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Summary

Meta-analysis has become a widely used tool to combine results from independent studies. The 

collected studies are homogeneous if they share a common underlying true effect size; otherwise, 

they are heterogeneous. A fixed-effect model is customarily used when the studies are deemed 

homogeneous, while a random-effects model is used for heterogeneous studies. Assessing 

heterogeneity in meta-analysis is critical for model selection and decision making. Ideally, if 

heterogeneity is present, it should permeate the entire collection of studies, instead of being 

limited to a small number of outlying studies. Outliers can have great impact on conventional 

measures of heterogeneity and the conclusions of a meta-analysis. However, no widely accepted 

guidelines exist for handling outliers. This article proposes several new heterogeneity measures. In 

the presence of outliers, the proposed measures are less affected than the conventional ones. The 

performance of the proposed and conventional heterogeneity measures are compared theoretically, 

by studying their asymptotic properties, and empirically, using simulations and case studies.
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1. Introduction

Meta-analysis is a statistical method for combining a collection of effect estimates from 

multiple separate studies (Higgins and Green, 2008), and it has been applied in a wide range 

of scientific areas (Hunter and Schmidt, 1996; Prospective Studies Collaboration, 2002). The 

collected studies are called homogeneous if they share a common underlying true effect size; 

otherwise, they are called heterogeneous. A fixed-effect model is customarily used for 

studies deemed to be homogeneous, while a random-effects model is used for heterogeneous 

studies (Borenstein et al., 2010; Riley et al., 2011). Assessing heterogeneity is thus a critical 

issue in meta-analysis because different models may lead to different estimates of overall 

effect size and different standard errors. Also, the perception of heterogeneity or 

homogeneity helps clinicians make important decisions, such as whether the collected 
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studies are similar enough to integrate their results and whether a treatment is applicable to 

all patients (Ioannidis et al., 2007).

The classical statistic for testing between-study heterogeneity is Cochran’s χ2 test (Cochran, 

1954), also known as the Q test (Whitehead and Whitehead, 1991). However, this test suffers 

from poor power when the number of collected studies is small, and it may detect clinically 

unimportant heterogeneity when many studies are pooled (Hardy and Thompson, 1998; 

Jackson, 2006). More importantly, since the Q statistic and estimators of between-study 

variance depend on either the number of collected studies or the scale of effect sizes, they 

cannot be used to compare degrees of heterogeneity between different meta-analyses. 

Accordingly, Higgins and Thompson (2002) proposed several measures to better describe 

heterogeneity. Among these, I2 measures the proportion of total variation between studies 

that is due to heterogeneity rather than within-study sampling error, and it has been popular 

in the meta-analysis literature. Higgins and Green (2008) empirically provided a rough guide 

to interpretation of I2: 0 ≤ I2 ≤ 0.4 indicates that heterogeneity might not be important; 0.3 ≤ 

I2 ≤ 0.6 may represent moderate heterogeneity; 0.5 ≤ I2 ≤ 0.9 may represent substantial 

heterogeneity; and 0.75 ≤ I2 ≤ 1 implies considerable heterogeneity. These ranges overlap 

because the importance of heterogeneity depends on several factors and strict thresholds can 

be misleading (Higgins and Green, 2008).

Ideally, if heterogeneity is present in a meta-analysis, it should permeate the entire collection 

of studies instead of being limited to a small number of outlying studies. With this in mind, 

we may classify meta-analyses into four groups: (i) all the collected studies are 

homogeneous; (ii) a few studies are outlying and the rest are homogeneous; (iii) 

heterogeneity permeates the entire collection of studies; and (iv) a few studies are outlying 

and heterogeneity permeates the remaining studies. Outlying studies can have great impact 

on conventional heterogeneity measures and on the conclusions of a meta-analysis. Several 

methods have been recently developed for outliers and influence diagnostics (Viechtbauer 

and Cheung, 2010; Gumedze and Jackson, 2011). However, no widely accepted guidelines 

exist for handling outliers in the statistical literature, including the area of meta-analysis. 

Hedges and Olkin (1985) specified two extreme positions about dealing with outlying 

studies: (i) data are “sacred”, and no study should ever be set aside for any reason; or (ii) 

data should be tested for outlying studies, and those failing to conform to the hypothesized 

model should be removed. Neither seems appropriate. Alternatively, if a small number of 

studies is influential, some researchers usually present sensitivity analyses with and without 

those studies. However, if the results of sensitivity analysis differ dramatically, clinicians 

may reach no consensus about which result to use to make decisions. Because of these 

problems caused by outliers, ideal heterogeneity measures are expected to be robust: they 

should be minimally affected by outliers and accurately describe heterogeneity.

