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Abstract

Background—The potential clinical impact of KRAS and epidermal growth factor receptor 
(EGFR) mutations has been investigated in lung adenocarcinomas; however, their prognostic value 

remains controversial. In our study, we sought to investigate the prognostic significance of driver 

mutations using a large cohort of early-stage lung adenocarcinomas.

Methods—We reviewed patients with pathologic early-stage, lymph node-negative, solitary lung 

adenocarcinoma who had undergone surgical resection (1995–2005; stage I/II = 463/19). Tumors 

were classified according to the IASLC/ATS/ERS classification and genotyped by Sequenom 

MassARRAY system and polymerase chain reaction-based assays. In stage I disease, the Kaplan-

Meier method and cumulative incidence of recurrence (CIR) analyses were used to estimate the 

probability of overall survival (OS) and recurrence, respectively.

Results—Of all, 129 (27%) patients had mutations in KRAS, 86 (18%) in EGFR, 8 (2%) in 

BRAF, 8 (2%) in PIK3CA, 4 (1%) in NRAS, and 1 (0.2%) in AKT1. EGFR L858R mutation 

correlated with lepidic predominant histology (P = 0.006) while exon 19 deletion correlated with 

acinar predominant histology (P < 0.001). EGFR mutations were not detected in invasive 
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mucinous adenocarcinomas (P = 0.033). The 5-year OS of patients with KRAS mutant tumors was 

significantly worse (n = 124; 5-year OS, 63%) than those with KRAS wild-type (n = 339; 77%; P 
< 0.001). In solid predominant tumors, KRAS mutations correlated with worse OS (P = 0.008) and 

increased risk of recurrence (P = 0.005). On multivariate analysis, KRAS mutation was an 

independent prognosticator of OS in all patients (hazard ratio, 1.87; P < 0.001) and recurrence in 

solid predominant tumors (hazard ratio, 4.73; P = 0.012).

Conclusion—In patients with resected stage I lung adenocarcinomas, KRAS mutation was an 

independent prognostic factor for OS and recurrence, especially in solid predominant tumors.
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INTRODUCTION

Recent advances in thoracic medical oncology have focused on the identification of driver 

mutations and the development of molecular-targeted therapy in patients with non-small cell 

lung cancer (NSCLC). Tumors with driver mutations in the tyrosine kinase domain of 

epidermal growth factor receptor (EGFR), which occurs primarily in adenocarcinomas, 

show higher sensitivity to EGFR tyrosine kinase inhibitors (TKIs), erlotinib, and gefitinib in 

NSCLC patients.1–5 More recently recognized anaplastic lymphoma kinase (ALK) 

rearrangements also predicted a higher response rate to the targeted agent (crizotinib).6, 7

The 2011 international multidisciplinary histologic classification proposed by the 

International Association for the Study of Lung Cancer (IASLC), American Thoracic 

Society (ATS), and European Respiratory Society (ERS)8 demonstrates the prognostic 

significance of the predominant histologic subtype and has been validated in large 

independent cohorts (>400 patients) across multiple countries.9–12 Moreover, EGFR and 

KRAS mutations that correlate with predominant histologic subtypes, according to this 

classification, have been identified.11–14 However, correlations with other rare mutations 

(such as BRAF, PIK3CA, and NRAS) and each predominant histologic subtype have not 

been thoroughly investigated and there is little data suggesting driver mutation status 

correlates with prognosis, within a single histologic subtype or within a specific tumor 

grade.

In NSCLCs, although the potential clinical impact of KRAS and EGFR mutations has been 

investigated, their prognostic significance remains controversial, specifically in early-stage 

disease.15–25 In our study, we sought to investigate the prognostic significance of driver 

mutations (mainly in KRAS and EGFR) using a large cohort of resected early-stage lung 

adenocarcinomas and analyze the molecular (KRAS, EGFR, and other rare gene mutation) 

correlations with histologic subtypes based on the 2011 IASLC/ATS/ERS classification, 

which is currently published in the 2015 World Health Organization Classification of 

Tumours of the Lung.26
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MATERIALS AND METHODS

Patients

This retrospective study (WA0269-08) was approved by the Institutional Review Board at 

Memorial Sloan Kettering Cancer Center (MSK). We reviewed patients with pathologic 

stage I–II, lymph node-negative, solitary lung adenocarcinomas who had undergone surgical 

resection at MSK between 1995 and 2005. Of all, only 4 (0.8%) patients received adjuvant 

chemotherapy. Tumor slides and blocks were available for review and molecular analyses 

from 482 patients (stage IA [n = 316]; stage IB [n = 147]; and stage II [n = 19]). Clinical 

data were collected from our prospectively maintained database. Disease stage was assigned 

by the seventh edition of the American Joint Committee on Cancer TNM Staging Manual.27 

According to the sixth edition of TNM classification, all patients in this cohort had stage I 

disease with no lymph node metastasis. By applying the seventh edition of TNM 

classification, however, a minority of cases were reclassified as stage II tumors (n = 19). 

