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Abstract

Cytoadhesion of Plasmodium falciparum infected erythrocytes to gC1qR has been associ-

ated with severe malaria, but the parasite ligand involved is currently unknown. To assess if

binding to gC1qR is mediated through the P. falciparum erythrocyte membrane protein 1

(PfEMP1) family, we analyzed by static binding assays and qPCR the cytoadhesion and

var gene transcriptional profile of 86 P. falciparum isolates from Mozambican children with

severe and uncomplicated malaria, as well as of a P. falciparum 3D7 line selected for bind-

ing to gC1qR (Pf3D7gC1qR). Transcript levels of DC8 correlated positively with cytoadhe-

sion to gC1qR (rho = 0.287, P = 0.007), were higher in isolates from children with severe

anemia than with uncomplicated malaria, as well as in isolates from Europeans presenting

a first episode of malaria (n = 21) than Mozambican adults (n = 25), and were associated

with an increased IgG recognition of infected erythrocytes by flow cytometry. Pf3D7gC1qR

overexpressed the DC8 type PFD0020c (5.3-fold transcript levels relative to Seryl-tRNA-

synthetase gene) compared to the unselected line (0.001-fold). DBLβ12 from PFD0020c

bound to gC1qR in ELISA-based binding assays and polyclonal antibodies against this

domain were able to inhibit binding to gC1qR of Pf3D7gC1qR and four Mozambican P. falcip-

arum isolates by 50%. Our results show that DC8-type PfEMP1s mediate binding to gC1qR

through conserved surface epitopes in DBLβ12 domain which can be inhibited by strain-

transcending functional antibodies. This study supports a key role for gC1qR in malaria-

associated endovascular pathogenesis and suggests the feasibility of designing interven-

tions against severe malaria targeting this specific interaction.
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Author Summary

Plasmodium falciparum sequesters in vital organs. This phenomenon mediated by cytoad-
hesion of infected-erythrocytesto host receptors in the microvasculature, contributes to
the development of severe malaria. Although cytoadhesion to Endothelial Protein-C
Receptor has a central role in severe malaria, other host receptors are also likely to be
involved. Our results generated by the analysis of P. falciparum isolates fromMozambican
patients and laboratory parasite lines indicate that a specific domain (DBLβ12) from DC8-
type PfEMP1s can bind to the human receptor gC1qR, previously associated with severe
malaria. Our findings revealed that antibodies against PfEMP1 could provide strain-tran-
scending inhibition of gC1qR-binding. Overall, these results support a key role for the
adhesion to gC1qR in malaria-associated endovascular pathogenesis and the feasibility of
new interventions targeting this specific interaction.

Introduction

Case fatality rates for severe malaria (SM) remain unacceptably high even after administration
of effective anti-malarial drugs [1]. There is an urgent need to develop novel interventions
against life-threateningmalaria. However, the mechanisms underlying the clinical heterogene-
ity and spectrumof malaria [2] remain largely unknown. The general state of health and physi-
ological condition of the host, in particular variations in host immunity, together with genetic
predisposition and parasite factors involved in the virulence of the infection,might influence
the progression of malaria towards a life-threatening outcome. Sequestration of infected eryth-
rocytes (IE) in vital organs is believed to constitute a key pathogenic event in P. falciparum SM
[3], eventually leading to hemorrhages, thrombi formation and pathological inflammation [4],
all at the basis of microvascular obstruction [4–6]. Strategies to inhibit or prevent parasite
sequestration thus have the potential to reduce the high fatality rate in SM.

Surface proteins at the interface of malaria parasites and the human host contribute to
sequestration through the cytoadhesion of IEs to the vascular endothelium, to uninfected
erythrocytes to form rosettes [7] and to IEs through platelet binding to form agglutinates
(Platelet-mediated [PM]-agglutination) [8]. Cytoadhesion is primarily mediated by interac-
tions betweenPlasmodium falciparum erythrocytemembrane protein 1 (PfEMP1) [9] and host
receptors such as CD36 [10], ICAM-1 [11], CSA [12], heparin [7], EPCR [13] and gC1qR
[8,14]. PfEMP1 is a family of highly diverse antigens located on the surface of mature stage IEs
that contain 2–9 adhesion domains termedDBL (Duffy binding-like) and CIDR (cysteine-rich
interdomain region). Each parasite contains *60 different var genes per haploid genome that
encode PfEMP1s, which subvert acquisition of protective immunity [15] through constant
transcriptional switching [16] and mutually exclusive expression [17]. Antibodies to PfEMP1
that occur after natural infections or after immunization with recombinant PfEMP1 domains
are predominantly variant- and strain-specific, as expected for highly variable parasite antigens
[18–20]. However, epidemiological observations that children acquire immunity to non-cere-
bral severe malaria after a small number of infections [21] suggest that strain-transcending
antibodies recognizing conserved epitopes on PfEMP1 may occur [19,22], or that the parasites
that cause severe malaria are of restricted antigenic types [23,24].

PfEMP1s can be classified into three major groups (A, B and C) and two intermediate
groups (B/A and B/C), based on motifs in non-coding sequences and locus position [25].
Whereas most group B and C PfEMP1 proteins appear to be under selection to bind CD36
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[26] and tend to be associated with uncomplicated and asymptomatic malaria [27,28], groups
A and B/A are often expressed in young children with limited malaria immunity [23] and in
those with SM [28–31]. A subset of these A and B/A PfEMP1 variants that contain a combina-
tion of adhesion domains, termed domain cassettes 8 and 13 (DC8 and DC13) [32–34], can
bind through their CIDRα1.1/4/5/7 domains to Endothelial Protein C Receptor (EPCR) [13].
It has been suggested that EPCR-mediated parasite cytoadhesion could interfere with activa-
tion of cytoprotective and anti-inflammatory pathways, which in turn may contribute to severe
malaria pathology [13]. However, adhesion to human cell lines is likely to bemediated by inter-
action with several receptors [35]. Indeed other domains of DC8 and DC13 PfEMP1 variants
have been shown to bind avidly to endothelial cells from different tissues through unknown
host receptors [36]. These data highlight the heterogeneity of receptors used by IEs in different
vascular beds and the importance of identifying other receptors involved in host-parasite
interactions.