This article introduces several new heterogeneity measures, which are designed to be less 

affected by outliers than conventional measures. The basic idea comes from least absolute 

deviations (LAD) regression, which is known to have significant robustness advantages over 

classical least squares (LS) regression (Portnoy and Koenker, 1997). Specifically, LS 

regression aims at minimizing the sum of squared errors , where xi 
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represents predictors, yi is the response, and β contains the regression coefficients. LAD 

regression minimizes the sum of absolute errors . The impact of outliers is 

diminished by using absolute values in LAD regression, compared to using squared values 

in LS regression. In meta-analysis, the conventional Q statistic has the form 

, where the yi’s are the observed effect sizes, the wi’s are study-specific 

weights, and  is the weighted average effect size. Analogously, we consider a new measure 

, which is expected to be more robust against outliers than the 

conventional Q. An estimate of the between-study variance can be obtained based on Qr. 

Also, since Qr depends on the number of collected studies, we further derive two statistics to 

quantify heterogeneity, which are counterparts of I2 and another statistic H also proposed by 

Higgins and Thompson (2002).

This article is organized as follows. Section 2 gives a brief review of conventional measures 

and discusses the dilemma of handling outliers in meta-analysis. Section 3 proposes several 

new heterogeneity measures designed to be robust to outliers. Section 4 uses theoretical 

properties to compare the proposed and conventional measures. Section 5 presents 

simulations to compare the various approaches empirically, and Section 6 applies the 

approaches to two actual meta-analyses. Section 7 provides a brief discussion.

2. The conventional methods

2.1 Measures of between-study heterogeneity

Suppose that a meta-analysis contains n independent studies. Let μi be the underlying true 

effect size, such as log odds ratio, in study i (i = 1, …, n). Typically, published studies report 

estimates of the effect sizes and their within-study variances, which we will call yi and . It 

is customary to assume that the yi’s are approximately normally distributed with mean μi and 

variance , respectively. Since the unknown  can be estimated by , these data are 

commonly modeled as  with  treated as known. Also, we assume that the true 

μi’s are independently distributed as , where μ is the true overall mean effect 

size across studies and τ2 is the between-study variance. The collected n studies are defined 

to be homogeneous if their underlying true effect sizes are equal, that is, μi = μ for all i = 1, 

…, n, or equivalently τ2 = 0. On the other hand, the studies are heterogeneous if their 

underlying true effect sizes vary, that is, τ2 > 0.

To test the homogeneity of the yi’s (i.e., H0: τ2 = 0 vs. HA: τ2 > 0), the well-known Q 
statistic (Whitehead and Whitehead, 1991) is defined as

which follows a  distribution under the null hypothesis. Here,  is the reciprocal 

of the within-study variance of yi, and  is the pooled fixed-effect 
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estimate of μ. Based on the Q statistic, DerSimonian and Laird (1986) introduced a method 

of moments estimate of the between-study variance,

Note that the Q statistic depends on the number of collected studies n and the estimate of 

between-study variance depends on the scale of effect sizes. Hence, neither Q nor  can be 

used to compare degrees of heterogeneity between different meta-analyses. To allow such 

comparisons, Higgins and Thompson (2002) proposed the measures H and I2:

The H statistic is interpreted as the ratio of the standard deviation of the estimated overall 

effect size from a random-effects meta-analysis compared to the standard deviation from a 

fixed-effect meta-analysis; I2 describes the proportion of total variance between studies that 

is attributed to heterogeneity rather than sampling error. In practice, meta-analysts truncate 

H at 1 when H < 1 and truncate I2 at 0 when I2 < 0; therefore, H ⩾ 1 and I2 lies between 0 

and 1. Since I2 is interpreted as a proportion, it is usually expressed as a percent. Both 

measures have been widely adopted in practice.

2.2 Outlier detection

As in many other statistical applications, outliers frequently appear in meta-analysis. 

Outliers may arise from at least three sources:

i. The quality of collected studies and systematic review. The published results (yi, 

) in a clinical study could be outlying due to errors in the process of recording, 

analyzing, or reporting data. Also, the populations in certain clinical studies may 

not meet the systematic review’s inclusion criteria; hence, such studies may be 

outlying compared to most other collected studies.

ii. A heavy-tailed distribution of study-specific underlying effect sizes. 