Subsets of these cases have been used in our previous publications.28–33 However, there is 

no overlap of patients with our recent paper focusing on EGFR and KRAS mutations in lung 

adenocarcinoma.14

Histologic evaluation

All available hematoxylin and eosin (H&E)-stained slides were reviewed by two 

pathologists (K.K. and W.D.T.), both of whom were blinded to patient clinical outcomes, 

using an Olympus BX51 microscope (Olympus, Tokyo, Japan) with a standard 22-mm 

diameter eyepiece. Tumors were classified according to the IASLC/ATS/ERS classification8 

and were grouped into 3 architectural grades according to histologic subtype—low-grade 

(adenocarcinoma in situ, minimally invasive adenocarcinoma or lepidic predominant), 

intermediate-grade (papillary predominant or acinar predominant), and high-grade 

(micropapillary predominant, solid predominant, invasive mucinous, or colloid 

predominant).10, 29

Percentage of cribriform pattern—which our group has recently published as a distinct 

histologic pattern in acinar predominant subtype with poor prognosis in stage I lung 

adenocarcinoma was also recorded in 5% increments and designations of cribriform-

predominant subtype were made using criteria similar to the IASLC/ATS/ERS 

classification.32 The signet-ring cell feature is characterized by abundant intracellular mucin 

and a crescentic nucleus displaced toward one end of the cell, and it represents a cytologic 

change that can occur in multiple histologic subtypes of invasive adenocarcinoma (acinar, 

papillary, micropapillary, and solid predominant). Percentage of signet-ring cell feature was 

recorded regardless of the histologic subtype of each tumor; this feature was recorded as 

being present when any percentage was found.

Nuclear atypia was identified in the area with highest degree of atypia and was graded as 

follows: mild (uniform nuclei in size and shape), moderate (intermediate size nuclei with 

slight irregularity), and severe (enlarged nuclei in varying degrees and some nuclei at least 

twice as large as others).31, 34 Mitoses were evaluated in 50 high-power fields (HPFs) of 

×400 magnification (0.237 mm2 field) in areas with the highest mitotic activity and were 
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counted as the average number of mitotic figures per 10 HPFs.31, 34 Visceral pleural 

invasion, lymphovascular invasion, and tumor necrosis were also investigated.

The results of thyroid transcription factor-1 (TTF-1) immunohistochemistry, on the basis of 

tissue microarray analysis, were obtained from our previous study and any immunoreactivity 

for TTF-1 was considered positive.30

Mutation analysis

In each case, H&E-stained slides from formalin-fixed paraffin-embedded tumor blocks were 

reviewed to identify and circle the tumor area, thereby ensuring >50% tumor content in 

tumor blocks. Ten unstained sections (10-μm) were cut from tumor blocks for molecular 

analysis. When the tumor content was <50%, macrodissection was performed using the 

blade tip to scrape off the selected tumor areas on 10 corresponding 10-μm unstained 

sections on the slides. Genomic DNA was extracted using the DNeasy Tissue Kit (Qiagen, 

Valencia, CA).35

Tumors were genotyped using the Sequenom MassARRAY system (Sequenom, San Diego, 

CA), just as in our previous publications.35, 36 Amplification and extension primers were 

designed using Sequenom Assay Designer v3.1 software to target the driver mutations in 8 

oncogenes: EGFR, KRAS, BRAF, PIK3CA, NRAS, AKT1, ERBB2/HER2, and MAP2K1/
MEK1 (for a total of 92 nonsynonymous mutations).36 Allele-specific single base extension 

products were quantitatively analyzed using matrix-assisted laser desorption/ionization-time 

of flight/mass spectrometry on the Sequenom MassArray Spectrometer. Automatically 

generated genotype calls were confirmed with manual review of the spectra.35 Additionally, 

EGFR exon 19 deletion was detected via length analysis of fluorescently labeled polymerase 

chain reaction products.37

Immunohistochemistry and scoring of ALK by using tissue microarrays

Formalin-fixed, paraffin-embedded tumor specimens were used for tissue microarray 

construction. Briefly, 6 representative tumor areas were marked on H&E-stained slides and 

cylindrical 0.6-mm tissue cores were arrayed from the corresponding paraffin blocks into a 

recipient block using an automated tissue arrayer (ATA-27; Beecher Instruments, Sun 

Prairie, WI), resulting in 15 tissue microarray blocks. From each tissue microarray block, 4-

μm-thick paraffin sections were prepared for immunohistochemical analysis. In total, 471 

cases with adequate cores were available for immunohistochemical analysis.