P. falciparum IEs use gC1qR as a receptor for both cytoadhesion to human cells and plate-
let-mediated clumping [14], a cytoadhesion phenotype which has been associated with SM in
Mozambican children [8]. Human gC1qR is a multi-functional cellular protein expressed on a
wide range of tissues and cell types including endothelial cells, lymphocytes, dendritic cells and
platelets [37]. In addition to modulating the activation of complement through binding to C1q
[38], gC1qR can serve as a receptor for diverse pro-inflammatory ligands [39] and functional
antigens of viral and bacterial origin to promote pathogen attachment and/or entry [40]. How-
ever, the protein used by malaria parasites to mediate cytoadhesion of IEs to gC1qR is currently
unknown.

Selection of IT/FCR3 parasite lines for binding to human brain microvascular endothelial
cells (HBMEC) was associated with an up-regulation of DC8- and DC13-PfEMP1 and an
increase in binding to gC1qR [33]. Based on this observation,we hypothesized that PfEMP1s
containing DC combinations associated with SMmay mediate binding to gC1qR. To address
this, we assessed the var expression patterns and gC1qR cytoadhesion profile of P. falciparum
isolates collected fromMozambican children [8] and in a P. falciparum 3D7 line selected in
vitro for binding to gC1qR. The relationship of var transcript levels with disease severity, previ-
ous malaria exposure and antibody-mediated recognition of IEs was also analyzed. Our results
demonstrate that transcript abundance of DC8 in field isolates is associated with binding of IEs
to gC1qR and that DBLβ12 from the DC8-type PFD0020c mediates such interaction in the P.
falciparum 3D7 line selected for binding to gC1qR. The successful induction of strain-tran-
scending antibodies against DBLβ12 with activity to inhibit binding to gC1qR by field isolates
suggests shared surface epitopes amongst heterologous gC1qR-binding PfEMP1 variants and
the feasibility to designing interventions to prevent severe malaria.

Results

Study population and clinical outcomes

Blood samples from 132 malaria patients were used in the study, 111 fromManhiça, Mozam-
bique (86 children and 25 adults) and 21 from European travelers (Table 1). Among the
Mozambican children, 43 had uncomplicated malaria (UM) and 43 had SM, defined as severe
anemia, acidosis or respiratory distress, multiple seizures, prostration, cerebral malaria or
hypoglycemia (Table 1) [8]. Among the 43 cases of severe malaria, 19 (44%) had a single crite-
ria of malaria severity and the rest overlapping symptoms (13 [30%] had two and 11 [26%]
three or more). Prostration was observed in 34 (79%) of the children, acidosis/respiratory dis-
tress in 17 (39%), severe anemia in 13 (30%) and multiple seizures in 11 (26%), whereas cere-
bral malaria and hypoglycemia was observedonly in 3 and 2 of the children, respectively

Adhesion to gC1qR Receptor by PfEMP1 Proteins

PLOS Pathogens | DOI:10.1371/journal.ppat.1006011 November 11, 2016 3 / 22



(Table 1). European travelers were coming fromWestern Africa (Ghana, Republic of Côte
d'Ivoire, The Gambia, Guinea, Equatorial Guinea, Togo, Senegal and Burkina Faso), Middle
Africa (Cameroon, Congo and Central African Republic) and Eastern Africa (Mozambique
and Madagascar), with none of them presenting SM at recruitment. Parasitemia, quantified by
qPCR, was the highest in Mozambican adults, followed by SM and UM cases, with travelers
showing the lowest levels of parasitemia (P = 0.022). No differences were observed in the multi-
plicity of infection (MOI) between groups (P = 0.106).

Transcript level of DC8 and DC11 var genes correlate with gC1qR

cytoadhesion in Mozambican isolates

The relationship between cytoadhesion and var/DCs transcript levels was assessed among P.
falciparum isolates collected fromMozambican children (n = 86; Fig 1). Adhesion to CD36
was the most frequent cytoadhesion phenotype (76/86 [88%]; median binding of 180 IEs/mm2,
IQR[101–353]), followed by PM-agglutination (57/86 [66%]; median of 7%, IQR[2–22]), adhe-
sion to gC1qR (38/86 [44%]; median binding of 60 IEs/mm2, IQR[45–155]), ICAM1 (37/86
[43%]; median binding of 55 IEs/mm2, IQR[39–105]) and rosetting (31/86 [36%]; median of
2%, IQR[1–5]; Table A in SI Text). The percentage of isolates expressing var/DCs ranged from
41% (35/86) for DC13-CIDRα1.4 to 100% for varA-exon2, varB-UpsB and DC11-CIDRβ2
+DBLγ7 (Table B in SI Text). Adhesion to gC1qR correlated positively with DC8 transcript lev-
els (targeted by DC8-CIDRα1.1, rho: 0.287, P = 0.007) and with DC11 (rho: 0.324, P = 0.002).
Adhesion to ICAM1 showed a positive correlation with transcript levels of DC13 (rho: 0.273,
P = 0.011). Adhesion to CD36 correlated positively with varB (rho: 0.259, P = 0.016) and nega-
tively with varA (rho = -0.228, P = 0.035) and varA-notDC3 (rho: -0.256, P = 0.018). No associ-
ation was found between var transcript levels, PM-agglutination, rosetting or binding to the
negative control Duffy receptor (Fig 1).

DC11 transcript levels were lower in isolates from children with UM than in those from SM
children (P = 0.043), severe anemia (P = 0.022), prostration (P = 0.050) and acidosis/respira-
tory distress (P = 0.044, Fig 2 and Table C in SI Text). Similarly, transcript levels of DC8 were

Table 1. Characteristics of the patients with malaria included in the study

Spain Mozambique

Patient characteristics Travelers (n = 21) SM (n = 43) UM (n = 43) Adults (n = 25) P

Age (years), median (IQR) 34 (29–40) 2.4 (1.3–3.6) 2.6 (1.3–3.6) 36 (30–46) 0.791

qPCR Parasite density*, median(IQR) 724(322–9973) 9060(2290–31982) 3618(1050–13623) 10260(2267–38327) 0.022

MOI, median (IQR) 2 (1–3) 3 (3–5) 3 (2–4) 2 (2–3) 0.106

Males, n (%) 16 (76) 28 (65) 28 (65) 16 (64) 1.000

Clinical manifestation of SMa (n)

Cerebral malaria - 3 - -

Severe anaemia - 13 - -

Multiple seizures - 11 - -

Prostration - 34 - -

Hypoglicemia - 2 - -

Acidosis/Respiratory Distress - 17 - -

IQR, Interquartile range; SM, severe malaria; UM, uncomplicated malaria; MOI, multiplicity of infection.