Conventionally, at the between-study level, the study-specific underlying effect 

sizes μi are assumed to have a normal distribution. However, the true distribution 

of the μi’s may greatly depart from the normality assumption and have heavy 

tails, such as the t-distribution with small degrees of freedom.

iii. Small sample sizes in certain studies. The true within-study variances  could 

be poorly estimated by the sample variances  if the sample sizes are small. In 

some situations, effect sizes in small studies may be more informative than large 

studies due to “small study effects” (Nüesch et al., 2010); if their true within-

study variances  are seriously underestimated, then small studies could be 

outlying.
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Hedges and Olkin (1985) and Viechtbauer and Cheung (2010) introduced outlier detection 

methods for fixed-effect and random-effects meta-analyses, respectively. Both methods use a 

“leave-one-study-out” technique so that a potential outlier could have little influence on the 

residuals of interest. Specifically, the residual of study i is calculated as . Here, 

 is the estimated overall effect size using the data without study i; that is, 

 under the fixed-effect setting, and  under the 

random-effects setting, where  can be the DerSimonian and Laird estimate using the 

data without study i. The variance of ei is estimated as  and 

 under the fixed-effect and random-effects settings, 

respectively. The standardized residuals  are expected to follow the standard 

normal distribution and studies with εi’s greater than 3 in absolute magnitude are 

customarily considered outliers.

Outliers may be masked if the above approaches are used in an inappropriate setting. For 

example, Figures 3(b) and 3(d) in Section 6 show standardized residuals of two actual meta-

analyses; different outlier detection methods identify different outliers. Hence, one must 

assess the heterogeneity of collected studies to correctly apply the foregoing approaches to 

detect outliers. However, outliers may cause heterogeneity to be overestimated and thus 

affect procedures to detect them. Additionally, even if outliers are identified, there is no 

consensus in the statistical literature on what to do about them unless these studies are 

evidently erroneous (Barnett and Lewis, 1994). To avoid the dilemmas of detecting and 

handling outliers, we propose robust measures to assess heterogeneity.

3. The proposed alternative heterogeneity measures

3.1 Heterogeneity measures based on absolute deviations and weighted average

In linear regression, it is well-known that least absolute deviations regression is more robust 

to outliers than classical least squares regression (Portnoy and Koenker, 1997). The former 

method minimizes  and the latter minimizes , where xi and yi 

are predictors and response respectively and β contains the regression coefficients. In the 

context of meta-analysis, the conventional Q statistic is analogous to least squares 

regression, because Q is a weighted sum of squared deviations. To reduce the impact of 

outlying studies, we propose a new measure Qr which is analogous to least absolute 

deviations regression. This measure is the weighted sum of absolute deviations, and is 

defined as
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For random-effects meta-analysis, , where 

.

DerSimonian and Laird (1986) derived an estimate of the between-study variance τ2 based 

on the Q statistic by the method of moments, i.e., equating the observed Q with its 

expectation. We can similarly obtain a new estimate of τ2, denoted as , from the proposed 

Qr statistic. Specifically,  is the solution to the following equation in τ2:

(1)

If this equation has no nonnegative solution, set . Note that the right-hand side of 

Equation (1) is monotone increasing in τ2, so the solution is unique.

The Qr statistic, like Q, is dependent on the number of studies; , like , is dependent on 

the scale of effect sizes. Following the approach of Higgins and Thompson (2002), we 

tentatively assume that all studies share a common within-study variance σ2 and explore 

heterogeneity measures that are independent of both the number of studies and the scale of 

effect sizes, so that they can be used to compare degrees of heterogeneity between meta-

analyses. Suppose the target heterogeneity measure can be written as f(μ,τ2,σ2,n), which is a 

function of the true overall mean effect size μ, the between-study variance τ2, the within-

study variance σ2, and the number of studies n. Higgins and Thompson (2002) suggested 

that this measure should satisfy the following three criteria:

i. (Dependence on the magnitude of heterogeneity) f(μ, τ′2, σ2,n) > f(μ, τ2, σ2, n) 

for any τ′2 > τ2. This criterion is self-evident.

ii. (Scale invariance) f(a + bμ,b2τ2,b2σ2,n) = f(μ,τ2,σ2,n) for any constants a and b. 

This criterion “standardizes” comparisons between meta-analyses using different 

scales of measurement and different types of outcome data.

iii. (Size invariance) f(μ,τ2,σ2,n′) = f(μ,τ2,σ2,n) for any positive integers n and n′. 

This criterion indicates that the number of studies collected in meta-analysis does 

not systematically affect the magnitude of the heterogeneity measure.

Monotone increasing functions of ρ = τ2/σ2 can be easily shown to satisfy these three 

criteria. Plugging wi = 1/σ2 into Equation (1), we have . This implies 

that
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is a candidate measure. Further, considering ρ/(ρ + 1) = τ2/(τ2 + σ2), commonly called the 

intraclass correlation, Equation (1) yields another candidate:

In practice, Hr would be truncated at 1 when Hr < 1 and  would be truncated at 0 when 

. These two measures,  and , are analogous to and have the same interpretations as 

H2 and I2, respectively. Higgins and Thompson (2002) also introduced a so-called R2 

statistic; since it has interpretation and performance similar to H2, we do not present a 

version of R2 based on the new Qr statistic.

