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Abstract

Southern Zambia is the focus of strategies to create malaria-free zones. Interventions being rolled out include

test and treat strategies and distribution of insecticide-treated bed nets that target vectors that host-seek indoors

and late at night. In Macha, Choma District, collections of mosquitoes were made outdoors using barrier

screens within homesteads or UV bulb light traps set next to goats, cattle, or chickens during the rainy season

of 2015. Anopheline mosquitoes were identified to species using molecular methods and Plasmodium falcipa-

rum infectivity was determined by ELISA and real-time qPCR methods. More than 40% of specimens caught

were identified as Anopheles squamosus Theobald, 1901 of which six were found harboring malaria parasites.

A single sample, morphologically identified as Anopheles coustani Laveran, 1900, was also found to be infec-

tious. All seven specimens were caught outdoors next to goat pens. Parasite-positive specimens as well as a

subset of An. squamosus specimens from either the same study or archive collections from the same area

underwent sequencing of the mitochondrial cytochrome oxidase subunit I gene. Maximum parsimony trees

constructed from the aligned sequences indicated presence of at least two clades of An. squamosus with infec-

tious specimens falling in each clade. The single infectious specimen identified morphologically as An. coustani

could not be matched to reference sequences. This is the first report from Zambia of infections in An. squamo-

sus, a species which is described in literature to display exophagic traits. The bionomic characteristics of this

species needs to be studied further to fully evaluate the implications for indoor-targeted vector control.
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In Macha, Southern Province, Zambia, malaria cases have dropped

by over 90% in the past decade (Moss et al. 2011, 2012;

Mharakurwa et al. 2012). Current community surveys indicate the

prevalence by rapid diagnostic test to be <1% (W.J. Moss unpub-

lished data) and elimination strategies are now being rolled out.

These methods are primarily based on reactive case detection; cases

reporting at health facilities are followed up and household mem-

bers and neighbors are screened and treated with antimalarials if in-

fected. Vector control relies on the routine distribution of long-

lasting insecticidal nets (LLINs) to pregnant women and children

under 5 yr of age at health facilities and mass distribution of LLINs

every 2–3 yr (NMCC 2011). LLINs are currently the most effective

tool in preventing exposure to indoor foraging malaria vectors that

predominantly feed when people are asleep (Lengeler 2004).

However, this assumption of late night endophagy (Gillies and De

Meillon 1968, Pates and Curtis 2005, Killeen et al. 2006) is being

challenged in some areas; studies in other parts of Sub-Saharan

Africa have shown replacement of vector populations with species

that can evade indoor control (Gillies and Smith 1960, Lindblade

et al. 2006, Bayoh et al. 2010), or have demonstrated changes in the

foraging behavior of existing primary vectors, resulting in biting

time shifts, and outdoor feeding and resting (Reddy et al. 2011,

Russell et al. 2011, Moiroux et al. 2012, Yohannes and Boelee

2012, Sougoufara et al. 2014, Cooke et al. 2015). Recent studies

have focused on determining the extent of exposure to vectors that

may not be controlled by indoor targeted methods (Geissbuhler

et al. 2007, Govella et al. 2010, Seyoum et al. 2012, Killeen 2014,

Cooke et al. 2015). Currently the only vector control deployed in
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southern Zambia is use of LLINs, which do not combat exposure to

malaria mosquito vectors either outdoors or indoors at times prior

or after bed net use.

The majority of programmatic entomological surveillance relies

on morphological identification of samples using standard, albeit

dated, keys (Gillies and Coetzee 1987). In sub-Saharan Africa, dis-

crimination of specimens focuses on separating and quantifying col-

lections of the main malaria vector complexes, Anopheles gambiae

Giles, 1902 and Anopheles funestus Giles, 1900. Due to limitations

of infrastructure in country, samples are rarely identified to sibling

species within these complexes by standard PCR-based tools (Scott

et al. 1993, Koekemoer et al. 2002), and little attention is paid to

other species which are often discarded. However, studies have dem-

onstrated presence of Plasmodium falciparum in secondary and

unrecognized vectors (Gillies 1964, Nigatu et al. 1994, Wilkes et al.