We briefly deparaffinized 4-μm sections from the tissue microarray blocks in xylene and 

dehydrated in graded alcohols. The standard avidin-biotin complex peroxidase technique 

was used for immunohistochemical staining of anti-ALK antibodies (clone 5A4; Adcam; 

diluted at 1:30). Sections were stained using a Ventana Discovery XT Automated 

Immunohistochemical Stainer (Ventana, Tucson, AZ), in accordance with the manufacturer 

guidelines. Diaminobenzidine was used as the chromogen and hematoxylin was used as the 

nuclear counterstain. Positive control tissues were stained in parallel with the study cases.

ALK expression was recorded as intensity of tumor cells with cytoplasmic-positive 

immunostaining in each tumor core. The intensity of staining was scored as 0 (no staining), 
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1 (faint cytoplasmic staining), 2 (moderate granular cytoplasmic staining), and 3 (strong 

granular cytoplasmic staining).14, 38–40 Average intensity score of tumor cores was 

considered indicative of ALK expression for each patient. According to the intensity score, 

ALK expression was divided into two groups—negative (score of 0–1) and positive (score > 

1).14, 39, 40

Statistical analysis

In the entire cohort (n = 482), associations between variables were analyzed using the 

Fisher’s exact test for categorical variables and the Wilcoxon test for continuous variables. 

We investigated the prognostic significance (for survival and recurrence) of each factor only 

in patients with stage I disease (n = 463). Overall survival (OS) was defined as time from 

surgery to death or last follow-up, and was estimated using the Kaplan-Meier method. 

Associations between factors and OS were analyzed using the log-rank test and the Cox 

proportional hazards regression model. Cumulative incidence of recurrence (CIR) analysis—

where death from any causes other than recurrence was considered a competing event—was 

used to estimate probability of recurrence.41 Follow-up duration was calculated from date of 

surgery to date of first recurrence, death from any cause, or last follow-up. Differences in 

CIR between groups were assessed using the Gray method for univariate analyses and the 

Fine-Gray method for multivariate analyses after adjustment for important potential 

confounders.42

All P-values were determined using two-tailed statistical analyses and P < 0.05 was 

considered statistically significant. Statistical analyses were conducted using SAS v9.2 (SAS 

Institute, Cary, NC) and R (R Development Core Team, 2010), including the “survival” and 

“cmprsk” packages.

RESULTS

Patient demographics and their associations with EGFR and KRAS mutations

Patient clinicopathologic factors are summarized in Table 1. Of all (n = 482), median patient 

age was 69 years (range, 33–89 years) and most patients were women (n = 304). During the 

study period in stage I disease, 76 (16%) patients experienced recurrence, 164 (35%) died 

from any cause, and median follow-up period for patients without recurrence was 56.8 

months (range: 0.3–160.0 months).

EGFR mutation was positively associated with female sex (P = 0.019) while KRAS 
mutation was not associated with patient gender (P = 0.67). KRAS mutation was more 

frequently identified in ever smokers than in never smokers (P < 0.001). KRAS transversion 

mutations were also more frequently identified in ever smokers (P < 0.001) while KRAS 
transition mutations were not associated with smoking (P = 0.34). EGFR mutation was more 

frequently identified in never smokers (P < 0.001) and TTF-1 positive tumors (P = 0.004), 

and negatively associated with presence of tumor necrosis (P = 0.014) and mitotic count (P < 

0.001). Both EGFR exon 21 L858R mutations and exon 19 deletions were associated with a 

history of never smoking (P < 0.001 and P < 0.001, respectively).
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As for correlations between smoking history and predominant histologic subtypes, solid 

predominant tumors were more frequently observed in ever smokers than in never smokers 

(14% vs. 3%; P = 0.002). Acinar predominant tumors were more frequently observed in 

never smokers than in ever-smokers (57% vs. 42%; P = 0.012). Lepidic predominant tumors 

were more frequently identified in never smokers and former smokers than in current 

smokers (8% vs. 8% vs. 1%); the difference was not statistically significant (P = 0.11).

