.3 100 100 98.65 96.61

Node2 8 13 0 1 95.45 88.89 100 100 94.45

Node3 6 7 0 0 100 100 100 100 100

TP: true positive, TN: true negative, FP: false positive, FN: false negative;

ACC = (TP + TN)/(TP + TN + FP + FN), SEN = TP/(TP + FN), SPE = TN/(TN + FN), PRE = TP/(TP + FP), AUC = 1/2(SEN + SPE).

doi:10.1371/journal.pone.0165304.t006

Fig 4. Confusion matrices. N: normal samples; P: CHF patients, in which 1 is of NYHA I-II, 2 is of NYHA III, 3 is of NYHA

III-IV.

doi:10.1371/journal.pone.0165304.g004
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aspects: features (static indices vs. dynamic indices) and algorithm (C-SVM vs. DT-SVM) in

our paper.

HRV Measurement Analysis

According to NYHA classification [5], the severity of heart failure is related to the severity of

symptoms. For example, NYHA I: no symptoms and no limitation in ordinary physical activ-

ity; NYHA III: marked limitation in activity due to symptoms, even during less-than-ordinary

activity; NYHA IV: experiences symptoms even while at rest. After diagnosis, the heart condi-

tions of certain classes of patients fluctuate according to the treatment, physical condition, etc.

[6].

It has been recognized that autonomic imbalance happens in heart failure, which leads to

further worsening of the condition. Thus, autonomic dysfunction in CHF patients was con-

firmed [1]. To this end, HRV analysis of SI has already served as a powerful tool in autonomic

nerve function assessment. However, we presumed that static HRV measurements could not

fully reflect the fluctuation of autonomic nerve function over time among different classes of

patients. As a result, Melillo et al. only reached an accuracy of 85.4% for 2-level disease quanti-

fication when using static HRV analysis [15]. Thus, in this work, we proposed dynamic HRV

measurements to rate CHF risk. Comparing performance of SI and DI in disease detection

and quantification based on C-SVM classifier with previous research, we can conclude that:

1. For the discrimination of normal people and CHF patients (Table 2: N vs. P), the CHF

detection accuracy of SI was higher than DI and DI + SI. Based on this result, we can con-

clude that DI does not help in this respect. Furthermore, static HRV measurements have

been proven by former studies to be reliable for high-accuracy detection of CHF [11], [12],

[13], [14], [19], [33].

2. In contrast, nearly 20% diversity existed when distinguishing between higher risk (P2&P3)

and lower risk (P1) CHF from the omission of DI. This demonstrates that DI are more

important in discriminating higher risk patients from lower risk ones. Furthermore, inclu-

sion of SI does not improve performance in disease quantification.

Therefore, this analysis demonstrates that: 1) Dynamic HRV measurements have an obvi-

ous advantage over SI in disease quantification; 2) DI offer no help in disease detection; 3)

Static HRV measurements have excellent performance in disease detection.

Table 7. Highlight.

Reference Classes Samples*Time Feature Feature

Selection

Classifier Accuracy Highlight

Yu et al. N vs. P 83*68min SI GA SVM 96.38% CHF detection based on bi-spectral HRV analysis and

genetic algorithm

Isler et al. (N vs. P 83*5min SI GA KNN 96.39% CHF detection by combining classical HRV with

wavelet entropy measures

Melillo

et al.

P1 vs.

(P2&P3)

44*24h SI ESM CART 85.40% 2-level CHF quantification in patients with CHF via

long-term HRV and CART algorithm

Our work N vs. P1 vs.

P2 vs. P3

116*24h SI,DI BE DT-SVM 96.61% 4-level CHF detection and quantification using

dynamic HRV measures and DT-SVM algorithm

N: normal samples; P: CHF patients, in which 1 is of NYHA I-II, 2 is of NYHA III, 3 is of NYHA III-IV; SI: static indices; DI: dynamic indices; GA: genetic

algorithm; ESM: exhaustive search method; BE: backward elimination; SVM: support vector machine; KNN: k-nearest neighbor; DT-SVM: decision tree

based support vector machine.

doi:10.1371/journal.pone.0165304.t007
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Classifier Analysis

From the SI and DI analysis above, the multistage classifier (e.g. DT-SVM) is suitable to build

the CHF risk assessment model, for using certain feature in certain purpose. We compared the

performance of multistage DT-SVM classifier of our paper and classical SVM one in 4-level

risk assessment in Table 1. The DT-SVM classifier revealed an excellent power in 4-level risk

assessment of CHF than C-SVM classifier.

The result of C-SVM in 4-level risk assessment was not satisfied for this low precision.