1996, Antonio-Nkondjio et al. 2006, Stevenson et al. 2012, Degefa

et al. 2015, Nepomichene et al. 2015, St. Laurent et al. 2016). Early

studies relied on dissection of salivary glands to detect sporozoites,

but these labor-intensive methods have generally been superseded by

the use of circumsporozoite (CSP) ELISAs of homogenates of mos-

quito head and thoraces (Burkot et al. 1984). The use of CSP ELISA

for zoophagic species has been reported to result in false positives

(Durnez et al. 2011) and so some studies have confirmed infectivity

by detection of parasite DNA by PCR in the mosquito. In a recent

study in central Madagascar, infections of both P. vivax and P. fal-

ciparum detected by CSP ELISA were confirmed by PCR in

An. coustani Laveran, 1900 caught both indoors and outdoors

(Nepomichene et al. 2015). Worryingly, infectivity rates and ento-

mological inoculation rates (the number of infectious bites received

per person per annum, EIRs) were comparable with that of An.

funestus, the recognized vector in the area. Indoor application of in-

secticides, the mainstay of vector control in Madagascar, as in most

other African countries, is unlikely to prevent exposure to An. cous-

tani that displays both endophagic and exophagic (indoor and out-

door feeding) behaviors (Gillies and De Meillon 1968, Fornadel

et al. 2011, Mwangangi et al. 2013, Degefa et al. 2015,

Nepomichene et al. 2015). PCR methods also confirmed presence of

P. falciparum-positive mosquitoes in the highlands of western Kenya

that did not belong to the An. gambiae or An. funestus species com-

plexes (Stevenson et al. 2012, St. Laurent et al. 2016). Genetic se-

quencing of these samples to identify the infectious vector species

resulted in no match to mosquito species that have been previously

sequenced. Many of the infectious specimens were trapped outdoors

where they may avoid current control measures. These findings

highlight the importance of expansion of entomological surveillance

to include potential secondary vectors, especially in low transmis-

sion areas where recognized primary vector populations may be

marginalized, and programs start to focus on elimination strategies.

As part of the International Centers of Excellence in Malaria

Research (ICEMR) in Southern Africa (Conn et al. 2015), outdoor

collection methods for anopheline malaria vectors were evaluated in

Macha, Choma district, Southern Zambia. Using two 4x4 Latin

Square designs, miniature CDC UV light traps, updraft UV light

traps (John W Hock Co., Gainesville, FL) and barrier screens

(Burkot et al. 2013) were rotated through eight consenting house-

holds for a period of 48 nights in the rainy season between February

and April 2015. UV light traps were set next to cow, chicken, or

goat enclosures, whilst barrier screens were erected within the home-

stead between houses and breeding site. At the laboratories in

Macha, mosquitoes were identified to species level using morpho-

logical keys (Gillies and De Meillon 1968, Gillies and Coetzee 1987)

and identities confirmed using standard diagnostic PCRs for

An. gambiae and An. funestus species complexes, the latter which tar-

gets a polymorphic region of the ribosomal intergenic spacer 2 (ITS2)

region of DNA (Scott et al. 1993, Koekemoer et al. 2002, Kent et al.

2006). Addition of primers to this PCR designed to amplify the ITS2

region of other African anophelines, allowed for detection of species

not of the An. funestus and An. gambiae complexes (Das et al. 2016).

All samples underwent CSP ELISA and positive samples were deter-

mined by OD readings 2-fold greater than the negative controls

(Burkot et al. 1984). Real-time qPCR was performed on DNA extracts

from the head and thorax to detect P. falciparum.

All parasite-positive samples were sent to Johns Hopkins

Bloomberg School of Public Health, Baltimore, for mosquito species

confirmation by amplification and alignment of a 698 bp fragment

from the mitochondrial cytochrome oxidase subunit I gene (COI)

(Norris and Norris 2015). Consensus sequences were aligned and

Maximum Parsimony (MP) trees constructed (1,000 bootstraps)

with An. coustani as an outgroup, using MEGA 6.0 (Tamura et al.