Driver mutation profiles according to predominant histologic subtypes

Details of molecular results are summarized in Table 2. There were 129 (27%) patients that 

had mutations in KRAS, 86 (18%) in EGFR, 8 (2%) in BRAF, 8 (2%) in PIK3CA, 4 (1%) in 

NRAS, and 1 (0.2%) in AKT1. No tumors had mutations in ERBB2/HER2 and MAP2K1/
MEK1. Among KRAS-mutant tumors, 110 were transversion mutations and 19 were 

transition mutations. Among EGFR-mutant tumors, 42 were exon 21 L858R mutations and 

39 were exon 19 deletions. Among PIK3CA-mutant tumors, 2 cases coexisted with KRAS 
mutations and 2 with EGFR mutations.

Distribution of driver mutations according to histologic subtypes is summarized in Table 3. 

KRAS mutation was identified in tumors with all histologic subtypes. EGFR mutation was 

identified in tumors with all histologic subtypes except invasive mucinous adenocarcinomas 

and colloid predominant tumors. Invasive mucinous adenocarcinomas and colloid 

predominant tumors harbored only KRAS mutations.

KRAS and EGFR mutation associations with predominant histologic subtypes

KRAS and EGFR mutation associations with histologic predominant subtypes are 

summarized in Table 4. KRAS mutation was not significantly associated with any histologic 

subtype, including invasive mucinous adenocarcinoma. EGFR mutation was more likely to 

be identified in lepidic predominant tumors (29%) than non-lepidic predominant tumors 

(17%); this difference was only a trend and not statistically significant (P = 0.10). However, 

EGFR L858R mutation was more frequently identified in lepidic predominant tumors (24%) 

than non-lepidic predominant tumors (8%; P = 0.006). EGFR mutation was more frequently 

identified in acinar predominant tumors (25%) than non-acinar predominant tumors (12%; P 
< 0.001). EGFR exon 19 deletion was more frequently identified in acinar predominant 

tumors (13%) than non-acinar predominant tumors (4%: P < 0.001) while EGFR L858R 

mutation was not associated with acinar predominant pattern (P = 0.26). EGFR mutation 

was less frequently identified in solid predominant tumors (5%) than non-solid predominant 

tumors (20%; P = 0.004), and was not detected in invasive mucinous adenocarcinomas (P = 

0.033).

Tumors were classified into 3 groups according to percentage of each histologic pattern (0–

19%, 20–49% and ≥50%), as previously reported by our group,13 and their associations with 

KRAS and EGFR mutations were analyzed. KRAS mutation was less frequently identified 

in tumors with 20–49% and ≥50% lepidic pattern than in those with 0–19% lepidic pattern 

(frequency of KRAS mutation, 20%, 23%, and 30%, respectively), even though this 

difference was not statistically significant (P = 0.11). However, incremental increases in the 

amount of other histologic patterns were not associated with KRAS mutation. Incremental 
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increases in the amount of lepidic and acinar patterns (0–19%, 20–49% and ≥50%) were 

positively associated with frequency of EGFR mutation (frequency of EGFR mutation by 

lepidic pattern, 12%, 30%, and 33%, respectively, P < 0.001; frequency of EGFR mutation 

by acinar pattern, 10%, 14%, and 25%, respectively, P = 0.002). By contrast, incremental 

increase in the amount of solid pattern (0–19%, 20–49% and ≥50%) was inversely 

associated with frequency of EGFR mutation (frequency of EGFR mutation, 22%, 9%, and 

6%, respectively, P = 0.001). Thirty cribriform predominant tumors were identified, and 

among them, 9 tumors had KRAS mutation and 2 had EGFR mutation. Presence of signet 

ring cell features and cribriform predominant pattern were not associated with either KRAS 
or EGFR mutations (data not shown).

OS analysis by driver mutations in patients with stage I disease

Clinicopathologic associations with OS in patients with stage I disease are summarized in 

Table 5. In limited resection group, 54 patients (72%) underwent lymph node dissection or 

sampling while, in lobectomy group, all patients underwent lymph node dissection or 

sampling. Patients with KRAS-mutant tumors was significantly worse 5-year OS (n = 124; 

5-year OS, 63%) than those with KRAS wild-type tumors (n = 339; 77%; P < 0.001) (Fig. 