*, Expressed as parasites per μL.
a, Nineteen (44%) out of the 43 SM cases had a single criterion of malaria severity and the rest overlapping symptoms (13 [30%] had two and 11 [26%] three

or more).

doi:10.1371/journal.ppat.1006011.t001
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Fig 1. Correlation between var transcript levels and cytoadhesive phenotypes of P. falciparum

isolates from Mozambican children. The relationship between adhesion and transcript levels of var/DCs

was assessed by Spearman correlation analysis, with * indicating P<0.05 and ** if statistically significant

after Benjamini-Hochberg correction for the six adhesive phenotypes tested. PM-agg: platelet-mediated

agglutination.

doi:10.1371/journal.ppat.1006011.g001
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higher in children with severe anemia compared to their UM pairs (P = 0.030, Fig 2). Both DCs
were transcribed at similar levels by isolates from travelers and children, being the lowest in
isolates fromMozambican adults (Fig 3).

Increased IgG recognition of isolates highly transcribing DC8 var genes

Isolates transcribingDC8 at high levels (i.e., copy number�0.5-fold of Seryl-tRNA-synthetase
copy number) were more often recognized by plasmas fromMozambican children (n = 100;
mean breadth of recognition: 29%, Standard Deviation (SD) 16) than those transcribingDC8
at low levels (16%, SD 11; incidence rate ratio = 2.3, 95% CI [1.2–4.5], P = 0.019; Fig 4A). No
differences were observed for other DCs. Breadth of IgG recognition of parasites transcribing
DC8 at high levels was higher among the Mozambican adult population (76%, SD 18) than
among children (p = 0.010 by Signrank test). However, no difference was observed in the
breadth among children with SM (p = 0.969). Finally, recognition by plasma fromMozambi-
can children was the highest for IEs from travelers (mean breadth of recognition: 28%; SD 12),
followed by isolates from SM (24%, SD 14) and UM (16%; SD 9), being the lowest for parasites
fromMozambican adults (3%, SD 1; test for tend, P�0.001; Fig 4B).

DBLβ12 domain from the DC8-type PFD0020c in 3D7 is associated with

gC1qR cytoadhesion

After two rounds of in vitro selection for binding to gC1qR followed by a limiting dilution clon-
ing, a P. falciparum 3D7 clone was obtained (Pf3D7gC1qR) that showed high binding to gC1qR

Fig 2. Transcript levels of DC8 and DC11 by severe malaria symptoms in Mozambican children. Transcript

levels (y axis) correspond to relative copy number of target genes relative to seryl-tRNA synthetase gene copies

(X100). Bars represent the median and interquartile range. Transcript levels were compared between matched

case/control pairs by Sign-test, with * indicating P<0.05. RCN: Relative copy number; DC: Domain Cassette; SM:

severe malaria; UM: uncomplicated malaria; SAn: severe anemia; Pro: prostration; ARD: acidosis or respiratory

distress.

doi:10.1371/journal.ppat.1006011.g002
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Fig 3. Transcript levels of var/DCs in P. falciparum isolates from travelers, children with uncomplicated

malaria and adults. Transcript levels (y axis) correspond to relative copy number relative to seryl-tRNA

synthetase gene copies (X100). Bars represent the median and interquartile range. Transcript levels were

compared between groups by Mann-Whitney test, with * indicating P<0.05 and ** if statistically significant after

Benjamini-Hockberg correction. RCN: Relative copy number; DC: Domain Cassette; Tv: travelers, Ch:

Mozambican children, Ad: Mozambican adults.

doi:10.1371/journal.ppat.1006011.g003
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(mean: 900 parasites/mm2, SD 101) and low to CD36 (71 IEs/mm2, SD 2. In contrast, the unse-
lected 3D7 clone (Pf3D7CD36) showed high levels of adhesion to CD36 (1400 IEs/mm2, SD
159) but no adhesion to gC1qR (Fig 5A). The selection for binding to gC1qR was associated
with a 1.3-fold increase in the levels of IgG recognition by plasmas fromMozambican children
(GeometricMean Fluorescence Intensity [GMFI) for Pf3D7gC1qR of 1679, SD: 765 vs GMFI for
Pf3D7CD36 of 1266, SD: 576, P�0.001; Fig 5C). P. falciparum 3D7gC1qR transcribedmostly the
DC8-PFD0020c (4.7-fold seryl-tRNA synthetase gene), as well as PFD0625c (5.3-fold seryl-
tRNA synthetase gene), whereas Pf3D7CD36 mostly expressed PFD0625c (3.7-fold seryl-tRNA
synthetase gene, Fig 5B). The fold ratio of PFD0020c transcript levels in gC1qR-selected Pf3D7
line compared with that in unselected parasites was 4656, and 1.45 for PFD0625c.

To identify the domain(s) mediating binding to gC1qR,we assessed the ability of recombinant
constructs representing extracellular domains of PFD0020c (Fig 5D) to bind to gC1qR by ELISA-
binding assays. The DBLβ12 from PFD0020c, but not CIDRα1.1, DBLγ6, DBLγ11 and CIDRγ8
was shown to interact with gC1qR (Fig 6A).We further confirmed the gC1qR-binding specificity
through a bead-suspension technology (Luminex) in which the beads were coupled with the seven
PFD0020c domains and tested for binding to gC1qR, allowing us to confirm that only DBLβ12
was able to bind to gC1qR (Fig A in SI Text). In contrast, only CIDRα1.1 from PFD0020c reacted
with rEPCR but not the other domains tested, DBLβ12, DBLγ6, DBLγ11 and CIDRγ8.Moreover,
purifiedpolyclonal IgG generated in rabbit against domain DBLβ12PFD0020c, at concentrations of
300 μg/mL, were able to inhibit binding of Pf3D7gC1qR to gC1qR by *40% (SD 8) compared with

Fig 4. Breadth of IgG recognition of P. falciparum isolates according to var transcript levels and origin. Geometric Mean

Fluorescence Intensity (GMFI) values from each parasite/plasma combination were scored in relation to the threshold of positivity

(GMFI of negative controls plus two standard deviations), with a score of 0 assigned if GMFI values were below the cut-off; 1 if the

value was between one- and two-fold the cut-off; 2 if the value was between two- and three-fold the cut-off; and so on until a maximum

score of 5. Breadth of IgG recognition (BoR) was calculated as the sum of scores obtained for each parasite and expressed as

percentage of the maximum score possible. BoR was compared between A) isolates transcribing var/DCs at low- or high- levels by

negative binomial regression models adjusted by age and B) between isolates collected from travelers (n = 3), severe malaria (SM,

n = 23), uncomplicated malaria (UM, n = 15) children and adults (Moz adults, n = 4) by test for trend across ordered groups. Bars

represent the mean of BoR and standard deviation. * indicates P<0.05 and ** P�0.001.