Since standard deviations are used more frequently in clinical practice, Higgins and 

Thompson (2002) suggested reporting H, instead of H2, for meta-analyses. For the proposed 

measures, we also recommend reporting Hr rather than . However, we suggest presenting 

I2 and  instead of their square roots because their interpretation of “proportion of variance 

explained” is widely familiar to clinicians. Hr = 1 or  implies perfect homogeneity. 

Also, since the expressions for Hr and  only involve Qr and n but not within-study 

variances, these two measures can be easily generalized to a situation where the within-study 

variances  vary across studies.

3.2 Heterogeneity measures based on absolute deviations and weighted median

The proposed Qr statistic uses the weighted average  to estimate overall effect size under 

the null hypothesis; it may be sensitive to potential outliers. To derive an even more robust 

heterogeneity measure, we may replace the weighted average with the weighted median , 

which is defined as the solution to the following equation in θ:

(2)

where  is the indicator function. This weighted median leads to a new test statistic, 

. Note that the solution to Equation (2) may be not unique; to 

avoid this problem, we will approximate the indicator function by a monotone increasing 

smooth function (Horowitz, 1998). Section 3.3 introduces the details.

The expectation of Qm may not be explicitly calculated because the distribution of weighted 

median of finite samples is unclear. By the theory of M-estimation (Huber and Ronchetti, 

2009), the weighted median is a -consistent estimator of the true overall effect size μ. 

Suppose that the weights wi have finite first-order moment, then it can be shown that
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Therefore, when the number of collected studies n is large, 

. By equating the Qm 

statistic to its approximated expectation, a new estimator of between-study variance  can 

be derived as the solution to  in τ2. If all the within-study 

variances are further assumed to be equal to a common value σ2 as in Section 3.1, 

. Based on Qm, the counterparts of  and —which 

assess (σ2 + τ2)/σ2 and τ2/(σ2 + τ2) respectively—are defined as

Note that many meta-analyses only collect a small number of studies; however, the 

derivation of , , and  assumes a large n. The finite-sample performance of these 

heterogeneity measures will be studied using simulations.

3.3 Calculation of p-values and confidence intervals

Due to the difficulty caused by summing the absolute values of correlated random variables 

in the expression of Qr and the intractable distribution of weighted median in Qm, it is not 

feasible to explicitly derive the probability and cumulative density functions for the 

proposed statistics. Instead, resampling method can be used to calculate p-values and 95% 

confidence intervals (CIs). Since the weighted median in Qm is discontinuous and may be 

not unique due to the indicator function in Equation (2), we apply the approach in Horowitz 

(1998) to approximate the indicator function  by a smooth function J(t) in the following 

simulations and case studies. For example, J(t) can be the scaled expit function 

, where ε is a pre-specified small constant. We use ε = 10−4; various 

choices of ε are shown to produce stable results in Web Appendix A.

Parametric resampling can be used to calculate a p-value for Qr; similar procedures can also 

be used for Q and Qm. First, estimate the overall effect size  under H0: τ2 = 0 (i.e., the 

fixed-effect setting) and calculate the Qr statistic based on the original data. Second, draw n 

samples under H0, , and repeat this for B (say 10,000) iterations. Here, the 

weighted average  is used to estimate μ because it is unbiased and may have smaller 

variance than the weighted median under the null hypothesis. Third, based on the B sets of 

bootstrap samples, calculate the Qr statistic as  for b = 1, …, B. Finally, the p-value is 

calculated as . Here, 1 is added to both numerator and 

denominator to avoid calculating P = 0. To derive 95% CIs for the various heterogeneity 
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measures, the nonparametric bootstrap can be used by taking samples of size n with 

replacement from the original data  and calculating 2.5% and 97.5% quantiles 

for each of the measures over the bootstrap samples.

4. The relationship between I2, , and 

4.1 When the number of studies is fixed

Since  and  are designed to be robust compared to the conventional I2, they are expected 

to be smaller than I2 in the presence of outliers. Applying the Cauchy-Schwarz Inequality, 

, and the equality holds if and only if each  equals a common value for 

all studies, in which case outliers are unlikely to appear. The foregoing inequality further 

implies  and . Therefore, the proposed Hr and 

 are not always smaller than H and I2, respectively;  may be greater than I2 by up to 

(1−2/π)(1−I2). Web Appendix B provides artificial meta-analyses to illustrate how the 

proposed measures may have better interpretations even when no outliers are present;  and 

 are larger than I2 in those examples. As  is based on the intractable weighted median, 

determining its relationship with I2 and  is not feasible in finite samples except by 

simulations. Alternatively, the asymptotic values of the three measures can be derived as n 
→ ∞; Section 4.2 considers this case.

4.2 When the number of studies becomes large

This section focuses on the asymptotic properties of the three heterogeneity measures as the 

number of collected studies n → ∞. Denote  as convergence in probability, and let Φ(·) 

be the cumulative distribution function of the standard normal distribution. We have the 

following two propositions if no outliers are present.