1A). We then analyzed the prognostic value of KRAS mutation in subgroups according to 

each histologic subtype. In architecturally intermediate-grade tumors (acinar predominant 

and papillary predominant subtypes), 5-year OS of patients with KRAS-mutant tumors was 

significantly worse (n = 86; 5-year OS, 66%) than those with KRAS wild-type tumors (n = 

248; 77%; P = 0.005) (Fig. 1B). In solid predominant tumors, 5-year OS of patients with 

KRAS-mutant tumors was significantly worse (n = 16; 5-year OS, 43%) than those with 

KRAS wild-type tumors (n = 42; 77%; P = 0.008) (Fig. 2A). According to the codon of 

KRAS mutations, 5-year OS of patients with KRAS codon 12 mutated tumors were 

significantly better (n = 107; 5-year OS, 67%) than those with other KRAS-mutated tumor 

types (n = 17; 29%; P = 0.002) (Fig. 1C). Patients with KRAS codon 13 mutated and codon 

61 mutated tumors had 5-year OS of 19% and 43%, respectively; these results were based on 

a small number of patients (n = 9 and n = 7, respectively). Type of KRAS mutation 

(transversion vs. transition) was not associated with OS (P = 0.69). On multivariate analysis 

of OS, KRAS mutation remained a significant prognostic factor after adjustment with other 

prognostic factors (hazard ratio [HR] = 1.87; 95% confidence interval [CI], 1.36–2.58; P < 

0.001) (Table 6A).

Patients with EGFR-mutant tumors trended with better OS (n = 85; 5-year OS, 86%) than 

those with EGFR wild-type tumors (n = 378; 70%; P = 0.055) (Fig. 3A). Type of EGFR 
mutations (exon 21 L858R mutation vs. exon 19 deletion) was not associated with OS (P = 

0.64) (Fig. 3B).

Patients with BRAF-mutant tumors were likely to have worse prognosis (5-year OS, 50%) 

than those with BRAF wild-type tumors (73%); this difference was based on a small number 

of BRAF-mutant tumors (n = 6) and was not statistically significant (P = 0.19) (Fig. 4). 

PIK3CA mutation was not associated with OS (P = 0.66). NRAS and AKT1 mutations were 

not applicable for OS survival because of a small number of patients in these groups.
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CIR analysis by driver mutations in patients with stage I disease

Clinicopathologic associations with CIR in patients with stage I disease are summarized in 

Table 5. KRAS mutation (mutant vs. wild-type) was not associated with a risk of recurrence 

(P = 0.29). In solid predominant tumors, 5-year CIR of patients with KRAS-mutant tumors 

was significantly higher (5-year CIR, 50%) than those with KRAS wild-type tumors (18%; P 
= 0.005) (Fig. 2B). However, KRAS mutation in architecturally intermediate-grade tumors 

was not associated with risk of recurrence (P = 0.85). Patients with KRAS codon 12 mutated 

tumors were likely to have lower risk of recurrence (5-year CIR, 17%) than those with other 

KRAS-mutant tumors (31%); this difference was not statistically significant (P = 0.24). Type 

of KRAS mutation (transversion vs. transition) was not associated with risk of recurrence (P 
= 0.69). On multivariate analysis of CIR, KRAS mutation in patients with solid predominant 

tumors remained a significant risk factor for recurrence after adjustment with other 

prognostic factors (HR = 4.73; 95% CI, 1.41–15.9; P = 0.012) (Table 6B).

Presence of EGFR mutation (mutant vs. wild-type) and their types of mutation (exon 21 

L858R mutation vs. exon 19 deletion) were not associated with risk of recurrence (P = 0.74 

and P = 0.73, respectively). BRAF and PIK3CA mutations were not associated with risk of 

recurrence (P = 0.98 and P = 0.21).

Association of ALK expression with predominant histologic subtypes and prognoses (OS 
and CIR)

ALK expression was positive in 15 (3%) cases. Among them, 2 (13%) cases were classified 

as lepidic predominant, 6 (40%) as acinar predominant, 5 (33%) as papillary predominant, 1 

(7%) as micropapillary predominant, and 1 (7%) as solid predominant. ALK expression was 

more frequently identified in tumors with signet ring cell features than those without signet 

ring cell features (19% vs. 2%; P = 0.003). However, ALK expression was not associated 

with patient gender, age, smoking history, predominant histologic subtype (including 

cribriform pattern), disease recurrence, and OS (data not shown).

DISCUSSION

We have demonstrated that, in patients with resected early-stage lung adenocarcinomas, 

KRAS mutation was an independent prognostic factor for OS in all tumors, for disease 

recurrence in solid predominant tumors. Moreover, EGFR mutations, especially exon 19 

deletions, correlated with acinar predominant pattern while EGFR L858R mutation 

correlated with lepidic predominant pattern.