doi:10.1371/journal.ppat.1006011.g004
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binding of Pf3D7gC1qR to gC1qR in absence of antibodies (P = 0.029). Antibodies against the
other PFD0020c domains tested and antibodies against DBLβ12PF08_0140 did not inhibit the bind-
ing of Pf3D7gC1qR to gC1qR (Fig 6B). IgGs against DBLβ12-PFD0020c inhibited binding of
Pf3D7gC1qR to HBMEC cells, known to express gC1qR on their surface [14], by 46% compared to
the control antibody (α -DBLγ6-PFD0020c; Fig 6C).We also tested inhibition of gC1qR binding
by four P. falciparum isolates collected fromMozambican children which transcribedDC8, as
targeted by DC8-CIDRα1.1, or DBLβ12&DBLβ3/5 domains, at high levels (Fig B in SI Text). In
all the four isolates, binding to gC1qRwas also reduced by *50% in the presence of antibodies
against DBLβ12PFD0020c (Fig 6D). IgG against domain DBLβ12PFD0020c did not affect binding to
EPCR nor CD36 (Fig B in SI Text). Finally, we show that DBLβ12, together with DBLγ6,
DBLγ11, DBLδ1 and CIDRγ8, exhibited the highest increase in IgG recognition among malaria-
infectedMozambican children compared to never-exposed Spanish individuals, as well as the
highest increase with age of Mozambican children (more than 2.5 years versus less than 2.5 years
of age; Fig C in SI Text).

Discussion

The combined analysis of P. falciparum isolates frommalaria infectedMozambique patients and
an in vitro selectedP. falciparum 3D7 line shows a relationship between cytoadhesion to gC1qR

Fig 5. Phenotypical and molecular characterization of Pf3D7gC1qR and Pf3D7CD36. A) Binding assays of Pf3D7gC1qR and Pf3D7CD36 over

gC1qR, CD36, ICAM1 and CSA receptors. B) Transcriptional analysis of the var gene repertoire of Pf3D7. Transcript levels of var genes were

determined by qPCR using primers specific for each of the P. falciparum 3D7 var genes and were expressed as copy number relative to the

seryl-tRNA synthetase gene. C) Levels of IgG recognition by plasma from Mozambican children were compared by Wilcoxon matched pair test,

with * indicating P�0.001. Bars represent mean and standard deviation of geometric mean fluorescence intensity (GMFI). D) Domain structure

of PFD002c.

doi:10.1371/journal.ppat.1006011.g005
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and transcription of DC8-type var genes. The clinical relevance of such a phenotype has been
suggested in a field study conducted inMozambique which showed that prevalence of parasite
isolates exhibiting adhesion to gC1qRwas associatedwith multiple seizures [8], although binding

Fig 6. DBLβ12 domain of PFD0020c is involved in the interaction with gC1qR. A) Reactivity of PFD0020c

domains against gC1qR and EPCR by ELISA-based binding assays. Antibody-mediated inhibition of B) binding to

gC1qR or CD36 of P. falciparum Pf3D7gC1qR, Pf3D7CD36; C) binding to human brain endothelial cells (HBMEC) of

Pf3D7gC1qR and D) binding to gC1qR of four P. falciparum Mozambican isolates. The gC1qR binding levels in

absence of antibodies were 299 IEs/mm2 (SD 53) for Pf3D7gC1qR; 202 IEs/mm2 (SD 11) for Pfmoz1; 92 IEs/mm2

(SD 17) for Pfmoz2; 74 IEs/mm2 (SD 8) for Pfmoz3; and 81 IEs/mm2 (SD 7) for Pfmoz4. The CD36 binding level in

absence of antibodies was 615 IEs/mm2 (SD 27) for Pf3D7CD36. Binding is expressed as the percentage of mean

binding in absence of antibodies. Bars represent the mean and standard deviation. * indicates P<0.05 and

**P<0.001.

doi:10.1371/journal.ppat.1006011.g006

Adhesion to gC1qR Receptor by PfEMP1 Proteins

PLOS Pathogens | DOI:10.1371/journal.ppat.1006011 November 11, 2016 10 / 22



levels only tended to be higher compared with isolates from children with severemalaria. In the
present study, the use of primer sets targeting the most clinically-relevant DCs [28,34,41] allowed
us firstly to correlate the cytoadhesion to gC1qRwith abundance of DC8 var transcripts in
Mozambican isolates. Secondly, selection of P. falciparum 3D7 line for binding to gC1qR showed
the up-regulation of the DC8-PFD0020c. Recombinant DBLβ12PFD0020c bound to gC1qR in
ELISA assays and antibodies against this domain were able to inhibit binding of Pf3D7gC1qR and
P. falciparumMozambican isolates to gC1qR by 50%. Overall, these results point to the DBLβ12
domain present in DC8-PfEMP1 variants as the domain that mediates cytoadhesion to gC1qR.

Cytoadhesion to gC1qR by Mozambican isolates correlated positively with their transcript
levels of DC8 which, in line with previous studies [34,42,43], were higher in parasites collected
fromMozambican children with severe anemia than in those with UM. Moreover, DC8 was
transcribed at higher levels by isolates from individuals with limited antimalarial immunity
(i.e., Mozambican children and first-time infected travelers) compared to isolates from
Mozambican adults with life-long exposure to malaria. As adults and children included in this
study come from the same region in Mozambique, it is unlikely that differences observed are
due to spatial heterogeneities in the DC8-expressing profile of parasite populations, especially
when all parasite genomes appear to have similar repertoires globally [44]. The results rather
suggest an exhaustion of the var gene repertoire mediating cytoadhesion and severe malaria
with increasing immunity. Alternatively, antigenic variants different to DC8may increase
through ectopic recombination in chronic infections [45] which are expected to be more fre-
quent among semi-immune adults. Also, parasites transcribingDC8 at high levels were more
often recognizedby plasma frommalaria-exposedchildren than parasites with low DC8 tran-
scription. This is in line with the observation that malaria-exposedTanzanian population
acquires antibodies to EPCR-binding CIDR domains more rapidly than antibodies to other
CIDR domains [46]. Although isolates highly transcribing DC8 were better recognizedby plas-
mas from semi-immuneMozambican adults than by children, no difference was observed
between plasmas from children with severe and uncomplicated malaria. This latter observa-
tion, in line with previous studies conducted in the same area [47], might be attributed to diffi-
culties in disentangling the role of antibodies as markers of exposure and protection among
infected population. Overall, these results point towards the contribution of DC8 to gC1qR
binding and severe malaria, the antigenic conservation of these PfEMP1 variants, their prefer-
ential transcription by malaria parasites infecting individuals who have still not developed anti-
malarial immunity [34,48,49] and the need to perform longitudinal studies to assess the role of
antibodies against DC8 in reducing the risk of severe malaria.