According to the performance of DI and SI in disease detection and quantification, a relative

high precision on risk assessment was possible using combination of static and dynamic HRV

measurement. This was cause by the reason that the classical SVM cannot take the advantage

of SI and DI described at HRV Measurement Analysis Part into risk assessment progress, as

DT-SVM did.

Review the whole work, our multistage CHF risk assessment model has the following

advantages:

1. The multistage model could fully combine respective advantages from static HRV measures

and dynamic HRV measures. According to the conclusion in Discussion Part about HRV

measurement, SI was more suitable for disease detection and DI for disease quantification.

Thus the stratified structure could make full use of this trait. In our work specific features

were inputted for specific nodes: SI with p< 0.1 for disease detection and DI with p< 0.1

for disease quantification.

2. The parameter setting of multistage risk assessment model also conformed to the NYHA

classification. From the perspective of physiological law, adverse change in ANS activity is a

hallmark characteristic of CHF [10]. And CHF patients showed weakness in vagal mecha-

nisms to counteract sympathetic activation [10]. This dysfunction worsens along with dis-

ease exacerbation [1]. Thus, the result that the first leaf node was N and the second was P3

was conformed to their difference in ANS function.

3. The DT-SVM classifier we applied was modified by backward feature selection algorithm

combined with significance difference. Significance difference analysis helped to decide the

suitable tree structure and nodes. Backward feature selection method improved the effi-

ciency of whole classifier, with features that p value as under 0.1.

Clinical Significance

The multistage CHF risk assessment model achieved an accuracy of 96.61% between predicted

and actual ratings. Compared with NYHA classification according to the limitations/symp-

toms during physical activity [5], our multistage risk model with HRV analysis is a noninvasive

and objective CHF rating method. This helps reduce diagnosis mistakes caused by various

physician-related factors (e.g., limited experience, work stress, fatigue) [34], ignorance of circa-

dian clinical features caused by unprompted modulation of autonomic activity, therapy, etc.

Moreover, combining with 24-h ECG recording, our model is more universal and stable than

most short-/long-term HRV measurements (e.g. [19], [33]).

The ANS can modulate the sino-aerial nodal depolarizations to adjust the needs of the

body. HRV analysis with SI has been used in prior research to assess ANS function of CHF

patients [10]. Relative to static HRV measurements, the dynamic HRV measurements pre-

sented in this paper could better reflect the fluctuation of autonomic nerve dysfunction during

physical activity. Additionally, the modified DT-SVM algorithm can fully combine both

advantages and improve performance. Autonomic nerve functions trend worse in CHF
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patients, and HRV dynamic analysis demonstrates this small time-scale variation. Finally, no

previous studies have been tested in a comprehensive multistage model. Researchers have

stated that the NYHA method remains arguably the most important prognostic marker in rou-

tine clinical use in heart failure today [35]. Thus, in view of these advantages, our multistage

CHF risk assessment model could serve as a clinically meaningful outcome by providing an

objective and timely assessment and rating of autonomic function change trends for CHF

patients in the future, especially for those with in-home monitors.

Beyond all these benefits, our study still had some limitations. First, a larger and richer data

collection is needed for further study. Moreover, dynamic HRV measurements should be ana-

lyzed and explained in future work; algorithm parameter setting needs further analysis. In the

future, we plan to access an early-warning risk model with more elements (e.g., therapy, clini-

cal state) included for survival prediction.

Conclusion

To construct a multistage risk assessment model of CHF, we applied dynamic HRV measure-

ments to CHF detection and quantification. DT-SVM algorithm and feature selection method

based on BE and significance difference was included. The data used for this study consisted of

126 DI and 54 SI of HRV measurements obtained from 116 samples of 24-h ECG records

from the MIT/BIH database. According to the study, we reached several conclusions:

1. In this paper, we build a four-level risk assessment model for CHF detection and quantifica-

tion based on the DT-SVM algorithm. The model succeeded with a total accuracy of

96.61%, in risk assessment among individuals of N (no risk), P1 (mild risk), P2 (moderate

risk), and P3 (severe risk).

2. We creatively proposed dynamic indices for the severity evaluation of CHF. In CHF quanti-

fication (Table 2), the DI are obviously superior to the SI, increasing the accuracy from

73.91% to 91.30%.

3. The DT-SVM–based multistage risk assessment model proposed in this work significantly

improved discrimination power from 76.27% to 96.61% when compared to C-SVM. The

performance of our classifier improved based on the combination of the BE algorithm and

significance difference.

4. According to the analysis of SI, it was clear that SI of HRV were more powerful in disease

detection than DI with an accuracy of 98.31%. This is consistent with the results of prior

research regarding disease detection.

In light of these advantages, the stratifying CHF risk assessment model will be a reliable and

objective prognostic marker for routine clinical application (especially daily health nursing) in

the future.
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