Table 1. Details of anopheline specimens sequenced and refer-

enced, GPS locations where specimens were trapped, and results

of CSP ELISA and qPCR for P. falciparum

Specimen and infection status GenBank Longitude Latitude

Anopheles sp. 475 þ* KU524734 26.9004 �16.2537

Anopheles squamosus 526 KU524735 27.0154 �16.3737

Anopheles squamosus 540 KU524736 27.0154 �16.3737

Anopheles squamosus 564þ* KU524737 27.0154 �16.3737

Anopheles squamosus 609þ KU524738 26.9168 �16.2500

Anopheles squamosus 610 KU524739 26.9168 �16.2500

Anopheles squamosus 671þ KU524740 26.9168 �16.2500

Anopheles squamosus 539 KU524741 27.0154 �16.3737

Anopheles squamosus 541 KU524742 27.0154 �16.3737

Anopheles squamosus 613 KU524743 26.9168 �16.2500

Anopheles squamosus 614 KU524744 26.9168 �16.2500

Anopheles squamosus 440 KU524745 26.8784 �16.2937

Anopheles squamosus 508 KU524746 26.9168 �16.2500

Anopheles squamosus 510 KU524747 26.9168 �16.2500

Anopheles squamosus 611 KU524748 26.9168 �16.2500

Anopheles squamosus 620þ* KU524749 26.9168 �16.2500

Anopheles squamosus 649þ KU524750 26.9168 �16.2500

Anopheles squamosus 706Bþ* KU524751 26.9168 �16.2500

Anopheles coluzzi KU524752 Keele Strain

Anopheles gambiae KU524753 28.8072 �9.2569

Anopheles squamosus SQ5 KU524754 26.7906 �16.3929

Anopheles squamosus SQ3 KU524755 26.7906 �16.3929

Anopheles squamosus SQ15 KU524756 26.7906 �16.3929

Anopheles squamosus SQ16 KU524757 26.7906 �16.3929

Anopheles squamosus 392 KU524758 26.9532 �16.3786

Anopheles squamosus 433 KU524759 26.8412 �16.4425

Anopheles squamosus 327 KU524760 26.9004 �16.2537

Anopheles squamosus JN994170.1 Norris and Norris 2015

Anopheles pharoensis JN994163.1

Anopheles coustani JN994154.1

Anopheles rufipes JN994169.1

Anopheles pretoriensis JN994164.1

Anopheles funestus JN994155.1

Anopheles parensis JN994162.1

Anopheles vaneedeni JN994172.1

Anopheles leesoni JN994158.1

Anopheles rivulorum JN994168.1

Anopheles theileri JN994171.1

Anopheles arabiensis JN994153.1

Anopheles quadriannulatus JN994165.1

þ—CSP-ELISA positive, *—P. falciparum qPCR positive.
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Fig. 1. Cytochrome oxidase subunit I (COI) Maximum Parsimony tree, one of the two most parsimonious trees that did not differ in any arrangements after col-

lapse of all branches with <50% bootstrap support (1,000 replicates). Circle—UV trap outdoors, Square—CDC standard light trap indoors, Filled Circle—CSP-

ELISA positive, An. gambiae from barrier collection in northern Zambia, An. coluzzi from insectary at Johns Hopkins Bloomberg School of Public Health, þ—CSP-

ELISA positive, *—P. falciparum qPCR positive.
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2013) as previously described by Norris and Norris (Norris and

Norris 2015). The blood feeding host preference of all samples iden-

tified as Anopheles squamosus Theobald, 1901 were analyzed by

PCR (Kent and Norris 2005).

A total of 834 female anophelines were caught during the study

from the outdoor light traps and barrier screens. Morphological and

molecular identifications were successfully conducted on 812 speci-

mens and revealed domination of catches by An. squamosus

(40.3%) and An. arabiensis (24.8%). Other species identified were

An. coustani (6.0%), An. rufipes (5.5%), An. quadriannulatus

(4.8%), An. parensis (3.7%), An. leesoni (1.2%), An. longipalpis

(1.0%), An. pretoriensis (1.0%), An. rivulorum (0.1%), and An. riv-

ulorum-like (0.1%). Of the 812 samples, 51 were blood-fed with 27

of these identified as An. squamosus. These 27 bloodmeals were

identified as nonhuman, with 78% of bloodmeals taken from goats.

Following standard CSP ELISA, seven of the 812 samples had OD

values 2-fold greater than the negative controls. These samples were

morphologically identified as An. squamosus (n ¼ 6) and An. cous-

tani (n ¼ 1). All samples were analyzed by qPCR of which four gave

positive signals for P. falciparum (Table 1).