Selectionof P. falciparum 3D7 line for binding to gC1qR [14] was accompanied by a marked
increase in the expression of a single varA gene, PFD0020c, whose transcript levels were
4656-fold higher than in the unselected line, as well as by an increase in the IgG recognition of
IEs by plasmas from exposed children. In contrast, the unselected line, which bound to CD36 in
static assays, transcribedB and C var genes at relatively low levels. Similarly to previous in vitro
studies with P. falciparum 3D7 [50,51], PFD0625c was also detected in the selected and unse-
lected 3D7 line, whichmay be due to some degree of relaxed transcription in 3D7 [52]. The
PFD0020c specifically up-regulated in Pf3D7gC1qR is a PfEMP1 variant characterized by having
three of the four domains usually found in DC8 (CIDRα1.1, DBLβ12, DBLγ4/6), differing only
in the first DBLα domain.We were not able to show binding of Pf3D7gC1qR to recombinant
EPCR, as would have been expected by the expression of a DC8-containing var gene, although
we did not assess this binding specificity to endothelial cells [13]. The up-regulation of a var gene
containing DC8 after selection of P. falciparum 3D7 for gC1qR binding fits well with previous in
vitro studies showing the transcription of PFD0020c’s orthologs, IT4var19/IT4var07 and
HB3var03, after selecting parasites lines IT4 and HB3 for binding to HBMEC cells [32,33].
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Importantly, up-regulation of the PFD0020c ortholog IT4var19 after selection of IT for binding
to HBMECwas associatedwith an increased binding to gC1qR as observed in static assays [33].

Recombinant DBLβ12 from PFD0020c, but not other domains from PFD0020c (DBLα1.2,
CIDRα1.1, DBLγ4/6, DBLδ1 and CIDRγ8) and from the var type 3 PFI1820w (consisting in
domains DBLα1.3-DBLε8), showed binding to gC1qR in ELISA- and Luminex-based binding
assays. Moreover, antibodies against DBLβ12 from PFD0020c were able to inhibit the binding
to gC1qR by *40% at antibody concentrations of 300 μg/mL. This inhibition was not observed
in the CD36-binder Pf3D7CD36, which suggest that DBLβ12 is the domain with the ability to
bind gC1qR. DBLβ12, which consists in 149 aa and 19 homologous blocks, is present in 12 of
the 399 PfEMP1s present in the genomes of seven P. falciparum laboratory strains [44], 9 of
them belonging to DC8-PfEMP1 and sharing 56% of similarity at the amino acid level.
DBLβ12 was shown to be among the PFD0020c domains most immunogenic in natural infec-
tions, as shown by the increase in IgG recognition by malaria-infectedMozambican children
compared to never-exposed Spanish individuals, as well as the increase in IgG levels with age
of Mozambican children. Importantly, antibodies against DBLβ12 from PFD0020c raised in
animal models were able to inhibit binding of Pf3D7gC1qR to HBMEC cells by 46% compared
to the control antibody (antibodies against DBLγ6-PFD0020c), demonstrating the gC1qR-
dependent adhesion of IEs to endothelial cells through the DBLβ12 domain. Finally, polyclonal
antibodies against DBLβ12 from PFD0020c showed cross-inhibitory activity against all the 4
Mozambique clinical isolates sharing the same gC1qR adhesion in vitro, reduced binding by
50%. Three of the four Mozambican field isolates analyzed transcribedDC8, as targeted by
DC8-CIDRα1.1.However, one of the isolates (Pfmoz2) did not transcribeDC8, but transcribed
DBLβ12&DBLβ3/5 at high levels, suggesting that DBLβ12-containing DC8-like PfEMP1s may
share the ability to bind gC1qR. Overall, these data show that parasites with a virulence-associ-
ated adhesion phenotype such as gC1qR share PfEMP1 epitopes that can be targeted by strain-
transcending functional antibodies to PfEMP1. The existence of shared surface epitopes
amongst functionally similar disease-associatedP. falciparum parasite isolates suggests the fea-
sibility of developing therapeutic interventions against severe malaria

This study also shows that binding level of IEs to CD36 correlated positively with transcript
levels of group B genes and negatively with varA levels, confirming the earlier findings that par-
asite ligands for CD36 are PfEMP1 variants encoded by var genes belonging to groups B and C
[26,53,54]. In contrast to other studies showing up-regulation of DC13 in children with SM
[34,42], this DCwas not found associated with SM in children in our study, probably due to
the low prevalence (7%) of cerebral malaria in the study population. However, transcript levels
of DC13 were positively correlated with binding levels to ICAM1. Although DC13 does not
have a conservedDBLβ domain with a proven ICAM-1 binding capability [55] most of DC13s
are flanked by DBLβ domains, and thus this DCmight be associated with a ICAM1-binding
DBLβ domain type yet to be described. In fact, the DBLβ domain following DC13 in
PF11_0521 [44] has been shown to bind ICAM1 [56]. Importantly, results of this study provide
evidences of the potential involvement of DC11 in the pathophysiology of severe malaria.
DC11 transcripts were found at higher levels in parasites collected from children with SM than
UM as well as in isolates fromMozambican children and first exposed individuals (travelers)
compared to isolates fromMozambican adults with life-long exposure to malaria. This DC11
has been involved in rosetting mediated by IgM [57], which has been suggested as the most
clinically important rosetting phenotype [58]. However, transcript levels of DC11 were not
associated with rosetting in the Mozambican isolates tested. Similarly, platelet-mediated agglu-
tination, previously associated with binding to gC1qR [14], did not show correlation with any
var DC. These results suggest that other receptors may be involved in IE rosetting and platelet-
mediated agglutination and point towards the relevance of DC11 in the physiopathology of
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SM. However, further work will be necessary to elucidate the role of DC11 in the severity of the
malaria disease.