Proposition 1—Under the fixed-effect setting, the observed effect sizes are . 

Assume that the weights  are independent and identically distributed with finite 

positive mean, and independent of the yi’s. Then I2, and  converge to 0 in probability as n 
→ ∞.

Proposition 2—Assume that all studies share a common within-study variance σ2. Under 

the random-effects setting, the observed effect sizes are yi ~ N(μi, σ2) and μi ~ N(μ, τ2); 

hence, the true proportion of total variation between studies due to heterogeneity is 

. Then I2, I2, and  converge to the true  in probability as n → ∞.

Propositions 1 and 2 show that, for either homogeneous or heterogeneous studies, all three 

heterogeneity measures converge to the true value and correctly indicate homogeneity or 

heterogeneity. Proposition 1 does not require that the n studies have a common within-study 

variance; Proposition 2 makes this assumption to facilitate definition of the true . The 

following proposition compares the three measures when the collection of studies is 

contaminated by a certain proportion of outlying studies.
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Proposition 3—Assume that all studies share a common within-study variance σ2. The 

observed effect sizes are yi ~ N(μi, σ2). The meta-analysis is supposed to focus on a certain 

population of interest, and in this population, the study-specific underlying effect sizes are μi 

~ N(μ, τ2); therefore, the true proportion of total variation between studies in this population 

that is due to heterogeneity is . However, 100η percent of the n studies are 

mistakenly included, having been conducted on inappropriate populations; their study-

specific underlying effect sizes are μi ~ N(μ + C, τ2), where C is a constant, representing the 

discrepancy of outliers. Then, as n → ∞,

Here, h(·, ·; η, ) is a function depending on η and  defined as

also, r1 = (1 − η)C/σ, r2 = ηC/σ, s2 = C/σ − s1, and s1 is the solution to

Web Appendix C gives proofs of the three propositions. Proposition 3 suggests that all the 

three heterogeneity measures are affected by outlying studies, though to different degrees. 

Specifically, their asymptotic values are determined by three factors: the true proportion of 

total variation between studies that is due to heterogeneity , the proportion of outliers η, 

and the ratio of the discrepancy of the outliers C compared to the within-study standard 

deviation σ, that is, R = C/σ. Outliers are usually present in small quantities, so the 

proportion of outliers η is usually not large. Also, an observation is customarily considered 

an outlier if the distance to the overall mean is greater than three times the standard 

deviation σ; therefore, the ratio R is usually greater than 3.

Figure 1 compares the asymptotic values of the three heterogeneity measures derived in 

Proposition 3. The upper panels show the setting of true homogeneity ( ) and the lower 

panels show the setting of true heterogeneity ( ). Under each setting, the proportion of 

outliers is 1%, 5%, or 10%. Clearly, all the panels present a common trend: the three 

heterogeneity measures increase as R increases. When η is 1%,  and  are much less 

affected by outliers than I2, indicating the robustness of the proposed measures. Also,  is a 
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bit smaller than . As η increases, the difference between I2 and  becomes smaller, while 

the difference between  and  becomes larger though it is never substantial. This implies 

that  is the most robust measure when a meta-analysis is contaminated by a large 

proportion of outliers.

5. Simulations

Simulations were conducted to investigate the finite-sample performance of the various 

approaches to assessing heterogeneity. Without loss of generality, the true overall mean 

effect size was fixed as μ = 0. The number of studies in these simulated meta-analyses was 

set to n = 10 or 30, and the between-study variance was τ2 = 0 (homogeneity) or 1 

(heterogeneity). Under the homogeneity setting, the within-study standard errors si were 

sampled from U(0.5, 1); under the heterogeneity setting, we sampled si’s from U(smin, smax), 

where (smin, smax) = (0.5, 1), (1, 2), or (2, 5) to represent different proportions of total 

variation between studies that is due to heterogeneity. The observed effect sizes were drawn 

from , where μi’s are study-specific underlying effect sizes. Regarding the μi, 

we considered the following two different scenarios to produce outliers.

A. (Contamination) The μi’s are normally distributed, μi ~ N(μ, τ2); however, m out 

of the n studies were contaminated by a certain outlying discrepancy, as in 

Proposition 3. We set m = 0, 1, 2, and 3, and five outlier patterns were 

considered: the m studies were created as outliers by artificially adding C, (C, C), 

(C, − C), (C, C, C), or (C, C, −C) to the original effect sizes for m = 1, 2, 2, 3, 

and 3 respectively. The discrepancy of outliers was set to .