In our study, KRAS mutation was identified in 27% of cases, which is consistent with the 

rate in previous studies of lung adenocarcinomas from patients in Western countries.14, 24, 43 

Initially, KRAS mutation was thought to be an unfavorable prognostic factor in NSCLC 

patients, but data regarding its prognostic impact has been contradictory. Several studies 

demonstrated that KRAS mutation was associated with shorter OS and disease-free survival 

in patients with NSCLC.17–21 Most studies focused on cohorts with only adenocarcinoma 

histology, two of which were composed of only stage I patients.17, 18 Two meta-analyses 

found KRAS mutation to be a poor prognostic marker.15, 16 Huncharek et al. found that in a 
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meta-analysis of 8 studies KRAS mutation was an unfavorable prognosticator of survival in 

NSCLC with a combined HR of 2.35 (95% CI 1.61–3.22); however, this analysis was not 

adjusted according to TNM stage.15 Another meta-analysis of 28 studies also demonstrated 

KRAS mutation was an overall poor prognostic indicator in NSCLC (HR = 1.40, 95% CI, 

1.18–1.65) and lung adenocarcinomas (HR = 1.50, 95% CI, 1.26–1.80), but not in squamous 

cell carcinoma; although, the finding in NSCLC was no longer significant after adjusting for 

disease stage.16 By contrast, other studies reported no prognostic value of KRAS mutations 

in patients who had TNM stage I–III disease with adenocarcinoma 23, 25, as well as other 

types of NSCLC. 22, 24 However, the strength of the conclusions in most of these studies 

may be limited for several reasons: a) prognostic implication of KRAS mutation was 

retrospectively investigated using study cohorts that were heterogeneous in tumor histology 

(including adenocarcinoma and squamous cell carcinoma); b) disease stage (including early-

stage and advanced-stage disease); c) treatment (including patients treated with surgery 

alone, chemotherapy alone, and multimodality therapy); and d) they was statistically 

analyzed using various end points (death or/and recurrence). In our study and on the basis of 

a homogeneous cohort of patients with surgically resected early stage lung 

adenocarcinomas, we identified KRAS mutation to be an independent prognostic factor for 

OS with a HR of 1.87, after adjustment with important confounders, including patient age, 

gender, surgical procedure (lobectomy vs. limited resection), pathologic stage (IA vs. IB), 

and tumoral vascular invasion.

Another possible explanation for the disparate data regarding the prognostic impact of 

KRAS mutation is that a variety of molecular techniques were used in the previous studies, 

including direct sequencing, polymerase chain reaction-based assay, and mass spectrometry-

based assay (Sequenom). Additionally, some studies focused on the most common types of 

KRAS mutations in codon 12 but others used methods which could detect mutations in 

codons 13 and 61.15–25 Mass spectrometry-based assays have been shown to be suitable for 

a screening method that is more sensitive and broader than direct sequencing.35 In our study, 

we used a mass spectrometry-based assay that was able to detect KRAS mutations in codons 

12, 13, 61, and 146, and we demonstrated that KRAS codon 12 mutated tumors were 

associated with better prognoses (5-year OS, 67%) than other KRAS-mutant tumors (5-year 

OS, 19% for codon 13 and 43% for codon 61). By contrast, Villaruz et al. reported that there 

was a trend toward better OS in patients with KRAS codon 13 mutations than those with 

KRAS codon 12 mutations in lung adenocarcinomas however, this difference was not 

statistically significant on multivariate analysis and the study cohort included patients with 

early-stage disease as well as advanced-stage disease.43 Therefore, the prognostic impact of 

KRAS-mutant codon types remains unclear because of varying results on the basis of small 

cohorts that were heterogeneous with regards to patient characteristics. However, presence 

of KRAS mutation appears to be prognostically significant in patients with surgically 

resected stage I lung adenocarcinoma.

Although EGFR mutation may be associated with better prognosis specifically in advanced-

stage lung adenocarcinoma patients who were treated with TKIs; its prognostic significance 

remains unclear in early-stage patients.20–24 In our study—which was based on a stage I 

cohort—patients with EGFR mutation had a tendency to have better OS than those with 

EGFR wild-type, although, this finding was not statistically significant. Interestingly, a 
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previous study demonstrated that, after treatment with TKI for advanced-stage NSCLC with 

distant metastases, patients with EGFR exon 19 deletions had significantly longer OS than 

those with EGFR L858R mutations.44 However, in our present study, the specific type of 

EGFR mutation (exon 19 deletion vs. L858R mutation) was not associated with prognostic 

differences in stage I lung adenocarcinomas.