This study has several limitations. First, more than half of the 43 children with severe
malaria included in this study (n = 24; 56%) had two or more criteria for malaria severity [59].
Such a high degree of overlap in severe symptoms, which is otherwise common in endemic
areas [60], together with the limited sample size of the cerebral malaria group, may have ham-
pered the identification of molecular correlates that are particular to a clinical form of SM. Sec-
ond, the degenerate primers used in qPCR assays have incomplete coverage of the global var
gene repertoire. Moreover, the parasite populations obtained from peripheral bloodmay only
partially represent the sequestering parasite population. Third, the conditions of the binding
assay may not allow for 100% inhibition as has been shown for other receptors [32,61]. Alter-
natively, residual binding may be supported by other domains, for example those present in
DC11, that may also mediate gC1qR adhesion. Fourth, given limited amounts of RNA and
cryopreserved IEs available from P. falciparum field isolates included in the study, we focused
the transcriptional analysis on domain cassettes previously associated with severe malaria
[34,57] and the binding phenotypes on those receptors previously analyzed [8]. Fifth, gC1qR
binding assays were performed on five of the 7 PFD0020c domains, but we did not test multiple
domains constructs potentially involved in the binding phenotype. Finally, the fact that levels
of transcripts encoding certain PfEMP1 domains types associates with the cognate parasites
receptor binding capability does not necessarilymean that the particular domain mediates that
receptor-binding, and other PfEMP1 domains or structures (i.e., DC11) could convey parasites
this binding phenotype. More studies are needed to assess the relationship between expression
of DC11, binding to gC1qR and malaria severity.

In summary, the positive correlation between gC1qR cytoadhesion by P. falciparum field
isolates and their DC8 transcript levels, the overexpression of DC8-PFD0020c after selection of
P. falciparum 3D7 for binding to gC1qR, and the inhibition of gC1qR binding by antibodies
against DBLβ12PFD0020c, supports that DC8-PfEMP1smediate binding to gC1qR through a
conservedmotif present in the DBLβ12 domain. Overall, our findings suggest that binding to
gC1qR,mediated by interactions with DBLβ12, constitutes one of the three different host
receptors suggested by protease-treatment assays of IT4 [36]. Moreover, the successful induc-
tion of strain-transcending antibodies against DBLβ12 domain from the PfEMP1 variant
PFD0020c capable of inhibiting binding to gC1qR by field isolates suggests shared surface epi-
topes amongst heterologous gC1qR-binding PfEMP1 variants and the feasibility of designing
interventions to prevent severe malaria. DC8may thus facilitate binding to endothelial cells
[32,33] via the interactions with gC1qR, known to be expressed in a wide range of human cells
[14], in concert with binding to EPCR [13]. Further studies are needed to assess the relation-
ship betweenDC8 expression, EPCR and gC1qR cytoadhesion, and their influence on malaria
disease. Similarly to EPCR, gC1qR has been implicated in inflammatory processes such as the
modulation of the complement cascade [40] and suggested to mediate bacterial cell adhesion
to sites of vascular injury and thrombosis [62]. Moreover, up-regulation of gC1qR in bonemar-
row endothelial cells through inflammatorymediators [63] could contribute to sequestration
of asexual late stages observed in ex vivo studies [64,65]. The results of this study support the
possibility of a role for gC1qR in malaria-associated endovascular pathogenesis.

Methods

Study population

The study was conducted at the Manhiça District Hospital (MDH) in SouthernMozambique, a
malaria endemic area where transmission of P. falciparum is perennial with some seasonality
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and moderate intensity [66], and at the Tropical Medicine Unit in Hospital Clinic of Barcelona
(HCB), Spain. BetweenApril and November 2006, 86 children 1 to 5 years of age [8] were
recruited at MDH with P. falciparum clinical malaria, defined as the presence of fever (axillary
temperature�37.5°C) and an asexual parasitemia of P. falciparum �500 parasites/μL on thin
blood film examination [67]. Children with SM were those presenting with at least one of the
following clinical definitions: cerebral malaria, severe anemia, acidosis or respiratory distress,
prostration, hypoglycemia or multiple seizures [8]. Children with clinical malaria not showing
any of the mentioned signs of severity and able to take oral medication (uncomplicated
malaria; UM) were sex and age (+/-3 months) matched to SM cases. All cases and controls
were reviewed by the study pediatrician to confirm that malaria was the sole or principal cause
of the disease. Children with concomitant positive bacteremia were excluded from the study.
Non-pregnant Mozambican adults (women and men) with life-long exposure to P. falciparum
(n = 25) presenting clinical malaria at MDH were recruited between 2004 and 2005 [41]. Euro-
pean adults presenting a first episode of malaria after a travel to malaria endemic areas
(n = 21), were recruited between 2005 and 2009 at HCB (Spain) [68]. Before treatment, periph-
eral bloodwas collected by venipuncture and 2 drops were spotted onto filter paper. Following
centrifugation, plasma and 300 μL of the red blood cell pellet resuspended in 3 mL of Trizol
reagent (Invitrogen) were stored at -80°C. The remaining red blood cell pellet was cryopre-
served in liquid nitrogen [8].

Ethical considerations

The study protocol was approved by the National Mozambican Ethics ReviewCommittee and
the Hospital Clínic of Barcelona Ethics ReviewCommittee. All patients were included into the
study after written informed consent was given by them or their parents/guardians and were
treated following national guidelines of Mozambique or Spain at the time of the study.