B. (Heavy tail) The μi’s are drawn from a heavy-tailed distribution. We considered a 

location-scale transformed t distribution with degrees of freedom df = 3, 5, and 

10; that is, , where zi ~ tdf. Note that the between-study 

variance τ2 = Var[μi] = 1 in this scenario, so the generated studies are 

heterogeneous. Also, as degrees of freedom increases, the distribution of μi’s 

converges to the normal distribution and outliers are less likely.

Table 1 presents some results for n = 30, including statistical sizes (type I error rates) and 

powers of the statistics Q, Qr, and Qm for testing H0: τ2 = 0 vs. HA: τ2 > 0, and the root 

mean squared errors (RMSEs) and coverage probabilities of 95% CIs of , , and . 

Web Appendix D contains complete simulation results. When the studies are homogeneous, 

each of the three test statistics controls type I error rate well if no outliers are present. Also, 

the RMSEs of the three estimators of τ2 are close and their coverage probabilities are fairly 

high. However, when outliers appear, the type I error rate of Q inflates dramatically 

compared to Qr and Qm. The RMSE of  becomes larger than those of  and ; also, the 

coverage probability of  is lower, especially when m = 3. As the number of outliers 

increases, the weighted-median-based  has smaller RMSE and its 95% CI has higher 

coverage probability than the weighted-mean-based .
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For heterogeneous studies, the conventional Q statistic is more powerful than Qr or Qm, but 

the differences are not large; this is expected because Q sacrifices type I error in the presence 

of outliers. In spite of this disadvantage of Qr and Qm, the proposed estimators of τ2 still 

perform better than the conventional  in both Scenarios I and II.

Figure 2 compares the impact of a single outlier in Scenario I with m = 1 on the 

heterogeneity measures I2, , and . As expected, these heterogeneity measures generally 

increase due to the outlying study, so their changes are mostly greater than 0. However, for 

both homogeneous and heterogeneous studies, the changes of  and  are generally 

smaller than the changes of I2, indicating that the proposed measures are indeed less affected 

by outliers than the conventional I2.

6. Two case studies

6.1 Homogeneous studies with outliers

Ismail et al. (2012) reported a meta-analysis consisting of 29 studies to evaluate the effect of 

aerobic exercise (AEx) on visceral adipose tissue (VAT) content/volume in overweight and 

obese adults, compared to control treatment. Figure 3(a) shows the forest plot with the 

observed effect sizes and their within-study 95% CIs; studies 1, 3, 19, and 29 seem to be 

outlying. If these four studies are removed, the remaining studies are much more 

homogeneous. Figure 3(b) presents the standardized residuals using both the fixed-effect and 

random-effects approaches described in Section 2.2. Studies 1, 19, and 29 have standardized 

residuals (under the fixed-effect setting) greater than 3 in absolute magnitude; hence, they 

may be considered outliers. We conducted sensitivity analysis by removing the following 

studies: (i) 1; (ii) 19; (iii) 29; (iv) 1 and 19; (v) 1 and 29; (vi) 19 and 29; and (vii) 1, 19, and 

29.

Table 2 presents the results for the original meta-analysis and for alternate meta-analyses 

removing certain outlying studies. For the original meta-analysis,  and , 

compared to I2 = 0.59. Also,  and  are smaller than . To test H0: τ2 = 0 vs. HA: τ2 > 

0, the p-value of the Q statistic is smaller than 0.001, and those of the Qr and Qm statistics 

are 0.013 and 0.006, respectively. When study 29 is removed, the Q statistic is still 

significant (p-value = 0.008), while the p-values of the Qr and Qm statistics are larger than 

the commonly used significance level α = 0.05. After removing all three outlying studies, 

the p-values of the three test statistics are much larger than 0.05; also,  and I2 = 

0.11. Hence, the heterogeneity presented in the original meta-analysis is mainly caused by 

the few outliers. Note that  and  are still noticeably smaller than I2 after removing the 

three identified outliers. This may be because some studies other than studies 1, 19, and 29 

are potentially outlying. Figure 3(b) shows that the absolute values of the standardized 

residuals of studies 3 and 28 are fairly close to 3. Although some outliers may not be clearly 

detected,  and  automatically reduce their impact without removing them.

Lin et al. Page 12

Biometrics. Author manuscript; available in PMC 2017 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6.2 Heterogeneous studies with outliers

Haentjens et al. (2010) investigated the magnitude and duration of excess mortality after hip 

fracture among older men by performing a meta-analysis consisting of 17 studies. Figure 

3(c) shows the forest plot with the observed effect sizes (log hazard ratios) and their 95% 

within-study CIs. The forest plot indicates that the collected studies tend to be 

heterogeneous. Despite this, we used both the fixed-effect and random-effects diagnostic 

procedure in Section 2.2 to detect potential outliers. Figure 3(d) shows the study-specific 

standardized residuals, indicating that study 17 is apparently outlying. Although study 9’s 

standardized residual is smaller than 2 in absolute magnitude when using the random-effects 

approach, its standardized residual under the fixed-effect setting is fairly large. To take all 

potential outliers into account, we conducted sensitivity analysis by removing the following 

studies: (i) 9; (ii) 17; and (iii) 9 and 17.