In lung adenocarcinomas, correlations between activating mutations and histologic patterns 

have been reported. EGFR mutation is more frequently identified in tumors with lepidic 

pattern (formerly nonmucinous bronchioloalveolar carcinoma [BAC] pattern),5, 45–47 while 

KRAS mutation is more frequently identified in invasive mucinous adenocarcinoma 

(formerly called mucinous BAC).48–52 These findings were confirmed when classifying 

tumors using the 2011 IASLC/ATS/ERS lung adenocarcinoma classification by our group 

and others. EGFR mutation is frequently identified in non-mucinous lepidic predominant 

tumors while it is less frequently identified in solid predominant tumors and not detected in 

invasive mucinous adenocarcinomas.11–14 By contrast, KRAS mutation correlates with 

invasive mucinous adenocarcinoma and is frequently identified in solid predominant tumors, 

but it is less frequently identified in non-mucinous lepidic predominant tumors.11–14 In our 

study, we demonstrated that EGFR mutation was more frequently identified in non-

mucinous lepidic predominant tumors (29%) than in non-lepidic tumors (17%), while it was 

less frequently identified in solid predominant tumors (5%) than in non-solid tumors (20%). 

Although non-mucinous lepidic predominant tumors have been shown to positively correlate 

with EGFR mutation, associations between type of EGFR mutation and histologic subtype 

have not been investigated. Our study demonstrates that EGFR L858R mutations correlate 

with lepidic predominant subtype while EGFR exon 19 deletions correlate with acinar 

predominant subtype. Our group has previously reported that solid growth pattern is 

associated with presence of KRAS mutation using cohorts composed of both early-stage and 

advanced-stage patients.13, 14 Nevertheless, we did not identify the positive association 

between solid predominant tumors and KRAS mutations in our early-stage cohort of lung 

adenocarcinomas but found that, interestingly, KRAS mutation was a strong prognostic 

factor for OS and recurrence in subgroup analysis of patients with solid predominant tumors. 

However, this result was based on a small number of tumors with KRAS mutations (n = 16) 

in the solid predominant group. This should be considered a potential limitation of this 

finding and warrants further investigation with larger cohorts.

Our current and previous studies also confirmed complete lack of EGFR mutations in 

invasive mucinous adenocarcinoma using two independent large cohorts and performing two 

different types of mutations analyses (PCR-based assay and mass spectrometry-based 

assay).14 Additionally, we identified only KRAS mutation in invasive mucinous 

adenocarcinomas. Interestingly, a recently discovered somatic gene fusion, CD74-NRG1, 

has been specifically identified in invasive mucinous adenocarcinoma of the lung.53 ALK 
rearrangement and other rare oncogenic fusion gene were also detected in lung invasive 

mucinous adenocarcinomas.11, 54 Taking these findings into consideration, only fusion genes 

and KRAS mutation may be able to act as oncogenic molecular alteration in invasive 

mucinous adenocarcinomas.
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BRAF mutation is very rare (<5% in lung adenocarcinomas) and its clinical impact remains 

unclear although it may be associated with resistance to EGFR TKIs, micropapillary 

morphology, and poor prognosis.55–58 Specifically in early-stage lung adenocarcinomas, a 

prognostic value of BRAF mutation was not investigated. In our study, 5-year OS of patients 

with BRAF-mutant tumors was lower (50%) than those with BRAF wild-type tumors (73%) 

in stage I lung adenocarcinomas While the difference was not statistically significant it was 

based on a small number of patients with BRAF mutations. As for its histologic correlations, 

we identified BRAF mutation more frequently in papillary predominant tumors but did not 

detect it in micropapillary predominant tumors. However, all studies, including our own, 

investigated clinical impacts of BRAF mutation in a small number of patients due to its 

rarity. Further investigations will be warranted using a larger cohort with BRAF-mutant 

tumors.

Studies have reported that ALK rearrangement is associated with mucinous features, such as 

signet-ring cell feature and extracellular mucin, and cribriform pattern in lung 

adenocarcinoma59–61 Our group has previously reported that evaluating ALK expression via 

tissue microarray analysis in the independent cohort from our current study, signet ring cell 

features were associated with positive ALK expression but was not associated with KRAS or 

EGFR mutation; this finding was validated in our current study.

In conclusion, our study reported that, in early-stage lung adenocarcinomas, KRAS mutation 

was a strong prognostic factor, especially in patients with solid predominant tumors. 