Parasite densities and msp1/msp2 genotyping

Total genomic DNA was extracted from filter papers using QIAmp DNA Mini Kit (Qiagen).
Parasitemia was measured by real-time quantitative PCR (qPCR) targeting the P. falciparum
18S ribosomal RNA gene [69]. The number of concurrent infections (multiplicity of infection,
MOI) was estimated as the highest number ofmsp-1 ormsp-2 alleles detected in the sample by
nested-PCR genotyping [70].

var/DC transcriptional profile

Total RNA prepared in Trizol reagent was extracted using PureLinkMicro-to-Midi RNA purifi-
cation kit (Ambion). RNA was treated with DNaseI (Invitrogen) for 1.5h at 37°C. After discard-
ing the presence of gDNA by PCR-based amplification of P. falciparum tubulin (PF10_0084)
[41] or Seryl-tRNA synthetase genes (PF07_0073) [71], reverse transcription was performed
using the Super Script III First Strand synthesis system (Invitrogen) with random hexamers
primers. ComplementaryDNA (cDNA) synthesis was confirmedby PCR-based amplification of
P. falciparum tubulin or seryl-tRNA synthetase genes. Then, the transcript levels of var sub-
groups was determinedby qPCR using degenerated primers targeting varA-exon2, varB group
(varB-UTR region), varC group (varC-UTR region) [28], varA-DBLα1 (varA-notDC3) [34] and
var2CSA (DBL3X domain) [41]. DC transcript levels were assessed by qPCR using a set of prim-
ers targeting semi-conserveddomains belonging to DC8 (CIDRα1.1), DC9 (DBLγ), DC11
(CIDRβ2+DBLγ7; Forward: TTRGTHACAGCAAAATAYGAAGG TG and reverse: CTCTTA
CRATATCWCCTATATCK GCA), DC13 (CIDRα1.4), DC16 (CIDRδ) and DC19 (DBLα0.16)
[34]. Seryl-tRNA-synthetase gene was used as the reference gene [71]. Individual 20 μL qPCR
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reactions were performed in duplicate using ABI Prism 7500 Real-Time system (Applied Biosys-
tems) containing 10 μL of Power SYBR GreenMaster Mix (Applied Biosystems), 4 μL of cDNA
and primer concentration of 1μM with cycling conditions of 50°C for 2 min, 95°C for 10 min fol-
lowed by 40 cycles at 95°C for 15 s and 60°C for 1 min. Data were analyzed using the 7500 System
SDS software v1.4. PCR efficienciesof each primer pair were calculated on a standard curve from
7 log dilutions of P. falciparum 3D7 or P. falciparum ItG gDNA by the formula (E = 10−1/m),
wherem is the slope. Specificity of amplification was assessed by melting-curve analysis of final
products. Non-template controls were tested in every plate. Samples with fluorescence detected
over the 40 cycles were considered positive. If Ct value felt out of the linear range of the standard
curve, a Ct value of 41 was assigned. Ct values were converted to copy numbers [72] using the
formula C/EΔCt, where E is the efficiencyof the PCR,C is the number of copies of the gene in the
P. falciparum 3D7 or ItG genome [34,72] and ΔCt is the difference in Ct values between a sample
and P. falciparum 3D7 or ItG reference gDNA loaded in each plate [73]. Relative copy number of
target genes was calculated by dividing the target gene copies by Seryl-tRNAsynthetase gene cop-
ies. Transcript levels of var/DCswere considered as high if the copy number was�0.5-fold of
Seryl-tRNA-synthetase copy numbers and low if copy number was<0.5-fold.

Cytoadhesion profiling

Adhesion of P. falciparum pediatric isolates to gC1qR (Creative BioMart), CD36, ICAM-1
(R&D Systems) and Duffy-Fc [74], as well as rosetting and PM-agglutination was assessed as
previously described [8] and expressed as IEs/mm2, percentage of IEs forming rosettes and per-
centage of IEs in a clump, respectively. Adhesion to purified receptors was considered positive
if the number of IEs bound per mm2 was higher than the mean binding plus 2 standard devia-
tions to Duffy-Fc coated Petri dishes (19.5 IE/mm2) [8], rosetting if frequency of rosettes was
higher than 2% [75] and PM-agglutination if frequency of clumps was higher in presence of
platelets than in buffer-control [8].

Antigenic profiling of infected erythrocytes

Forty five P. falciparum isolates were tested for IgG recognition by plasma from 50 children
with SM and 50 with UM, as well as 22 adults recruited in the same study area [8]. After thaw-
ing and washing erythrocytes in incomplete RPMI 1640 medium, parasites were matured at
37°C for 18–36 hours until late-stages. Fifty μL of plasmas at 1/10 dilution, previously depleted
of antibodies reacting against uninfectedA/B-erythrocytes,were mixed with 50 μL of erythro-
cyte suspension at 1% hematocrit and 0.5–2.2% parasitemia in PBS-1% BSA for 1 hour at room
temperature. After sequential incubations with 100 μL of polyclonal rabbit anti-human IgG
(DakoCytomation; 1/200 dilution) and 100 μL of Alexa Fluor 488-conjugated donkey anti-rab-
bit IgG (Invitrogen; 1/1,000) plus 10 μg/mL of ethidium bromide, data from 1,000 ethidium
bromide positive events were acquired with a BectonDickinson LSR Fortessa flow cytometer.
Reactivity against IEs was expressed as the difference between the geometricmean fluorescence
intensity (GMFI) of IEs and the GMFI of uninfected erythrocytes.A pool of plasma samples
from immuneMozambican adults and six plasma samples from non-exposed European adults
were included as positive and negative controls, respectively. To allow comparability between
isolates, GMFI values from each parasite/plasma combination were scored in relation to the
threshold of positivity for each isolate defined as the GMFI of negative controls plus two stan-
dard deviations (cut-off).A score of 0 was assigned if GMFI values were below the cut-off; 1 if
the value was between one- and two-fold the cut-off; 2 if the value was between two- and three-
fold the cut-off; and so on until a maximum score of 5. Breadth of IgG recognition (BoR) was
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calculated as the sum of scores obtained for each parasite and expressed as percentage of the
maximum score possible.

var profiling of P. falciparum 3D7 selected for cytoadhesion to gC1qR

To select for binding to gC1qR, a P. falciparum 3D7 culture synchronized in trophozoite/schiz-
ont stages was incubated for 1 h in bacteriologicalPetri plates coated with 2 mL of recombinant
gC1qR diluted in PBS (50 μg/mL) [14]. Unbound parasites were collected using a pipette and
separated from bound parasites. Both unbound and bound parasites were cultured, with the
latter being subjected to a second round of selection for binding to gC1qR. After a limiting dilu-
tion cloning, a selected and unselected clone were expanded and tested for binding to gC1qR,
CD36, ICAM-1, CSA (Chondroitin sulfate A sodium salt from bovine trachea Sigma-Aldrich)
and BSA (Bovine SerumAlbumin, Santa Cruz Biotechnology), following standard procedures
[8]. The var genes transcription profile was determined for both clones by individual qPCR
performed in duplicate using primers covering the P. falciparum 3D7 var gene repertoire
[71,76].