The results are in Table 2. For the original meta-analysis, the p-values of all the three test 

statistics are smaller than 0.001, rejecting the null hypothesis of homogeneity. Also, I2 = 

0.74,  and , indicating substantial heterogeneity. If study 9 is removed, the 

results seem to change little, implying that this study is not influential. If study 17 is 

removed, the p-values of the test statistics change noticeably; also, each of I2, , and  is 

reduced by more than 0.10. The three heterogeneity measures are still fairly high (larger than 

or close to 0.5); therefore, meta-analysts may keep paying attention to the heterogeneity of 

the remaining studies.

7. Discussion

This paper proposed several alternative measures of heterogeneity in meta-analysis. Large-

sample properties and finite-sample studies showed that the new measures are robust to 

outliers compared with conventional measures. Since outliers frequently appear in meta-

analysis and may not simply be removed without sound evidence, the proposed robust 

measures can provide useful information describing heterogeneity. The robustness of the 

new approaches mainly arises from using the absolute deviations in the Qr and Qm statistics; 

Qr summarizes the deviations using the weighted average, and Qm summarizes the 

deviations using the weighted median. Note that the number of studies is assumed to be 

large in deriving , Hm, and . However, many meta-analyses may only collect a few 

studies (Davey et al., 2011); these three measures need to be used with caution for small 

meta-analyses.

When study-level covariates are collected in meta-analysis, meta-regression is widely 

applied to investigate whether study characteristics explain heterogeneity (Higgins and 

Thompson, 2004). To improve robustness to outliers, instead of performing least squares 

regression, researchers may consider least absolute deviations regression (Portnoy and 

Koenker, 1997), which is related to the heterogeneity measures proposed in this article.

Heterogeneity measures are customarily used to select a fixed-effect or random-effects 

model, but both models have limitations in certain situations. Some researchers believe that 

heterogeneity is to be expected in any meta-analysis because the collected studies were 
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performed by different teams in different places using different methods (Higgins, 2008). 

Also, the fixed-effect model produces confidence intervals with poor coverage probability 

when the collected studies have different true effect sizes (Hedges and Vevea, 1998), so 

some researchers recommend routinely using the random-effects model to yield conservative 

results (Chalmers, 1991). However, the random-effects model is not always better than the 

fixed-effect model, especially in the presence of publication bias (Poole and Greenland, 

1999; Henmi and Copas, 2010; Stanley and Doucouliagos, 2015). Besides robustly assessing 

heterogeneity, alternative approaches to robustly estimating overall effects size in the 

presence of outliers remain to be studied.

The R code for the proposed methods are organized in the package altmeta and available at 

http://cran.r-project.org/package=altmeta.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was supported in part by NIAID R21 AI103012 (HC, LL), NIDCR R03 DE024750 (HC), NLM R21 
LM012197 (HC), and NIDDK U01 DK106786 (HC).

References

Barnett, V., Lewis, T. Outliers in Statistical Data. 3rd. John Wiley & Sons; New York, NY: 1994. 

Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effect and 
random-effects models for meta-analysis. Research Synthesis Methods. 2010; 1:97–111. [PubMed: 
26061376] 

Chalmers TC. Problems induced by meta-analyses. Statistics in Medicine. 1991; 10:971–980. 
[PubMed: 1876787] 

Cochran WG. The combination of estimates from different experiments. Biometrics. 1954; 10:101–
129.

Davey J, Turner RM, Clarke MJ, Higgins JPT. Characteristics of meta-analyses and their component 
studies in the cochrane database of systematic reviews: a cross-sectional, descriptive analysis. BMC 
Medical Research Methodology. 2011; 11:160. [PubMed: 22114982] 

DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials. 1986; 7:177–188. 
[PubMed: 3802833] 

Gumedze FN, Jackson D. A random effects variance shift model for detecting and accommodating 
outliers in meta-analysis. BMC Medical Research Methodology. 2011; 11:19. [PubMed: 21324180] 

Haentjens P, Magaziner J, Colón-Emeric CS, Vanderschueren D, Milisen K, Velkeniers B, Boonen S. 
Meta-analysis: excess mortality after hip fracture among older women and men. Annals of Internal 
Medicine. 2010; 152:380–390. [PubMed: 20231569] 

Hardy RJ, Thompson SG. Detecting and describing heterogeneity in meta-analysis. Statistics in 
Medicine. 1998; 17:841–856. [PubMed: 9595615] 

Hedges, LV., Olkin, I. Statistical Method for Meta-Analysis. Academic Press; Orlando, FL: 1985. 