A 698 bp fragment from the mosquito mitochondrial COI was

amplified and sequenced from all seven ELISA/qPCR-positive speci-

mens (Norris and Norris 2015). Included with these samples were

11 randomly selected Plasmodium-negative specimens caught dur-

ing the same week, from light traps and identified morphologically

as An. squamosus, as this morphological taxon dominated the col-

lection. Also included in the phylogenetic analysis were seven mos-

quitoes morphologically identified as An. squamosus from other

studies in the Macha area, and specimens of An. gambiae s.s. from

Nchelenge district, Luapula Province, northern Zambia and An.

coluzzii specimens from colonies kept at Johns Hopkins Bloomberg

School of Public Health (Table 1). These samples were included to

address consistency of morphological identifications over time and

across studies. The MP analysis and resulting trees revealed that all

specimens morphologically identified as An. squamosus cluster to-

gether with 100% support (Fig. 1). The existence of at least two mo-

lecular COI clades is also apparent and strongly supported within

An. squamosus and warrant further investigation. The molecular

identity of specimen 475 remains ambiguous, despite morphological

identification as An. coustani. This sequence does not cluster with

any significance to any other available anopheline COI sequence,

most notably any recognized vector species. This lone P. falciparum-

positive specimen may suggest the existence of yet another poten-

tially important unreported malaria vector species.

Studies are increasingly reporting the potential importance of

secondary vectors (Awono-Ambene et al. 2004, Okorie et al. 2011,

Stevenson et al. 2012, Animut et al. 2013, Mwangangi et al. 2013,

Nepomichene et al. 2015, St. Laurent et al. 2016). Whilst there is

the possibility of false positives resulting from ELISAs conducted on

zoophagic species (Durnez et al. 2011, Charlwood et al. 2015), our

current study in Zambia used both antigen and DNA-based detec-

tion methods to determine infection rates and confirm the presence

of P. falciparum sporozoites and DNA in An. squamosus mosqui-

toes. These anophelines have not been associated with malaria trans-

mission in this area, although historic reports have implicated An.

squamosus in malaria transmission by sporozoite visualization in

nearby Tanzania and Zimbabwe (Gillies 1964, Gillies and De

Meillon 1968). The fact that there are no animal reservoirs of P. fal-

ciparum apart from humans, supports the potential role of An. squa-

mosus in malaria transmission in Africa. The COI data generated in

this study demonstrated presence of two strongly supported molecu-

lar clades in mosquitoes identified as An. squamosus, and three

specimens which were positive by both ELISA and qPCR fell into

each of the two clades. These mosquitoes were caught outdoors near

goat pens and although the extent of their outdoor foraging behav-

ior requires further investigation, such behaviors could undermine

current elimination efforts that rely on vector control targeting in-

door human sleeping structures. This study did not reveal presence

of human blood in any of the An. squamosus specimens caught, but

previous studies from the area have demonstrated significant anthro-

pophily of An. squamosus (Fornadel et al. 2011).

Residual transmission may explain the continued presence of

cases in the Macha area. Our findings highlight the utility of molec-

ular tools for both determination of infectivity and accurate identifi-

cation of anopheline species, and stress the importance of rigorous

entomological studies that are not limited to known malaria vectors

but also incorporate sympatric anophelines active both indoors and

outdoors. Such studies are essential to fully evaluate the epidemio-

logical importance of secondary vectors and to develop appropriate

vector control tools. To our knowledge, this is the first molecular

confirmation of An. squamosus harboring P. falciparum sporozoites.

Evidence of the existence of Plasmodium-infectious exophagic An.

squamosus and other unidentified taxa indicates that species other

than well-recognized malaria vectors could play a role in malaria

transmission in Southern Africa, which may jeopardize current ma-

laria elimination efforts, where vector control is solely indoor based.

Larval source management which targets both indoor and outdoor

resting mosquitoes, is the only recommended programmatic inter-

vention by the World Health Organization (Tusting et al. 2013,

WHO 2013), but its use is generally limited to areas where breeding

sites are identifiable and limited. It requires a large investment in

terms of capacity for sustained program management and entomo-

logical monitoring and surveillance. If exophagic and zoophilic spe-

cies such as An. squamosus are found to play an important role in

transmission, there are a number of interventions that can reduce ex-

posure to mosquitoes outdoors, such as the use of topical and spatial

repellents(Achee et al. 2012, Debboun and Strickman 2013, Wilson

et al. 2014), application of topical and systemic insecticides to ani-

mals (Hewitt and Rowland 1999, Rowland et al. 2001, Habtewold

et al. 2004, Chaccour et al. 2013, Franco et al. 2014, Poche et al.

2015), and deployment of odor-baited traps (Okumu et al. 2010).

However, most of these interventions have not been demonstrated

to have a marked impact on malaria incidence across multiple sites

and so have not received endorsement by the WHO at present.

There is urgent need for these technologies to be fully evaluated.
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