Binding between recombinant PfEMP1 domains and gC1qR

Recombinant PFD0020c domains produced in insect or Escherichia coli cells [13] were
screened for binding against recombinant human EPCR or gC1qR by ELISA (CIDRα1.1,
DBLβ12, DBLγ6, DBLγ11, CIDRγ8) and Luminex (DBLα1.2, CIDRα1.1, DBLβ12, DBLγ6,
DBLγ11, DBLδ1 and CIDRγ8) in duplicate. For the ELISA assays, MaxiSorp immunoplates
(Nunc) were coated overnight at 4°C with 50 μL per well of recombinant human EPCR and
gC1qR at 3 μg/mL in PBS pH 7.4. After blocking with PBS 3%-skimmedmilk and washing
three times with PBS-0.05% TweenR20, PFD0020c domains were added at a concentration of
5 μg/mL in PBS 1%-skimmedmilk and incubated for 1 h at 37°C. Secondary anti-V5-HRP
antibody diluted in PBS 1%-skimmedmilk at 1:3000 was added to each well and incubated for
1 hour at room temperature with gentle shaking. Plates were developed using 100 μL per well
of a phosphate solution with o-phenylenediamine. The colorimetric reaction was stopped with
100 μL of 3 MH2SO4 after 10 minutes and the optical density (OD) was measured at 490 nm.
For the Luminex assays, gC1qR was coupled at 50 μg/107 beads to MagPlex-C magnetic car-
boxylated microspheres (Luminex Corporation) followingmanufacturer’s instructions. Two
thousand coupled beads were incubated with the recombinant PFD0020c domains (DBLα1.2,
CIDRα1.1, DBLβ12, DBLγ6, DBLγ11, DBLδ1 and CIDRγ8) at 1ug/ml in incubation buffer (IB;
1% SkimMilk in PBS), overnight at 4°C. After 3 washes with washing buffer (PBS + 0.5%
Tween20 + 0.25% skimmilk), the beads were incubated with anti-V5 frommouse (Thermo-
Fisher, R960-25) at 1/2500 in IB at room temperature for 1 hour, followed by an incubation
with anti-mouse biotin conjugated antibody (Sigma, B7401) at 1/10000 in IB for 1 hour at RT,
and streptavidin-R-phycoerythrin (Sigma, 42280) at 1/1000 in IB for 30 minutes at RT, with 3
washes after each incubation.Median Fluorescence Intensity was obtained using the Luminex
100/200 System (Luminex Corp., Austin, Texas).

Inhibition of P. falciparum-infected erythrocyte binding to gC1qR and

Human Brain Microvascular Endothelial Cells

Anti-sera against domains belonging to PFD0020c (α-CIDRα1.1PFD0020c, α-DBLβ12PFD0020c,
α-DBLγ6PFD0020c, α-CIDRγ8PFD0020c)), PF08_0140 (α-DBLβ12PF08_0140) and PFI1820w (α-
PFI1820w) were produced in rabbit [13]. After depleting rabbit sera of antibodies against
human erythrocytes, IgGs were purified by Affi-Gel Protein-AMAPS II Kit (Bio-Rad, Rich-
mond, CA) and quantified using EPOCH spectrophotometer. To test their ability to inhibit
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binding of P. falciparum to recombinant gC1qR, 20 μL pellet of P. falciparum 3D7 pigmented
trophozoite (�2% parasitaemia, 1% hematocrit) were incubated in duplicate for 1.5 h at 37°C
with 300 μg/mL rabbit IgGs diluted in PBS and used for a standard adhesion assay in Petri
dishes [8]. Similar procedures were used to test inhibition of gC1R binding by 4 Mozambican
P. falciparum isolates (Pfmoz 1–4).

Human Brain Microvascular Endothelial Cells (HBMEC; Innoprot) were seeded on flat-
bottomed Nunclon Δ Surface (Nunc cat number: 150628) 12-well plates 3 to 4 days before
assays and allowed to growth to 30–40% confluence in endothelial cell medium (Innoprot).
Prior to the adhesion assay, HBMECs were washed once with PBS followed by addition of
20 μl 2% FCS in RPMI/well. For binding inhibition, IgG-purified anti-PfEMP1 rabbit antibod-
ies and PBS alone were added to 2% parasitemia and 2% hematocrit late-stage IEs at a final
concentration of 300 μg/ml incubated for 1.5 h at 37°C. 300 μl of the IE suspension were added
to each well and co-incubated on a rocking table for 1 hour at room temperature. Unbound
infected erythrocyteswere removed by several gentle washes. Wells were then fixed in 2% glu-
taraldehyde over night at room temperature and stained with Giemsa for 10 min. Binding was
quantified by determining the number of IEs adhering per endothelial cells nuclei in 50 ran-
dom fields under 400× magnification. All binding assays were done in triplicate. The percent-
age of binding was expressed relative to binding in the absence of antibodies.

IgG measurement in human plasma samples

IgG reactivity against the recombinant PFD0020c domains (DBLα1.2, CIDRα1.1, DBLβ12,
DBLγ6, DBLγ11, DBLδ1 and CIDRγ8) was assessed in 135 malaria-infectedMozambican chil-
dren (67 with severe malaria and 68 with uncomplicated malaria) and 18 Spanish adults never
exposed to malaria. PfEMP1 domains or BSA (Sigma, A7030, as background control) were
coupled at 50 μg/107 beads to MagPlex-C magnetic carboxylatedmicrospheres (Luminex Cor-
poration) following manufacturer’s instructions.Multiplexed beads were incubated with
plasma samples (1/50 dilution) and antibody levels were detected as described elsewhere [77].
Positive, negative and background controls were added to each plate. Median Fluorescence
Intensity (MFI) was obtained from the InVitrogen Luminex platform (xPONENT Software, at
least 100 counts/analyte) and normalized for inter-plate variability by multiplying MFIs by the
median value of a positive control from all plates and dividing by each plate’ value.

Statistical analysis

Correlations between variables were assessed by Spearman’s rank coefficient,with Benjamini-
Hochberg correction for multiple comparisons. Continuous data were compared between
matched case/control pairs by Sign-test and between non-paired groups by Mann-Whitney
test. BoRwas compared between groups by a Test for trend across ordered groups and between
isolates transcribing var/DCs at low- or high-levels by negative binomial regression models
adjusted by age. Mean ratio of IgGs and 95% confidence intervals betweenMozambican chil-
dren and Spanish adults, as well as betweenMozambican children older than 2.5 years of age
and less than 2.5 years were calculated in linear regression models, with log-transformedMFIs.
Statistical analysis was performedwith Stata/SE software (version 12.0; StataCorp).
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