Hedges LV, Vevea JL. Fixed- and random-effects models in meta-analysis. Psychological Methods. 
1998; 3:486–504.

Henmi M, Copas JB. Confidence intervals for random effects meta-analysis and robustness to 
publication bias. Statistics in Medicine. 2010; 29:2969–2983. [PubMed: 20963748] 

Higgins JPT. Commentary: Heterogeneity in meta-analysis should be expected and appropriately 
quantified. International Journal of Epidemiology. 2008; 37:1158–1160. [PubMed: 18832388] 

Lin et al. Page 14

Biometrics. Author manuscript; available in PMC 2017 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cran.r-project.org/package=altmeta


Higgins, JPT., Green, S. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & 
Sons; Chichester, UK: 2008. 

Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine. 
2002; 21:1539–1558. [PubMed: 12111919] 

Higgins JPT, Thompson SG. Controlling the risk of spurious findings from meta-regression. Statistics 
in Medicine. 2004; 23:1663–1682. [PubMed: 15160401] 

Horowitz JL. Bootstrap methods for median regression models. Econometrica. 1998; 66:1327–1351.

Huber, PJ., Ronchetti, EM. Robust Statistics. 2nd. John Wiley & Sons; Hoboken, NJ: 2009. 

Hunter JE, Schmidt FL. Cumulative research knowledge and social policy formulation: the critical role 
of meta-analysis. Psychology, Public Policy, and Law. 1996; 2:324–347.

Ioannidis JPA, Patsopoulos NA, Evangelou E. Uncertainty in heterogeneity estimates in meta-analyses. 
BMJ. 2007; 335:914. [PubMed: 17974687] 

Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of 
aerobic vs. resistance exercise training on visceral fat. Obesity Reviews. 2012; 13:68–91. 
[PubMed: 21951360] 

Jackson D. The power of the standard test for the presence of heterogeneity in meta-analysis. Statistics 
in Medicine. 2006; 25:2688–2699. [PubMed: 16374903] 

Nüesch E, Trelle S, Reichenbach S, Rutjes AWS, Tschannen B, Altman DG, Egger M, Jüni P. Small 
study effects in meta-analyses of osteoarthritis trials: meta-epidemiological study. BMJ. 2010; 
341:c3515. [PubMed: 20639294] 

Poole C, Greenland S. Random-effects meta-analyses are not always conservative. American Journal 
of Epidemiology. 1999; 150:469–475. [PubMed: 10472946] 

Portnoy S, Koenker R. The gaussian hare and the laplacian tortoise: computability of squared-error 
versus absolute-error estimators (with discussion). Statistical Science. 1997; 12:279–300.

Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular 
mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. The 
Lancet. 2002; 360:1903–1913.

Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 2011; 
342:d549. [PubMed: 21310794] 

Stanley TD, Doucouliagos H. Neither fixed nor random: weighted least squares meta-analysis. 
Statistics in Medicine. 2015; 34:2116–2127. [PubMed: 25809462] 

Viechtbauer W, Cheung MWL. Outlier and influence diagnostics for meta-analysis. Research 
Synthesis Methods. 2010; 1:112–125. [PubMed: 26061377] 

Whitehead A, Whitehead J. A general parametric approach to the meta-analysis of randomized clinical 
trials. Statistics in Medicine. 1991; 10:1665–1677. [PubMed: 1792461] 

Lin et al. Page 15

Biometrics. Author manuscript; available in PMC 2017 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 

The asymptotic values of I2, , and  as n → ∞. The horizontal axis represents the ratio 

(R) of discrepancy of outliers (C) compared to within-study standard deviation (σ), that is, R 

= C/σ. The true proportion of total variation between studies that is due to heterogeneity 

is 0 (homogeneity, top row) or 0.5 (heterogeneity, bottom row). The proportion of outlying 

studies η varies from 1% (left panels) to 10% (right panels).
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Figure 2. 

Scatter plots of the changes of  and  due to an outlier against the changes of I2. For the 

upper panels, τ2 = 0 (homogeneous studies) and si ~ U(0.5, 1); for the lower panels, τ2 = 1 

(heterogeneous studies) and si ~ U(1, 2). The left panels compare  with I2; the right panels 

compare  with I2.
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Figure 3. 
Forest plots and standardized residual plots of two actual meta-analyses. The upper panels 

show the meta-analysis conducted by Ismail et al. (2012); the lower panels show that 

conducted by Haentjens et al. (2010). In (a) and (c), the columns “Lower” and “Upper” are 

the lower and upper bounds of 95% CIs of the effect sizes within each study. In (b) and (d), 

the filled dots represent standardized residuals obtained under the fixed-effect setting; the 

unfilled dots represent those obtained under the random-effects setting.
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