Although solid predominant tumors can be classified as high-grade histology with poor 

prognoses, KRAS mutation may help select for patients with worse prognoses from this 

group. Additionally, with the exception of invasive mucinous adenocarcinoma and colloid 

adenocarcinoma which consistently show KRAS rather than EGFR mutations—there do not 

appear to be specific correlations between histologic subtype and presence of specific driver 

mutation.
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Figure 1. KRAS mutation associations with overall survival (OS)
(A) 5-year OS of patients with KRAS-mutant tumors was significantly worse (n = 124; 5-

year OS, 63%) than those with KRAS wild-type tumors (n = 339; 77%; P < 0.001). (B) In 

architecturally intermediate-grade tumors (acinar predominant and papillary predominant 

subtypes), 5-year OS of patients with KRAS-mutant tumors was significantly worse (n = 86; 

5-year OS, 66%) than those with KRAS wild-type tumors (n = 248; 77%; P = 0.005). (C) 5-

year OS of patient with KRAS codon 12 mutated tumors were significantly better (n = 107; 

5-year OS, 67%) than those with other KRAS-mutant tumors (n = 17; 29%; P = 0.002)
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Figure 2. KRAS mutation associations with overall survival (OS) and cumulative incidence of 
recurrence (CIR) in solid predominant tumors
(A) In solid predominant tumors, 5-year OS of patients with KRAS-mutant tumors was 

significantly worse (n = 16; 5-year OS, 43%) than those with KRAS wild-type (n = 42; 77%; 

P = 0.008). (B) In solid predominant tumors, 5-year CIR of patients with KRAS-mutant 

tumors was significantly higher (5-year OS, 50%) than those with KRAS wild-type tumors 

(18%; P = 0.005).
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Figure 3. EGFR mutation associations with overall survival (OS)
(A) Patients with EGFR-mutant tumors trended with better OS (n = 85; 5-year OS, 86%) 

than those with EGFR wild-type tumors (n = 378; 70%; P = 0.055). (B) Type of EGFR 
mutation (exon 21 L858R mutation vs. exon 19 deletion) was not associated with OS (P = 

0.64).
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Figure 4. BRAF mutation associations with overall survival (OS)
Patients with BRAF-mutant tumors were likely to have worse prognosis (5-year OS, 50%) 

than those with BRAF wild-type tumors (73%); although, this difference was based on a 

small number of BRAF-mutant tumors (n = 6) and was not statistically significant (P = 

0.19).
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Table 2

Summary of driver mutation types

Driver mutation Total (%) Type N (%)

KRAS 129 (27) G12C 57 (44)

G12V 22 (17)

G12D 15 (12)

G12A 14 (11)

G12F 2 (2)

G12R 1 (1)

G12S 1 (1)

G13C 8 (6)

G13D 1 (1)

Q61H 4 (3)

Q61L 2 (2)

Q61R 1 (1)

A146T 1 (1)

EGFR 86 (18) L858R 42 (49)

Exon 19 del. 39 (45)

L861Q 2 (2)

S768I 2 (2)

G719A 1 (1)

BRAF 8 (2) V600E 6 (75)

D594G 2 (25)

PIK3CA* 8 (2) E542K 4 (50)

C420K 1 (13)

E545K 1 (13)

H1047R 1 (13)

R88Q 1 (13)

NRAS 4 (1) Q61L 2 (50)

Q61K 1 (25)

G31R 1 (25)

AKT1 1 (0.2) E17K 1 (100)

*
Among PIK3CA mutated tumors, 2 coexisted with KRAS mutation and 2 with EGFR mutation.

EGFR, epidermal growth factor receptor
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Table 6

Multivariate analyses

(A) For overall survival

Variables HR 95% CI P

Age, years >65 vs. ≤65 1.78 1.24–2.55 0.002

Sex male vs. female 1.73 1.26–2.36 0.001

Surgery limited resection vs. lobectomy 2.31 1.62–3.29 < 0.001

Pathologic stage IB vs. IA 1.40 1.02–1.93 0.039

Vascular invasion positive vs. negative 1.45 1.04–2.01 0.027

KRAS mutation mutant vs. wild-type 1.87 1.36–2.58 < 0.001

(B) For disease recurrence

Variables HR 95% CI P

Sex male vs. female 1.63 0.98–2.71 0.058

Smoking ever vs. never 1.31 0.61–2.81 0.49

Necrosis present vs. absent 1.27 1.14–1.41 < 0.001

Pathologic stage IB vs. IA 1.81 1.1–2.97 0.019

KRAS mutation mutant vs. wild-type in solid predominant tumors 4.73 1.41–15.9 0.012

mutant vs. wild-type in non-solid predominant tumors 0.91 0.49–1.66 0.75

Significant P-values are shown in bold.

HR, hazard ratio; CI, confidence interval
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